A generalization of a theorem of Aguaro

C.E. Auli

In this paper we introduce the concept of a $\delta\theta$ -cover to generalize Aquaro's Theorem that every point countable open cover of a topological space such that every discrete closed family of sets is countable has a countable subcover. A $\delta\theta$ -cover of a space X is defined to be a family of open sets V=U V_n where each V_n covers X and for $x\in X$ there exists n such that V_n is of countable order at x. We replace point countable open cover by a $\delta\theta$ -cover in Aquaro's Theorem and also generalize the result of Worrell and Wicke that a θ -refinable countably compact space is compact and Jones' result that an N_1 -compact Moore space is Lindelöf which was used to prove his classic result that a normal separable Moore space is metrizable, using the continuum hypothesis.

In this paper we introduce the concept of a $\delta\theta$ -cover to generalize Aquaro's Theorem [1] that every point countable open cover of a topological space such that every discrete closed family of sets is countable has a countable subcover. We replace point countable open cover by a $\delta\theta$ -cover and also generalize the result of Worrell and Wicke [8] that a θ -refinable countably compact space is compact and Jones' [6] result that an \aleph_1 -compact Moore space is Lindelöf which was used to prove his classic result that a normal separable Moore space is metrizable, using the continuum hypothesis.

Received 16 March 1973.

DEFINITION 1. A $\delta\theta$ -cover of a space X is a family of open sets $V=\bigcup_n V_n$ where each V_n covers X and for $x\in X$ there exists n such that V_n is of countable order at x. A space X is said to be $\delta\theta$ -refinable if every open cover is refined by a $\delta\theta$ -cover.

THEOREM 1. Let every closed discrete family of sets of a space X be countable. Then every $\delta\theta$ -cover has a countable subcover.

We use a series of lemmas to establish the theorem.

DEFINITION 2. A set M is distinguished with respect to an open cover U of a topological space X if for $x, y \in M$, $x \neq y$, $x \in U \in U \Rightarrow y \notin U$.

From Definition 2, Lemma 1 follows.

LEMMA 1. A distinguished set is discrete.

DEFINITION 3. A set M is maximally distinguished with respect to an open cover of a topological space X on a set H if $M \subseteq H$, M is distinguished and if P is distinguished and $M \subseteq P \subseteq H$ then P = M.

- LEMMA 2. If a distinguished set $\,M\,$ with respect to an open cover $\,U\,$ is contained in a set $\,H\,$ then it is contained in a maximally distinguished set on $\,H\,$ with respect to $\,U\,$.
- Proof. The union of any chain of distinguished sets on H with respect to U is a distinguished set on H. Hence by the maximal principle there exists a maximal distinguished set on H with respect to U containing M.
- LEMMA 3. Let W consist of the subfamily of an open cover U that intersects a maximally distinguished set M on H with respect to U. Then W covers H.
- **Proof.** Suppose there exists $z \in H$, such that there does not exist $W \in W$ such that $z \in W$. Then $M \cup [z]$ is a distinguished set with respect to U on H, and $M \cup [z]$ properly contains M contrary to M being maximal.
- Moore [7] obtained a discrete set on the space with the property of the distinguished set in Lemma 3 in a different manner.

Proof of Theorem 1. Let H_n consist of the points of countable order with respect to V_n of Definition 1. Let W_n consist of the members of V_n that intersect M_n , a maximal distinguished set on H_n with respect to V_n . By the condition of the theorem and Lemma 1, M_n is countable, so that W_n is also countable. By Lemma 3, $W = \bigcup W_n$ is a countable cover of X.

COROLLARY 1. If a T_1 space is \aleph_1 -compact and satisfies any of the following properties, it is Lindelöf:

- (a) $\delta\theta$ -refinable;
- (b) θ -refinable;
- (c) meta-Lindelöf (Aquaro [1]);
- (d) metacompact or paracompact (Arens and Dugundji [2]);
- (e) subparacompact (Christian [5]);
- (f) developable (Jones [6]).

Proof. In a T_1 -space \aleph_1 -compactness is equivalent to every closed discrete set being countable. Then (a), (b), (c) and (d) are immediate and (e) follows from Burke's [4] result that a subparacompact space is θ -refinable and (f) follows from the result of Worrell and Wicke [8] that Moore spaces are θ -refinable.

COROLLARY 2. A countable compact space satisfying any of the conditions (a) through (f) is compact.

Corollary 2 (b) is due to Worrell and Wicke [8], and Boyte [3] has given a short proof of Corollary 2 (c).

COROLLARY 3. An \aleph_1 -compact T_3 space is metrizable iff it has a G-locally countable base.

References

- [1] G. Aquaro, "Point countable open coverings in countably compact spaces", General topology and its relations to modern analysis and algebra. II., 39-41 (Proc. 2nd Prague Topological Symposium, 1966; Academia [Publishing House of the Czechoslovak Academy of Sciences], Prague, 1967).
- [2] Richard Arens and J. Dugundji, "Remark on the concept of compactness", Portugal. Math. 9 (1950), 141-143.
- [3] J.M. Boyte, "A note on compactness and metacompactness", Proc. Japan Acad. 46 (1970), 1084-1085.
- [4] Dennis K. Burke, "On p-spaces and $w\Delta$ -spaces", Pacific J. Math. 35 (1970), 285-296.
- [5] U.J. Christian, "Concerning certain minimal cover refinable spaces", Fund. Math. 76 (1972), 213-222.
- [6] F.B. Jones, "Concerning normal and completely normal spaces", Bull. Amer. Math. Soc. 43 (1937), 671-677.
- [7] R.L. Moore, Foundations of point set theory (Colloquium Publ. 13.

 Amer. Math. Soc., Providence, Rhode Island, 1962).
- [8] J.M. Worrell, Jr and H.H. Wicke, "Characterizations of developable topological spaces", Canad. J. Math. 17 (1965), 820-830.

Department of Mathematics,
Virginia Polytechnic Institute and State University,
Blacksburg,
Virginia,
USA.