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Abelian Surfaces with an Automorphism
and Quaternionic Multiplication

Matteo Alfonso Bonfanti and Bert van Geemen

Abstract. We construct one-dimensional families of Abelian surfaces with quaternionic multipli-
cation, which also have an automorphism of order three or four. Using Barth’s description of the
moduli space of (2, 4)-polarized Abelian surfaces, we ûnd the Shimura curve parametrizing these
Abelian surfaces in a speciûc case. We explicitly relate these surfaces to the Jacobians of genus two
curves studied by Hashimoto and Murabayashi. We also describe a (Humbert) surface in Barth’s
moduli space that parametrizes Abelian surfaces with real multiplication by Z[√2].

Introduction

_e Abelian surfaces,with a polarization of a ûxed type,whose endomorphism ring is
an order in a quaternion algebra are parametrized by a curve, called a Shimura curve,
in themoduli space of polarizedAbelian surfaces. _ere have been several attempts to
ûnd concrete examples of such Shimura curves and of the family of Abelian surfaces
over this curve. In [HM], Hashimoto and Murabayashi ûnd two Shimura curves as
the intersection, in themoduli space of principally polarized Abelian surfaces, of two
Humbert surfaces. Such Humbert surfaces are now known “explicitly” in many other
cases (see [BW]), and this might allow one to ûnd explicit models of other Shimura
curves. Another approach was taken by Elkies in [E] who characterizes elliptic û-
brations on the Kummer surfaces of such Abelian surfaces. See [PS] for yet another
approach.

In this paper we consider the rather special case where one of the Abelian surfaces
in the family is the selfproduct of an elliptic curve. Moreover, we assume this elliptic
curve to have an automorphism (ûxing the origin) of order three or four. It is then
easy to show that, for a ûxed product polarization of type (1, d), the deformations of
the selfproductwith the automorphism are parametrized by a Shimura curve. In fact,
an Abelian surface with such an automorphism must have a Néron–Severi group of
rank at least three, and we show that this implies that the endomorphism algebra of
such a surface is in general a quaternion algebra. One can then work out for which
d the quaternion algebra is actually a skew ûeld (rather than a matrix algebra). _e
cases for d ≤ 20 are listed in Section 1.5.

_e remainder of this paper is devoted to the case of an automorphism of order
three and a polarization of type (1, 2). In that case the general endomorphism ring is a
maximal orderO6 of the quaternion algebra of discriminant 6. Barth, in [B], provides
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a description of amoduli spaceM2,4, embedded inP5, of (2, 4)-polarizedAbelian sur-
faces with a level structure. Since the polarized Abelian surfaces we consider have an
automorphism of order three, the corresponding points in M2,4 are ûxed by an auto-
morphismof order three of P5. _is allows us to explicitly identify the Shimura curve
in M2,4 that parametrizes the Abelian surfaces with quaternionic multiplication by
themaximal order O6 in the quaternion algebra with discriminant 6. It is embedded
as a line, which we denote by P1

QM , in M2,4 ⊂ P5. _e symmetric group S4 acts on
this line by changing the level structures.
According to Rotger [R], an Abelian surface with endomorphism ring O6 has a

unique principal polarization,which is in general deûned by a genus two curve in that
surface. We show explicitly how to ûnd such genus two curves, or rather their images
in theKummer surface embedded in P5 with a (2, 4)-polarization. _ese curveswere
already considered by Hashimoto and Murabayashi in [HM]. We give the explicit
relation between the two descriptions in Proposition 4.2. As a byproduct, we ûnd
a (Humbert) surface in M2,4 that parametrizes Abelian surfaces with Z[

√
2] in the

endomorphism ring.
In a series of papers (cf. [GP1, GP2]), Gross and Popescu studied, both in gen-

eral and for several small d in particular, explicit maps from moduli spaces of (1, d)-
polarized Abelian surfaces to projective spaces. _e methods we used to ûnd the
Shimura curve in M2,4 can, in principle, be extended also to these cases.

1 Polarized Abelian Surfaces with Automorphisms

1.1 Abelian Surfaces with a (1, d)-polarization

We recall the basic results onmoduli spaces of Abelian surfaceswith a (1, d)-polariza-
tion, following [HKW, Chapter 1]. Such an Abelian surface A is isomorphic to C2/Λ,
where the lattice Λ can be obtained as the image of Z4 under the map given by the
periodmatrix Ω, where we consider all vectors as row vectors:

A ≅ C2Λ, Λ = Z4Ω, Ω∶Z4
Ð→ C2 ,

x z→ xΩ = x (
τ
∆d

) = x
⎛
⎜
⎜
⎜
⎝

τ11 τ12
τ21 τ22
1 0
0 d

⎞
⎟
⎟
⎟
⎠

,

where τ is a symmetric complex 2 × 2 matrix with positive deûnite imaginary part,
so τ ∈ H2, the Siegel space of degree two, and ∆d is a diagonal matrix with entries
1, d. _e polarization on A is deûned by the Chern class of an ample line bundle in
H2(A,Z) ≅ ∧2H1(A,Z) = ∧2 Hom(Λ,Z), that is, by an alternating map Ed ∶Λ ×

Λ → Z, which is the one deûned by the alternating matrix with the same name (so
Ed(x , y) = xEd ty):

Ed ∶= (
0 ∆d

−∆d 0 ) =

⎛
⎜
⎜
⎜
⎝

0 0 1 0
0 0 0 d
−1 0 0 0
0 −d 0 0

⎞
⎟
⎟
⎟
⎠

.
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1.2 Products of Elliptic Curves

_e selfproduct of an elliptic curve with an automorphism of order three and four
respectively provides, for any integer d > 0, a (1, d)-polarized Abelian surface with
an automorphism of the same order whose eigenvalue on H2,0 is equal to one.

To see this, let ζ j ∶= e2πi/ j be a primitive j-th root of unity. For j = 3, 4, let E j be
the following elliptic curve with an automorphism f j ∈ End(E j) of order j:

E j ∶= C/Z + Zζ j , f j ∶ E j Ð→ E j , z z→ ζ jz.

_en the Abelian surface A j ∶= E2
j has the automorphism

ϕ j ∶= f j × f −1
j ∶ A j ∶= E j × E j Ð→ A j .

As f ∗j acts as multiplication by ζ j on H1,0(E j) = Cdz, the eigenvalues of ϕ∗j on
H1,0(A j) are ζ j , ζ−1

j . _us ϕ∗j acts as the identity on H2,0(A j) = ∧
2H1,0(A j).

_e principal polarization on E j is ûxed by f j , so the product of this polarization
on the ûrst factor with d-times the principal polarization on the second factor is a
(1, d)-polarization on A j that is invariant under ϕ j .

_e lattice Λ j ⊂ C2 deûning A j is given by the image of the periodmatrix Ω j :

A j ≅ C2
/Λ j , Λ j = Z4Ω j , Ω j ∶=

⎛
⎜
⎜
⎜
⎝

ζ j 0
0 dζ j
1 0
0 d

⎞
⎟
⎟
⎟
⎠

.

_e automorphism ϕ j determines, and is determined by, the matrices ρr(ϕ j) and
ρa(ϕ j), which give the action of ϕ j on Λ j and C2, respectively. Here we have

ρr(ϕ j)Ω j = Ω jρa(ϕ j), ρr(ϕ j) = M j , ρa(ϕ j) = (
ζ j 0
0 ζ−1

j
) ,

where thematrix M j is given by:

M3 ∶=

⎛
⎜
⎜
⎜
⎝

−1 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 −1

⎞
⎟
⎟
⎟
⎠

, M4 ∶=

⎛
⎜
⎜
⎜
⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞
⎟
⎟
⎟
⎠

.

_e (1, d)-polarization is deûned by the alternating matrix Ed from Section 1.1 and is
indeed preserved by ϕ j (so ϕ∗j Ed = Ed ), since M jEd tM j = Ed .

1.3 Deformations of (A j , E1,d , ϕ j)

For amatrix M ∈ M4(R) such that MEd tM = Ed we deûne

M ∗d τ ∶= (Aτ + B∆d)(Cτ + D∆d)−1∆d , where M = (
A B
C D) .

_e ûxed point set of M j for the ∗d-action on H2 is denoted by

H j,d ∶= {τ ∈ H2 ∶ M j ∗d τ = τ}.
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_e following proposition shows that the (1, d)-polarized Abelian surfaces that are
deformations of (A j , ϕ j) form a one parameter family that is parametrized by H j,d .
We will see in _eorem 1.2 and Table 1.5 that for certain combinations of j and d the
general surface in this family is simple and has quaternionicmultiplication.

Proposition 1.1 _e (1, d)-polarized Abelian surface (Aτ ,d = C2/(Z4Ωτ), Ed), with
τ ∈ H2, admits an automorphism ϕ j induced by M j if and only if τ ∈ H j,d . Moreover,
H j,d is biholomorphic to H1, the Siegel space of degree one.

Proof _e Abelian surface Aτ ,d = C2/(Z4Ωτ) admits an automorphism induced by
M j if there is a 2 × 2 complex matrix Nτ such that

M jΩτ = ΩτNτ , Ωτ ∶= (
τ
∆d

) .

Writing M j as a block matrix with rows A, B and C ,D, the equation M jΩτ = ΩτNτ
is equivalent to the two equations

Aτ + B∆d = τNΩ , Cτ + D∆d = ∆dNτ ,

hence Nτ = ∆−1
d (Cτ + D∆d) and substituting this in the ûrst equation we get:

(Aτ + B∆d)(Cτ + D∆d)−1∆d = τ, hence M j ∗d τ = τ.

Conversely, if M j ∗d τ = τ, then deûne Nτ ∶= ∆−1
d (Cτ + D∆d), and one ûnds that

M jΩτ = ΩτNτ .
_e fact that this ûxed point set is a copy of H1 in H2 follows easily from

[F,Hilfsatz III, 5.12, p. 196].

1.4 Polarizations and Automorphisms

Recall that for a complex torus A = Cg/Λ we can identify Cg = ΛR ∶= Λ ⊗Z R. _e
scalarmultiplication by i =

√
−1 onCg induces anR-linearmap J on ΛR with J2 = −1.

An endomorphism of A corresponds to a C-linear map M on Cg such that MΛ ⊂ Λ,
equivalently, a�er choosing a Z-basis for Λ:

End(A) = {M ∈ M2g(Z) ∶ JM = MJ},

where M2g(Z) is the algebra of 2g × 2g matrices with integer coeõcients.
_e Néron–Severi group of A, a subgroup of

H2
(A,Z) = ∧2H1

(A,Z) = ∧2 Hom(Λ,Z),
can be described similarly:

NS(A) ∶= {F ∈ M2g(Z) ∶ tF = −F , JF tJ = F},

where the alternating matrix F ∈ NS(A) deûnes the bilinear form (x , y) ↦ xF ty.
Moreover, F is a polarization, i.e., the ûrst Chern class of an ample line bundle, if F tJ
is a positive deûnitematrix. In particular, F is then invertible (in M2g(Q)).

It is now elementary to verify that if E , F ∈ NS(A) and E is invertible in M2g(Q),
then FE−1 ∈ End(A)Q (cf. [BL, Proposition 5.2.1a] for an intrinsic description). _is
result will be used in the proof of_eorem 1.2.
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In _eorem 1.2we show that if τ ∈ H j,d then the Abelian surface End(Aτ ,d)Q con-
tains a quaternion algebra (and not just the ûeldQ(ζ j)!). _is is of coursewell known
(see, for example, [BL, Exercise 4, Section 9.4]), butwe can also determine this quater-
nion algebra explicitly. It allows us to ûnd inûnitelymany families of (1, d)-polarized
Abelian surfaces whose genericmember is simple and whose endomorphism ring is
an (explicitly determined) order in a quaternion algebra. To ûnd the endomorphisms,
we ûrst study theNéron–Severi group. Notice that in the proof of_eorem 1.2 we do
not need to know the periodmatrices of the deformations explicitly.

_eorem 1.2 Let j ∈ {3, 4} and let τ ∈ H j,d , so that the Abelian surface Aτ ,d has an
automorphism ϕ j induced by M j (see Proposition 1.1).

_en the endomorphism algebra of Aτ ,d also contains an element ψ j with ψ2
j = d .

Moreover, for a general τ ∈ H j,d one has

End(Aτ ,d) = Z[ϕ j ,ψ j], End(Aτ ,d)Q ≅
(− j,d)

Q ,

where (a ,b)
Q ∶= Q1 ⊕Qi ⊕Qj ⊕Qij is the quaternion algebra with i2 = a, j2 = b, and

ij = −ji.

Proof _e Néron–Severi group of an Abelian surface A can also be described as

NS(A)
≅
Ð→ H2

(A,Z) ∩H1,1
(A)

≅
Ð→ {ω ∈ H2

(A,Z) ∶ (ω,ω2,0
A ) = 0},

where ( ⋅ , ⋅ ) denotes the C-linear extension to H2(A,C) of the intersection form on
H2(A,Z) and we ûxed a holomorphic 2-form on A so that H2,0(A) = Cω2,0

A .
_e intersection form is invariant under automorphisms of A, so (ϕ∗j x , ϕ

∗
j y) =

(x , y) for all x , y ∈ H2(A,Z), where A = Aτ ,d . Moreover, by construction of ϕ j , we
have that ϕ∗j ω

2,0
A = ω2,0

A , so ω2,0
A ∈ H2(A,C)ϕ∗j , the subspace of ϕ j-invariant classes.

_erefore any integral class which is orthogonal to the ϕ j-invariant classes is in par-
ticular orthogonal to ω2,0

A and thus must be in NS(A):

(H2
(A,Z)ϕ∗j )

⊥
∶= {ω ∈ H2

(A,Z) ∶ (ω, θ) = 0,

for all θ ∈ H2
(A,Z) with ϕ∗j θ = θ} ⊂ NS(A).

_e eigenvalues of ϕ∗j on H1(A,C) = H1,0(A) ⊕ H1,0(A) are ζ j and ζ−1
j , both with

multiplicity two. _us the eigenvalues of ϕ∗ on H2(A,C) = ∧2H1(A,C) are ζ2
j , ζ

−2
j ,

with multiplicity one, and 1 with multiplicity 4. In particular, (H2(A,Z)ϕ∗j )⊥ is a
free Z-module of rank 2, it is the kernel in H2(A,Z) of (ϕ∗3 )

2 + ϕ∗3 + 1 in case j = 3
and of (ϕ∗4)

2 + 1 in case j = 4. Identifying H2(A,Z) with the alternating bilinear Z-
valuedmaps on Λ j ≅ Z4, the action of ϕ∗ is given by M j ⋅F ∶= M jF tM j ,where F is an
alternating 4×4matrixwith integral coeõcients. It is now easy to ûnd a basis E j,1, E j,2

of the Z-module (H2(A,Z)ϕ∗j )⊥. Since Ed deûnes a polarization on A, the matrices
E−1
d E j,k , k = 1, 2, are the images under ρr of elements inEnd(A)Q (cf. [BL,Proposition
5.2.1a]). In this way we found that for any τ ∈ H j,d , the Abelian surface A = Aτ ,d has
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an endomorphism ψ j deûned by thematrix ρr(ψ j) below:

ρr(ψ3) =

⎛
⎜
⎜
⎜
⎝

0 d 0 0
1 0 0 0
0 0 0 d
0 0 1 0

⎞
⎟
⎟
⎟
⎠

, ρr(ψ4) =

⎛
⎜
⎜
⎜
⎝

0 0 0 −d
0 0 1 0
0 d 0 0
−1 0 0 0

⎞
⎟
⎟
⎟
⎠

.

It is easy to check that ρr(ψ j)
2 = d and that M4ρr(ψ4) = −ρr(ψ4)M4, whereas (1 +

2M3)ρr(ψ3) = −ρr(ψ3)(1 + 2M3) (and notice that (1 + 2M3)
2 = −3). _erefore,

(− j, d)/Q ⊂ End(A)Q (in fact,M2
4 = −1, but (−1, d)/Q ≅ (−4, d)/Q). As (− j, d)/Q is

a (totally) indeûnitequaternion algebra (soof type II), for general τ ∈ H j,d theAbelian
surface A = Aτ ,d has (− j, d)/Q = End(A)Q by [BL,_eorem 9.9.1]. _erefore, if ϕ ∈

End(A), then ρr(ϕ) is both amatrixwith integer coeõcients and a linear combination
of I, M j = ρr(ϕ j), ρr(ψ j) and M jρr(ψ j) with rational coeõcients. It is then easy to
check that End(A) is as stated in _eorem 1.2.

1.5 A Table

Using Magma [M], we found that for the following d ≤ 20, the quaternion algebras
(−1, d)/Q and (−3, d)/Q are skew ûelds:

RRRRRRRRRRRRRRRRRRRRRRRR

d discriminant (−1,d)
Q

3, 6, 15 6
7, 14 14
11 22
19 38

RRRRRRRRRRRRRRRRRRRRRRRR

,

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

d discriminant (−3,d)
Q

2, 6, 8, 14, 18 6
5, 15, 20 15

10 10
11 33
17 51

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

Moreover, for d ≤ 20, End(A) is never a maximal order in (−1, d)/Q, and it is a
maximal order in (−3, d)/Q if and only if d = 2, 5, 11, 17.

In particular, for τ ∈ H3,2 the Abelian surface Aτ ,2 has a (1, 2)-polarization in-
variant by an automorphism of order three induced by M3 and End(Aτ ,2) = O6, the
maximal order in the quaternion algebra with discriminant 6, for general τ ∈ H3,2.
A�er a discussion of an equivariant map ψD of amoduli space of Abelian surfaces to
a projective space, we will describe the image ofH3,2 in Section 3.

2 The Level Moduli Space

2.1 The Moduli Space of (1, d)-polarized Abelian Surfaces

_e integral symplectic group with respect to Ed is deûned as

Γ̃0
d ∶= {M ∈ GL(4,Z) ∶ MEd tM = Ed}.

_is group acts on the Siegel space by [HKW, Equation (1.4)]:

Γ̃0
d ×H2 Ð→ H2 , (

A B
C D) ∗d τ ∶= (Aτ + B∆d)(Cτ + D∆d)−1∆d .

Notice that for d = 1 one ûnds the standard action of the symplectic group on H2.
_e quotient space (in general a singular quasi-projective 3-dimensional algebraic
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variety) is themoduli spaceA0
d of pairs (A,H), where A is an Abelian surface and H

is a polarization of type (1, d) (see [HKW,_eorem 1.10(i)]).
For the study of this moduli space, and of certain “level” covers of it, we use the

standard action of Sp(4,R) onH2,which is ∗1. For this, as in the proof of Proposition
1.1 (cf. [HKW, p.11]), we use the 4 × 4 matrix Rd . _en Γ0

1,d ∶= R−1
d Γ̃0

dRd ∈ Sp(4,R) is
a subgroup of the (standard) real symplectic group of the (standard) alternating form
E1, and we have (R−1

d MRd) ∗1 τ = M ∗d τ for all M ∈ Γ̃0
d . _erefore,

A0
d ∶= Γ̃0

d /H2 ≅ Γ0
1,d/H2 ,

where the actions are ∗d and ∗1, respectively.

2.2 Congruence Subgroups

We now follow [BL] for the deûnition of coverings of the moduli space and maps to
projective space. Recall that we deûned a group Γ̃0

d in Section 2.1 of matrices with
integral coeõcients that preserve the alternating form Ed . We will actually be inter-
ested in the form 2E2, which is preserved by the same group. With the notation from
[BL, 8.1, p. 212] we thus have

Γ̃0
2 = ΓD = SpD4 (Z), D = diag(2, 4) = 2∆2 .

It is easy to check that

Z4D̃−1
= {x ∈ Q4

∶ x(2E2)y ∈ Z,∀y ∈ Z4
}, D̃ ∶= (

D 0
0 D) .

Let T(2, 4) be the following quotient of Z4:

T(2, 4) = (Z4D̃−1
)/Z4

≅ (Z/2Z × Z/4Z)2 ,

_e group ΓD acts on this quotient and we deûne

ΓD(D) ∶= ker(ΓD Ð→ Aut(T(2, 4))).

One veriûes easily that

ΓD(D) = {M ∈ ΓD ∶ D̃−1M ≡ D̃−1 mod M4(Z)}

= {M = (
I + Dα Dβ
Dγ I + Dδ) ∈ ΓD ∶ α, β, γ, δ ∈ M2(Z)} .

_is shows that ΓD(D) is the subgroup as deûned in [BL, Section 8.3] (see also [BL,
Section 8.8]). _e alternating form E2 deûnes a “symplectic” form ⟨ ⋅ , ⋅ ⟩ on T(2, 4)
with values in the fourth-roots of unity (cf. [B, Section 3.1]). For this we write (cf.
[B, Section 2.1])

T(2, 4) = K × K̂ , K = Z/2Z × Z/4Z, K̂ = Hom(K ,C∗) ≅ Z/2Z × Z/4Z,
and the symplectic form is

⟨ ⋅ , ⋅ ⟩∶T(2, 4) × T(2, 4)Ð→ C∗ , ⟨(σ , l), (σ ′ , l ′)⟩ ∶= l ′(σ)l(σ ′)−1 .

We denote by Sp(T(2, 4)) the subgroup of Aut(T(2, 4)) of automorphisms that pre-
serve this form.
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Lemma 2.1 _e reduction homomorphism ΓD → Sp(T(2, 4)) is surjective. Hence
ΓD/ΓD(D) ≅ Sp(T(2, 4)), this is a ûnite group of order 2932.

Proof As the symplectic form is induced by E2, we have im(ΓD) ⊂ Sp(T(2, 4)).
In [B, Proposition 3.1] generators ϕ i , i = 1, . . . , 5 of Sp(T(2, 4)) are given. It is easy
to check that the following matrices are in GD and induce these automorphisms on
T(2, 4):

(
1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

) , (
1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

) , (
0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1

) , (
1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

) , (
1 0 0 0
−2 1 0 0
0 0 1 1
0 0 0 1

) .

_e order of Sp(T(2, 4)) is determined in [B, Proposition 3.1].

2.3 The Subgroup ΓD(D)0

We deûne a normal subgroup of ΓD(D) by:

ΓD(D)0 ∶= ker(ϕ∶ ΓD(D)Ð→ (Z/2Z)4
), ϕ(M) = (β0 , γ0) ∶= (β11 , β22 , γ11 , γ22),

where M ∈ ΓD(D) is as above. Since D has even coeõcients, D = 2diag(1, 2), it is
easy to check that ϕ is a homomorphism. Moreover, ϕ is surjective, since thematrix
with α = γ = δ = 0 and β = diag(a, b) (a, b ∈ Z) is in ΓD(D) andmaps to (a, b, 0, 0);
similarly, thematrix with α = β = δ = 0 and γ = diag(a, b) is also in ΓD(D) andmaps
to (0, 0, a, b). It follows that ΓD(D)/ΓD(D)0 ≅ (Z/2Z)4.

_e groups ΓD , ΓD(D) and ΓD(D)0 are denoted byGZ ,GZ(e) andGZ(e , 2e) in [I2,
V.2, p. 177]. In [I2, V.2 Lemma 4] one ûnds that ΓD(D)0 is in fact a normal subgroup
of ΓD . _ere is an exact sequence of groups:

0Ð→ ΓD(D)/ΓD(D)0 Ð→ ΓD/ΓD(D)0 Ð→ ΓD/ΓD(D)Ð→ 0.

_e group ΓD act onH2 in a naturalway, but to get the standard action ∗1 onemust
conjugate these groups by amatrix RD with diagonal blocks I, D, and one obtains the
groups

GD = R−1
D ΓDRD , GD(D) = R−1

D ΓD(D)RD , GD(D)0 = R−1
D ΓD(D)0RD ;

see [BL, Sections 8.8, 8.9].
_emain result from [BL, section 8.9] is Lemma 8.9.2,which asserts that the holo-

morphicmap given by theta-null values

ψD ∶H2 Ð→ P7 , τ Ð→ ( . . . ∶ ϑ[l0](0, τ) ∶ ⋅ ⋅ ⋅) l∈K
,

where l runs over K = D−1Z2/Z2 andwhere the theta functions ϑ[l0](v , τ) are deûned
in [BL, 8.5, Formula (1)], factors over a holomorphicmap

ψD ∶AD(D)0 ∶= H2/ΓD(D)0 ≅ H2/GD(D)0 Ð→ P7 .

2.4 Group Actions

_e ûnite group ΓD/ΓD(D)0 acts on AD(D)0. _e Heisenberg group H(D), a non-
Abelian central extension of T(2, 4) by C∗, acts on P7 ([BL, Section 6.6]). _is action
is induced by an irreducible representation (called the Schrödinger representation) of
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H(D) on the vector space V(2, 4) of complex valued functions on the subgroup K of
T(2, 4) ([BL, Section 6.7])

ρD ∶H(D)Ð→ GL(V(2, 4)).

In [B, Section 2.1]) the action of generators of H(D) on PV(2, 4) = P7 are given
explicitly. _e linear map ι̃ ∈ GL(V(2, 4)) that sends the delta functions δ l ↦ δ−l
(l ∈ K) is also introduced there (cf. Sections 3.1, 3.2).

_e normalizer of theHeisenberg group (in the Schrödinger representation) is, by
deûnition, the group

N(H(D)) ∶= {γ ∈ Aut(PV(2, 4)) ∶ γρD(H(D))γ−1
⊂ ρD(H(D))}.

_e group N(H(D))maps onto Sp(T(2, 4))with kernel isomorphic to T(2, 4). _e
elements in this kernel are obtained as interior automorphisms: γ = ρD(h), for some
h ∈H(D). Explicit generators of N(H(D)) are given in [B, Table 8] (but there seem
to be somemisprints in the action of the generators onH(D) in the lower le� corner
of that table). Let N(H(D))2 be the subgroup of N(H(D)) of elements that com-
mute with ι̃. _e group N(H(D))2 is an extension of Sp(T(2, 4)) by the 2-torsion
subgroup (isomorphic to (Z/2Z)4) of T(2, 4) and ♯N(H(D))2 = 21332.

We need the following result.

Proposition 2.2 _ere is an isomorphismγ ∶ GD/GD(D)0 ≅ N(H(D))2,M′ ↦ γM′

such that themap ψD is equivariant for the action of these groups. So if we denote by γ̃
the composition

γ̃∶ ΓD/ΓD(D)0
≅
Ð→ GD/GD(D)0

γ
Ð→ N(H(D)),

then ψD(M ∗ τ) = γ̃MψD(τ), where ∗ denotes the action of Γ(D) on H2.

Proof LetLτ = L(H, χ0) be the line bundle on Aτ ,2 ∶= C2/(Z4Ωτ) that hasHermit-
ian form H with E2 = ImH (so it deûnes a polarization of type (1, 2)) and the quasi-
character χ0 is as in [BL, 3.1, Formula (3)] for the decomposition Λ = Z2τ ⊕ Z2∆2.
According to [BL, Remark 8.5.3d], the theta functions ϑ[l0](v , τ) are a basis of the
vector space of classical theta functions for the line bundleL⊗2

τ . As χ0 takes values in
{±1} onehasL⊗2

τ = L(2H, χ20 = 1), so it is theunique line bundlewithûrstChern class
2E2 and trivial quasi-character. _us ifM ∈ GD and τ′ = M ∗1 τ, then ϕ∗ML⊗2

τ ≅ L⊗2
τ′ ,

where ϕM ∶Aτ′ ,2 → Aτ ,2 is the isomorphism deûned by M. Notice that Lτ and L⊗2
τ

are symmetric line bundles ([BL, Corollary 2.3.7]).
Let G(L⊗2

τ ) be the theta group ([BL, Section 6.1]); it has an irreducible linear rep-
resentation ρ̃ on H0(Aτ ,2 ,L⊗2

τ ) ([BL, Section 6.4]).
A theta structure b∶G(L⊗2

τ )→H(D) is an isomorphismof groups that is the iden-
tity on their subgroups C∗. A theta structure b deûnes an isomorphism βb , unique
up to scalarmultiple ([BL, Section 6.7]),which intertwines the actions of G(L⊗2) and
H(D):

βb ∶H0
(Aτ ,2 ,L⊗2

τ )Ð→ V(2, 4), βb ρ̃(g) = ρD(b(g))βb (∀g ∈ G(L⊗2
τ )).

A symmetric theta structure ([BL, Section 6.9]) is a theta structure that is compatible
with the action of (−1) ∈ End(Aτ ,2) on the symmetric line bundle L⊗2

τ and themap
ι̃ ∈ GL(V(2, 4)) deûned in [B, Section 2.1].
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For τ ∈ H2, deûne an isomorphism βτ ∶H0(Aτ ,2 ,L⊗2
τ ) → V(2, 4) by sending the

basis vectors ϑ[l0](v , τ) to the delta functions δ l for l ∈ K. From the explicit transfor-
mation formulas for the theta functions under translations by points inAτ ,2, one ûnds
that for g ∈ G(L⊗2

τ ) themap βτ ρ̃(g)β−1
τ acts as an element,whichwe denote by bτ(g),

of theHeisenberg groupH(D) acting onV(2, 4). _ismap b = bτ ∶G(L
⊗2
τ )→H(D)

is a theta structure and βτ ρ̃(g) = ρD(bτ(g))βτ ; moreover, it is symmetric, since
θ[l0](−v , τ) = θ[−l

0 ](v , τ).
For M ∈ GD and τ′ = M ∗1 τ we have an isomorphism βτ′ and the composition

γM ∶= βτ′ϕ∗Mβ
−1
τ ∈ GL(V(2, 4)) is an element of N(H), since ϕ∗M induces an isomor-

phism G(L⊗2
τ )→ G(L⊗2

τ′ ). In fact γM ∈ N(H)2, since the theta structures βτ , βτ′ are
symmetric and ϕM commutes with (−1) on the abelian varieties.
From [BL, Proposition 6.9.4] it follows that the group generated by the γM is

contained in an extension of Sp(T(2, 4)) by (Z/2Z)4. _e map M ↦ γM ∈

Aut(P(V(2, 4)) is thus a (projective) representation of GD whose image is contained
in N(H)2 and which, by construction, is equivariant for ψD . Unwinding the vari-
ous deûnitions, we have shown that γM maps the point (. . . ∶ θ[l0](v , τ) ∶ ⋅ ⋅ ⋅) to the
point (. . . ∶ θ[l0](

t(Cτ +D)v ,M ∗1 τ) ∶ ⋅ ⋅ ⋅), whereM has block form A, . . . ,D. From
the classical theory of transformations of theta functions (as in [BL, Section 8.6]) one
now deduces that M ↦ γM provides the desired isomorphism of groups. Notice that
the element −I ∈ GD , which acts trivially on H2, maps to ι̃ ∈ N(H(D))2, which acts
trivially on the subspace P5 ⊂ P7 of even theta functions.

3 A Projective Model of a Shimura Curve

3.1 Barth’s Variety M2,4

We choose projective coordinates x1 , . . . , x8 onP7 = PV(2, 4) as in [B, §2.1]. _emap
ι̃ ∈ Aut(P7) is then given by

ι̃(x) = (x1 ∶ x2 ∶ x3 ∶ x4 ∶ x5 ∶ x6 ∶ −x7 ∶ −x8).

It has two eigenspaces that correspond to the even and odd theta functions. _e image
of ψD lies in the subspace P5 = PV(2, 4)+ of even functions that is deûned by x7 =

x8 = 0. We use x1 , . . . , x6 as coordinates on this P5. Let

f1 ∶= −x2
1 x

2
2 + x2

3x
2
4 + x2

5x
2
6 , f2 ∶= −(x4

1 + x4
2) + x4

3 + x4
4 + x4

5 + x4
6 .

_en Barth’s variety of theta-null values is deûned as ([B, (3.9)])

M2,4 ∶= {x ∈ P5 ∶ f1(x) = f2(x) = 0}.

_e image ofψD(H2) is a quasi-projective variety, and the closure of its image is M2,4.

3.2 The Heisenberg Group Action

Recall that T(2, 4) = Z4D̃−1/Z4 and let σ1 , σ2 , τ1 , τ2 ∈ T(2, 4) be the images of
e1/2, e2/4, e3/2, e4/4. We denote certain li�s of the generators σ1 , . . . , τ2 of T(2, 4)
to H(D) by σ̃1 , . . . , τ̃2. _ese li�s act, in the Schrödinger representation, on P7 =
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PV(2, 4) as follows (see [B, Table 1]):

σ̃1(x) = (x2 ∶ x1 ∶ x4 ∶ x3 ∶x6 ∶ x5 ∶ x8 ∶ x7) ,
σ̃2(x) = (x3 ∶ x4 ∶ x1 ∶ x2 ∶ x7 ∶ x8 ∶−x5 ∶−x6) ,
τ̃1(x) = (x1 ∶−x2 ∶ x3 ∶−x4 ∶ x5 ∶−x6 ∶ x7 ∶−x8) ,
τ̃2(x) = (x5 ∶ x6 ∶ ix7 ∶ ix8 ∶ x1 ∶ x2 ∶ ix3 ∶ ix4) ,

where x = (x1 ∶ . . . ∶ x8) ∈ P7 and i2 = −1. For any g = (a, b, c, d) ∈ T(2, 4) one then
ûnds the action of a li� g̃ of g by deûning g̃ ∶= σ̃ a1 ⋅ ⋅ ⋅ τ̃

d
2 .

Proposition 3.1 Let µ̃3 on P7 be the projective transformation deûned as

µ̃3∶ x z→

(x3−ix4 ∶ x3+ix4 ∶ ζx5−ζ3x6 ∶ ζx5+ζ3x6 ∶ x1−ix2 ∶ x1+ix2 ∶ ζ3x7+ζx8 ∶ ζ3x7−ζx8),

where ζ is a primitive 8-th root of unity (so ζ4 = −1) and i ∶= ζ2. _en µ̃3 ∈ N(H(D))2

and with M3 as in Section 1.2 we have γ̃M3 = h̃ µ̃3 h̃−1 for some h̃ ∈ ker(N(H(D))2 →

Sp(T(2, 4)).

Proof _e map M3∶Z4 → Z4 from Section 1.2 induces the (symplectic) automor-
phism M3 of T(2, 4) given by (recall thatwe used row vectors, so for example e4M3 =

−e2 − e4 and thus τ2 ↦ −σ2 − τ2)

σ1 z→ −σ1 − τ1 , σ2 z→ τ2 , τ1 z→ σ1 , τ2 z→ −σ2 − τ2 .

Now one veriûes that, as maps on C8, one has
µ̃3 σ̃1 µ̃−1

3 = iσ̃−1
1 τ̃−1

1 , µ̃3 σ̃2 µ̃−1
3 = τ̃2 , µ̃3 τ̃1 µ̃−1

3 = σ̃1 , µ̃3 τ̃2 µ̃−1
3 = ζ σ̃−1

2 τ̃−1
2 .

Hence, µ̃3 ∈ Aut(P7) is in the normalizer N(H) and it is a li� ofM3 ∈ Sp(T(2, 4)).
One easily veriûes that it commutes with the action of ι̃ on P7, so µ̃3 ∈ N(H)2.
Any other li� of M3 to Aut(P7) that commutes with ι̃ is of the form g̃ µ̃3 for some
g ∈ T(2, 4) with 2g = 0. Since M

2
3 +M3 + I = 0, the map h ↦ (M3 + I)h is an iso-

morphism on the two-torsion points in T(2, 4). _us there is an h ∈ T(2, 4), with
2h = 0, such that g = (M3 + I)h. As µ̃3 h̃ µ̃−1

3 = k̃, where k = M3h and thus k = g + h,
it follows that h̃ µ̃3 h̃−1 = g̃ µ̃3.

3.3 Fixed Points and Eigenspaces

_emapψD is equivariant for the actions of ΓD andN(H)2. Hence the ûxed points of
M3 inH2, which parametrize abelian surfaces with quaternionicmultiplication,map
to the ûxed points of γ̃M3 = h̃ µ̃3 h̃−1 in P7. Conjugating M3 by an element N ∈ ΓD such
that γ̃N = h̃ (as in Proposition 3.1),we obtain an element of order threeM′

3 ∈ ΓD whose
ûxed point locus HM′3

2 also consists of period matrices of Abelian surfaces with QM
by O6 and the image ψD(H

M′3
2 ) consists of ûxed points of µ̃3. _e following lemma

identiûes this ûxed point set.

_eorem 3.2 Let P1
QM ⊂ P5 be the projective line parametrized by

P1 ≅
Ð→ P1

QM , (x ∶ y)z→ p(x ∶y) ∶= (
√

2x ∶
√

2y ∶ x+ y ∶ i(x− y) ∶ x− iy ∶ x+ iy).
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_en P1
QM ⊂ M2,4 is a Shimura curve that parametrizes Abelian surfaces with QM by

O6, themaximal order in the quaternion algebra of discriminant 6.
_e following two elements ν̃1 , ν̃2 ∈ N(H(D))2,

ν̃1(x) = (x5+x6 ,−x5+x6 , ζ(x3−x4), ζ(x3+x4), x1+x2 , x1−x2 , ζ(−x7+x8), ζ(x7+x8))

ν̃2(x) = (x4 ,−x3 , ζ3x6 , ζ3x5 , ix1 ,−ix2 , ζ3x7 , ζ3x8),
restrict to maps in Aut(P1

QM) which generate a subgroup isomorphic to the symmetric
group S4 ⊂ Aut(P1

QM).

Proof _e subspace P5 is mapped into itself by µ̃3. _e restriction µ3 of µ̃3 to P5 has
three eigenspaces on C6, each 2-dimensional. _e eigenspace of µ3 with eigenvalue
√

2 ∶= ζ + ζ7 is the only eigenspace whose projectivization P1
QM is contained in M2,4.

_us ψD(H
M′3
2 ) ⊂ P1

QM and we have equality since the locus of Abelian surfaces with
QM by O6 in AD(D)0 (in fact in any level moduli space) is known to be a compact
Riemann surface.

_emaps ν̃1, ν̃2 commute with ι̃ andmoreover:

ν̃1 σ̃1 ν̃−1
1 = −σ̃1 τ̃2

2 , ν̃1 σ̃2 ν̃−1
1 = iσ̃1 σ̃2

2 τ̃2 ,

ν̃2 σ̃1 ν̃−1
2 = −τ̃1 τ̃2

2 , ν̃2 σ̃2 ν̃−1
2 = ζ σ̃1 σ̃2 τ̃2 ,

ν̃1 τ̃1 ν̃−1
1 = −σ̃ 2

2 τ̃1 , ν̃1 τ̃2 ν̃−1
1 = ζ σ̃1 σ̃ 3

2 τ̃1 τ̃2 ,

ν̃2 τ̃1 ν̃−1
2 = −σ̃1 σ̃ 2

2 τ̃
2
2 , ν̃2 τ̃2 ν̃−1

2 = τ̃1 τ̃3
2 ,

hence they are in N(H)2. _emaps ν1, ν2 have order 4 and 3 respectively inAut(P7)

andmap P1
QM into itself. In fact, the induced action on P1

QM is:

ν̃ i p(x ∶y) = pν i(x ∶y) with ν1(x ∶ y) ∶= (x ∶ iy), ν2(x ∶ y) ∶= (i(x − y) ∶ −(x + y)).

We veriûed that ν1 , ν2 ∈ Aut(P1) generate a subgroup which is isomorphic to the
symmetric group S4 (to obtain this isomorphism, onemay use the action of the ν i on
the four irreducible factors in Q(ζ)[x , y] of the polynomial g8 deûned in Corollary
3.3).

Corollary 3.3 _e images in P1
QM under the parametrization given in Proposition 3.2

of the zeroes of the polynomials

g6 ∶= xy(x4
− y4

), g8 ∶= x8+ 14x4 y4
+ y8 , g12 ∶= x 12

−33x8 y4
−33x4 y8+ y12 ,

are the orbits of the points in P1
QM with a non-trivial stabilizer in S4. Moreover, the

rational function
G ∶= g4

6/g
3
8 ∶ P1

QM Ð→ P1
≅ P1

QM/S4

deûnes the quotient map by S4.

Proof A nontrivial element σ in S4 ⊂ Aut(P1
QM) has two ûxed points, correspond-

ing to the eigenlines of any li� of σ to GL(2,C). _e ûxed points of σ k are the same
as those of σ whenever σ k is not the identity on P1

QM . One now easily veriûes that the
ûxed points of cycles of order 3, 4, 2 are the zeroes of g6 , g8 , g12, respectively.
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_e quotient map P1
QM → P1

QM/S4 ≅ P1 has degree 24. _e rational function
G ∶= g4

6/g
3
8 is S4-invariant and deûnes amap of degree 24 from P1

QM to P1, hence the
quotient map is given by G.

4 The Principal Polarization

4.1 Introduction

In the previous section we considered Abelian surfaces whose endomorphism ring
contains O6 endowed with a (1, 2)-polarization. Rotger proved that an Abelian sur-
face whose endomorphism ring is O6 admits a unique principal polarization [R, sec-
tion 7]. As such a surface is simple, it is the Jacobian of a genus two curve. _e Abel–
Jacobi image of the genus two curve provides the principal polarization. In this sec-
tionwe ûnd the image of such a curve in theKummer surface. _is allows us to relate
these genus two curves to the ones described by Hashimoto andMurabayashi [HM]
in Section 4.6.

Moreover,we also ûnd an explicit projectivemodel of a surface in themoduli space
M2,4 that parametrizes (2, 4)-polarized Abelian surfaces whose endomorphism ring
contains Z[

√
2]; see Section 4.8.

4.2 Polarizations

To explain how we found genus two curves in the (2, 4)-polarized Kummer surfaces
parametrized by P1

QM , it is convenient to ûrst consider the Jacobian A = Pic0(C) of
one of the genus two curves given in [HM, _eorem 1.3]. In [HM, Section 3.1] one
ûnds an explicit description of the principal polarization E and themaximal orderO6
of

End(A) ≅ B6 ≅
(−6, 2)

Q
.

_e element η ∶= (−1 + i)/2 + k/4 ∈ O6 has order three, η3 = 1 (with i2 = −6, j2 =

2, k = i j = − ji). We use the same notation for the endomorphism deûned by this
element. _en η∗E is again a principal polarization, and we obtain a polarization E′

that is invariant under η as follows:

E′ ∶= E + η∗E + (η2
)
∗E , with E(α, β) ∶= Tr(−iαβ′)

(here we identify the lattice in C2 deûning A with O6 and β ↦ β′ is the canonical
involution on B6). An explicit computation shows that E′ = 3E′′ and that E′′ deûnes
a polarization of type (1, 2) on A and η∗E′′ = E′′.
Considering E as a class in H2(A,Z), one has E2 = 2, since E is a principal po-

larization. As η is an automorphism of A, we also get (η∗E)2 = ((η2)∗E)2 = 2 and
E ⋅ (η∗E) = (η∗E) ⋅ ((η2)∗)E = ((η2)∗)E ⋅ E. _en one ûnds that (E′)2 = 6 + 2 ⋅ 3 ⋅
E ⋅ (η∗E) and as E′ deûnes a polarization of type (3, 6) we have (E′)2 = 2 ⋅ 3 ⋅ 6 = 36,
hence E ⋅ (η∗E) = 5. Moreover, one ûnds that

E ⋅ E′′ = E ⋅ (E + η∗E + (η2
)
∗E)/3 = (2 + 5 + 5)/3 = 4.
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Identify the Jacobian of the genus two curve C with Pic0(C) = A and identify C
with its image under the Abel–Jacobi map C → Pic0(C), p ↦ p − p0, where p0 is
aWeierstrass point. If the hyperelliptic involution interchanges the points q, q′ ∈ C,
then q + q′ and 2p0 are linearly equivalent and thus q − p0 = −(q′ − p0). Hence the
curve C ⊂ Pic0(C) is symmetric: (−1)∗C = C. If p1 , . . . , p5 are the other Weierstrass
points ofC, then 2p i is linearly equivalent to 2p0, hence the ûve points p i−p0 ∈ C ⊂ A,
i = 1, . . . , 5 are points of order two in A.

Now let L be a symmetric line bundle on A deûning the (1, 2)-polarization E′′ on
A. As E ⋅ E′′ = 4, the restriction of L to C has degree 4, and thus L⊗2 restricts to a
degree 8 line bundle on C. _emap given by the even sections H0(A,L⊗2)+ deûnes
a 2:1 map from A onto the Kummer surface A/ ± 1 of A in P5. As (2E′′)2 = 16, this
Kummer surface has degree 16/2 = 8. In fact, Barth shows that the Kummer surface
is the complete intersection of three quadrics; see Section 4.3. _e symmetry of C
implies that this image is a rational curve and the degree of the image of C is four. But
a rational curve of degree four in a projective space spans atmost a P4. Moreover, this
P4 contains at least six of the nodes (the images of the two-torsion points of A) of the
Kummer surface that lie on C.

It should be noticed that any (2, 4)-polarizedKummer surface in P5 contains sub-
sets of four nodes that span only a P2 (cf. [GS, Lemma 5.3]), these subsets must be
avoided to ûnd C.
Conversely, given a rational quartic curve on the Kummer surface which passes

through exactly 6 nodes, its inverse image in the Abelian surface will be a genus two
curve C. In fact, the general A is simple, hence there are no non-constant maps from
a curve of genus at most one to A. _e adjunction formula on A shows that C2 = 2,
hence C deûnes a principal polarization on A. Rotger [R, Section 6] proved that an
Abelian surface A with End(A) = O6 has a unique principal polarization up to iso-
morphism. _us C must be a member of the family of genus two curves in given in
[HM,_eorem 1.3]. We summarize the results in this section in the following propo-
sition. In Proposition 4.2 we determine the curve from [HM] which is isomorphic to
C = Cx on the Abelian surface deûned by x ∈ P1

QM .

Proposition 4.1 Let A be an Abelian surface with O6 ⊂ End(A). _en A has a
(unique up to isomorphism) principal polarization deûned by a genus 2 curve C ⊂ A
that is isomorphic to a curve from the family in [HM,_eorem 1.3] (see Section 4.6).

_ere is an automorphism of order three η ∈ Aut(A) such that

C + η∗C + (η2
)
∗C = 3E′′

deûnes a polarization of type (3, 6). LetL be a symmetric line bundlewith c1(L) = E′′.
_en the image of C, symmetrically embedded in A, under themap A→ P5 deûned by
the subspaceH0(A,L⊗2)+, is a rational curve of degree four that passes through exactly
six nodes of the Kummer surface of Awhich lie in a hyperplane in P5.
Conversely, the inverse image in A of a rational curve that passes through exactly six

nodes of the Kummer surface of A is a genus two curve that deûnes a principal polar-
ization on A.
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4.3 A Reducible Hyperplane Section

Now we give a hyperplane Hx ⊂ P5 that cuts the Kummer surface Kx for x ∈ P1
QM in

two rational curves of degree four, the curves intersect in six points that are nodes of
Kx .
A general point x = (x1 ∶ . . . ∶ x6) ∈ M2,4 ⊂ P5 deûnes a (2, 4)-polarized Kum-

mer surface Kx that is the complete intersection of the following three quadrics in
X1 , . . . , X6:

q1 ∶= (x2
1 + x2

2)(X
2
1 + X2

2) − (x2
3 + x2

4)(X
2
3 + X2

4) − (x2
5 + x2

6)(X
2
5 + X2

6),

q2 ∶= (x2
1 − x2

2)(X
2
1 − X2

2) − (x2
3 − x2

4)(X
2
3 − X4)

2
− (x2

5 − x2
6)(X

2
5 − X2

6),
q3 ∶= x1x2X1X2 − x3x4X3X4 − x5x6X5X6 ,

[B, Proposition 4.6]. We used the formulas from [B, p. 68] to replace the λ i , µ i by
the x i , but notice that the factors ‘2’ in the formulas for λ iµ i should be omitted, so
λ1µ1 = x3

3 + x2
4 etc. _e 16 nodes of the Kummer surface are the orbit of x under the

action of T(2, 4)[2]; that is, it is the set

Nodes(Kx) = {pa ,b ,c ,d ∶= (σ̃ a1 σ̃2
2b τ̃c1 τ̃2

2d
)(x); a, b, c, d ∈ {0, 1}},

cf. Section 3.2. We considered the following six nodes:

p0,0,0,0 , p0,0,1,1 , p0,1,0,0 , p0,1,1,0 , p1,1,1,0 , p1,1,1,1 .

For general x ∈ P1
QM one ûnds that these six nodes span only a hyperplane Hx in P5.

Using Magma we found that over the quadratic extension of the function ûeld
Q(ζ)(u) of P1

QM (where ζ4 = −1 and u = x/y) deûned by w2 = u8 + 14u4 + 1, the
intersection of Hx and Kx is reducible and consists of two rational curves of degree
four,meeting in the 6 nodes.

We parametrize Hx by t1p0,0,0,0 + ⋅ ⋅ ⋅ + t5p1,1,1,0. _en Magma shows that the ra-
tional function t4/t5 restricted to each of the two components is a generator of the
function ûeld of each of the two components. _us t4/t5 provides a coordinate on
each component and, for each component,we computed the value (in P1 = C ∪ {∞})
of the coordinate in the 6 nodes. _e genus two curve C = Cx is the double cover of
P1 branched in these six points.

4.4 Invariants of Genus Two Curves

A genus two curve over a ûeld of characteristic 0 deûnes a homogeneous sextic
polynomial in two variables, uniquely determined up to the action of Aut(P1). In
[I, p. 620], Igusa deûnes invariants A, B,C ,D of a sextic and deûnes further invari-
ants J i , i = 2, 4, 6, 10, as follows [I, pp. 621–622]:

J2 = 2−3A, J4 = 2−53−1
(4J22 − B), J6 = 2−63−2

(8J32 − 160J2 J4 − C), J10 = 2−12D.

In [I, _eorem 6], Igusa showed that the moduli space of genus two curves over
Spec(Z) is a (singular) aõne scheme which can be embedded in the aõne space
A10

Z . Its restriction to Spec(Z[1/2]) can be embedded intoA8
Z[1/2] using the functions

([I, p. 642])

J52 J
−1
10 , J32 J4 J

−1
10 , J32 J

2
4 J
−1
10 , J22 J6 J

−1
10 , J4 J6 J−1

10 , J2 J36 J
−2
10 , J54 J

−2
10 , J56 J

−3
10 .

https://doi.org/10.4153/CJM-2014-045-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-045-4


Abelian Surfaces with an Automorphism and QuaternionicMultiplication 39

From this one ûnds that over Spec(Q) one can embed the moduli space into A8
Q

using 8 functions i1 . . . , i8 as above but with J2 , . . . , J10 replaced by A, . . . ,D. In case
A ≠ 0, one can use the three regular functions

j1 ∶= A5/D, j2 ∶= A3B/D, j3 ∶= A2C/D

to express i1 , . . . , i8 as

j1 , j2 , j22/ j1 , j3 , j2 j4/ j1 , j34/ j1 , j52/ j
3
1 , j54/ j

2
1 .

_us the open subset of the moduli space over Q where A ≠ 0 can be embedded in
A3

Q using these three functions. In particular, two homogeneous sextic polynomials
f , g with complex coeõcients and with A( f ),A(g) ≠ 0 deûne isomorphic genus two
curves over C if and only if j i( f ) = j i(g) for i = 1, 2, 3 (see also [Me,CQ]).

4.5 Invariants of the Curve Cx

With theMagma command “IgusaClebschInvariants”we computed the invariants for
each of the two genus curves that are the double covers of the two rational curves in
Hx ∩Kx . _ey turn out to be isomorphic as expected from Rotger’s uniqueness result.
We denote by Cx the corresponding genus two curve. For the general x ∈ P1

QM the
invariant A = A(Cx) is nonzero and

j1(Cx) = −352−5
(1 − 64G(x))5

G(x)3 , j2(Cx) = 352−3 (1 − 64G(x))3

G(x)2 ,

and

j3(Cx) = 342−3 (1 − 64G(x))2(1 − 80G(x))
G(x)2 .

Notice that the invariants are rational functions in the S4-invariant function G =

g4
6/g

3
8 on P1

QM , as expected. Moreover, the j i(Cx) actually determine G(x),

G(x) =
( j2(x)/ j3(x)) − 3

80( j2(x)/ j3(x)) − 192
,

hence the classifying map from (an open subset of) P1
QM/S4 to the moduli space of

genus two curves is a birational isomorphism onto its image.

4.6 The Genus Two Curves from Hashimoto–Murabayashi

In [HM, _eorem 1.3], Hashimoto andMurabayashi determine an explicit family of
genus two curves Cs ,t whose Jacobians have quaternionicmultiplication by themax-
imal order O6. _ey are parametrized by the elliptic curve

EHM ∶ g(t, s) = 4s2 t2 − s2 + t2 + 2 = 0.

Using the following rational functions on this curve:

P ∶= −2(s + t), R ∶= −2(s − t), Q ∶=
(1 + 2t2)(11 − 28t2 + 8t4)

3(1 − t2)(1 − 4t2)
,
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the genus two curve Cs ,t corresponding to the point (s, t) ∈ EHM is deûned by the
Weierstrass equation

Cs ,t ∶ Y 2
= X(X4

− PX3
+ QX2

− RX + 1).

By the unicity result from [R, section 7] we know that this one parameter family of
genus two curves should be the same as the one parametrized by P1

QM . Indeed one
has the following proposition.

Proposition 4.2 _e genus two curve Cx deûned by x ∈ P1
QM is isomorphic to the

curve Cs ,t if and only if G(x) = H(t) (so the isomorphism class of Cs ,t does not depend
on s) where

H(t) ∶=
4(t − 1)2(t + 1)2(t2 + 1/2)4

27((1 − 2t)(1 + 2t))3 .

Proof _is follows from a direct Magma computation of the invariants j i for the
Cs ,t . In particular, the classifying map of the Hashimoto–Murabayashi family has
degree 12 on the t-line (and degree 6 on the u ∶= t2-line), and this degree six cover is
not Galois.

4.7 Special Points

In Section 3.2we observed that S4 acts onP1
QM and has three orbits that have less then

24 elements. _ey are the zeroes of the polynomials gd , of degree d, with d = 6, 8, 12.
In case d = 12 one ûnds that for example x = ζ is a zero of g12. _e invariants j i(Cx)

are the same as the invariants of the curve Cs ,t from [HM] with (t, s) = (0,
√

2). In
[HM, Example 1.5] one ûnds that the Jacobian of this curve is isogenous to a product
of two elliptic curves with complex multiplication by Z[

√
−6].

In case d = 6, 8 one ûnds that the invariants j i(Cx) are inûnite, hence these points
do not correspond to Jacobians of genus two curves but to products of two elliptic
curves (with the product polarization). In case g6(x) = 0 one ûnds that the inter-
section of the plane Hx with the Kummer surface Kx consists of four conics, each of
which passes through four nodes (and there are now 8 nodes in Hx ∩Kx ). _e inverse
image of each conic in the Abelian surface Ax is an elliptic curve that is isomorphic
to E4 ∶= C/Z[i], and one ûnds that Ax ≅ E4 × E4, but the (1, 2) polarization is not
the product polarization. _e point (t, s) = (

√
−2/2,

√
2/2) ∈ EHM deûnes the same

point in the Shimura curve P1
QM/S4 as the zeroes of g6. It corresponds to the degen-

erate curve Ct ,s in [HM, Example 1.4], which has a normalization that is isomorphic
to E4.

In case d = 8 one has Ax ≅ E3 × E3 and, with the (1, 2)-polarization, it is the
surface A3 that we deûned in Section 1.2. According to [B, _eorem 4.9] a point
x ∈ M2,4 deûnes an Abelian surface Ax if and only if r(x) ≠ 0 where r = r12r13r23
is deûned in [B, Proposition 3.2] (the r jk are polynomials in λ2

i , µ
2
i and these again

can be represented by polynomials in the x i , see [B, p. 68]. One can choose these
polynomials as follows:

r12 = −4r13 = −4r23 = 16(x1x6 − x2x5)(x1x6 + x2x5)(x1x5 − x2x6)(x1x5 + x2x6),
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and thus r = 16r312. Restricting r to P1
QM and pulling back along the parametrization

to P1, one ûnds that r = cg3
8 ,where g8 is as in Section 3.2 and c is a non-zero constant.

More generally, we have the following result.

Proposition 4.3 _e image of the period matrices τ ∈ H2 with τ12 = τ21 = 0 in
M2,4 ⊂ P5 is the intersection of M2,4 with the Segre threefold, which is the image of the
map

S1,2∶P1
× P2

Ð→ P5 , ((u0 ∶ u1), (w0 ∶ w1 ,w2)) z→ (x1 ∶ . . . ∶ x6),

where the coordinate functions are

x1 = u0w0 , x3 = u0w1 , x5 = u0w2 ,
x2 = u1w0 , x4 = u1w1 , x6 = u1w2 .

_e image of S1,2 intersectsP1
QM in two points that are zeroes of g8. Moreover, the surface

S1,2(P1 × P2) ∩M2,4 is an irreducible component of (r = 0) ∩M2,4.

Proof If τ12 = τ21 = 0, then by looking at the Fourier series that deûne the theta
constants, one ûnds that ϑ[ab00](τ) = ϑ[a0](τ11)ϑ[b0](τ22). _e deûnition of the x i ’s
in terms of the standard delta functions in V(2, 4), unvm = ϑ[ab00](τ) with (a, b) =

(n/2,m/4) ([B, p.53]), then shows that the map H2 → P5 restricted to these period
matrices is the composition of themap

H1 ×H1 Ð→ P1
× P2

(τ1 , τ2)z→ ((ϑ[00](τ1) ∶ ϑ[b0](τ1)),

(ϑ[00](τ2) + ϑ[b0](τ2) ∶ ϑ[a0](τ2) + θ[c0](τ2) ∶ θ[00](τ2) − θ[b0](τ2)))

with the Segremap as above and a, b, c = 1/4, 1/2, 3/4, respectively.
_e ideal of the image of S1,2 is generated by three quadrics. Restricting these to

P1
QM one ûnds that the intersection of the imagewith P1

QM is deûned by the quadratic
polynomial x2 + (ζ2 − 1)xy + ζ2 y2, which is a factor of g8.

_e factor x1x6 − x2x5 of r is in the ideal of S1,2(P1 × P2), hence this surface is an
irreducible component of (r = 0) ∩M2,4.

Remark 4.4 _e intersection of the image of S1,2 with M2,4, which is deûned by
f1 = f2 = 0 (cf. Section 3.1), is the image of the surface

P1
× CF , (⊂ P1

× P2
), CF ∶ w4

0 −w4
1 −w4

2 = 0.

_e curves P1 and CF here are both elliptic modular curves (deûned by the totally
symmetric theta structures associated with the divisors 2O and 4O, where O is the
origin of the elliptic curve).

4.8 A Humbert Surface

In Section 4.3 we considered six nodes of the Kummer surface Kx ,

p0,0,0,0 , p0,0,1,1 , . . . , p1,1,1,1 ,
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which had the property that for a general x ∈ P1
QM these six nodes span only a hy-

perplane in P5. For general x ∈ M2,4; however, these nodes do span all of P5. _ey
span at most a hyperplane if the determinant F of the 6×6 matrix whose rows are the
homogeneous coordinates of the nodes, is equal to zero.

F = det

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 x2 x3 x4 x5 x6
−x2 x1 x4 −x3 x6 −x5
−x2 x1 −x4 x3 x6 −x5
x1 −x2 x3 −x4 −x5 x6
x1 x2 x3 x4 −x5 −x6
x1 −x2 −x3 x4 x5 −x6

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 16(x2
1 x

2
3x5x6 + ⋅ ⋅ ⋅ − x2

2x
2
4x5x6).

_en F is a homogeneous polynomial of degree six in the coordinates of x that has 8
terms. Let DF be the divisor in M2,4 deûned by F = 0, then P1

QM is contained in (the
support of) DF . Magma shows that DF has 12 irreducible components. _e only one
of these that contains P1

QM is the surface S2 ⊂ P5 deûned by

S2 ∶ x2
1 − x2

2 − x2
5 − x2

6 = x1x2 − x2
4 − x5x6 = x2

3 − x2
4 − 2x5x6 = 0.

Magma veriûed that S2 is a smooth surface, hence it is a K3 surface.

Proposition 4.5 _e surface S2 ⊂ M2,4 parametrizes Abelian surfaces A with
Z[

√
2] ⊂ End(A).

Proof For a general point x in S2, the hyperplane spanned by the six nodes inter-
sects Kx in a one-dimensional subscheme that is the complete intersection of three
quadrics and that has six nodes. _e arithmetic genus of a smooth complete intersec-
tion of three quadrics inHx = P4 is only ûve, hence this subschememust be reducible.
In the case x ∈ P1

QM , this subscheme is the union of two smooth rational curves of
degree four intersecting transversally in the six nodes. _us, for general x ∈ S2, the
intersection must also consist of two such rational curves. Let C ⊂ Ax be the genus
two curve in the Abelian surface Ax deûned by x that is the inverse image of one of
these components. _en C2 = 2 and C ⋅L = 4,whereL deûnes the (1, 2)-polarization.
Nowwe apply [BL, Proposition 5.2.3] to the endomorphism f = ϕ−1

C ϕL of Ax deûned
by these polarizations. We ûnd that the characteristic polynomial of f is t2 − 4t + 2.
As its roots are 2 ±

√
2, we conclude that Z[

√
2] ⊂ End(Ax).
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