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Abstract

Let A be a lattice in R3 of determinant 1. Define the homogeneous minimum of A as mp(A) =
inf |ujuaus| extended over all points (ug,ug,us) of A other than the origin. It is shown that
for any given (c1,c¢2,c¢3) in R3 there exists a point (u1,u2,us) of A for which

—p < (u1 +e1){uz +c2)(uz +c3) <o, po >0,
provided that po > 1/64 if mp(A) =0, and po > 1/16.81 if mp(A) > 0.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 10 E 15.

1. Introduction

For 1 <i<mn,let L; = a;1Z1 + - - + GinZn be n linear forms in the variables

T1,...,Zn with real coefficients a;; satisfying |det(ai;)] = 1. A classical conjec-
ture of Minkowski asserts that, given n real numbers ¢q,...,¢,, the inequality
- 1
(1) [T+l < 30
i=1

has a solution in integral values of the variables. This has been proved for n < 5;
see Bambah and Woods [1]. For the case n = 2, Davenport [5] generalised this is
to the asymmetric case and proved that, given real numbers c;, ¢z, the inequality

(2) -0 S (Ll + cl)(L2 + 62) S P, po> 07
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has a solution in integral values of the variables provided that po > 1/16.

For the case n = 3, we obtain here a sufficient condition on p,o for the
asymmetric inequality corresponding to (2) to have a solution in integral values
of the variables.

Let A; = (ay,...,0n;), for 1 < j < n, and denote by A the lattice with basis
A,..., Ay, such that d(A) = 1. Let mp(A) denote the infimum of |z; - z,|
extended over all points (z1,...,2,) of A other than the original 0. We have

THEOREM 1. Let A be a lattice of determinant 1. For any point C =
(e1,¢2,¢3) € R3, there exists a point A = (a1,a2,a3) of A such that

(3) —-p < (a1 +c1)(a2 +c2)(as +¢3) < o, p,0 >0,

provided that
(a) po > 1/64 if mp(A) =0, and
(b) po > 1/16.81 if mp(A) > 0.

The method of proof is the projective one due to Birch and Swinnerton-
Dyer [2]. The author [6] used the same method earlier to obtain the condition
po > (4/5—-5)/64 =1/16.224... to be a sufficient condition. Woods [9], using
this method, proved that if in (3), (as + ¢3) is replaced by |as + c3| then the
result holds for po > 1/64. Our method of proof is parallel to that of Woods

[9].

2. Proof for case (a)

LEMMA 1. IfA i3 a lattice in Ry of determinant d(A) and A > 0, then given
any point ¢ = (c1,¢2) € Ra, there exists a point A = (a1,az2) of A such that
—d(A) d(A)A

< —.
i < (a1 +61)(a2 +¢2) < 1

This result is due to Davenport [5].

We say that a lattice A in R, is a covering lattice for a region S, if the
translates of S by the points of A cover the whole space R,,. It is clear that A is
a covering lattice for S if and only if given any C € R,,, there exists A € A such
that A4+ C € S. We have

LEMMA 2. Let S be an open set in R,,, A a lattice and let w, be a sequence of
automorphs of S such that {w,A} is a sequence of lattice converging to a lattice
I'. IfT i3 a covering lattice for S, then so is A.
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PROOF. Since w,A = A{") = T, there exists a basis AY) coo AT of AM) and
a basis Ay, ..., A, of T such that A" — 4;,1<i<n.

Let C € R, be arbitrary, let C() = w,C, and choose C(r) in the fundamental
parallelopiped {3, a,-AE');O <a; <1,i=1,...,n} of A) such that C() =
C'(r) (mod A(™), whence C(™ is a bounded sequence. On replacing w, by a
subsequence we can suppose that C(") — C.

Since I' is a covering lattice for S, there exists B € T" such that B + Ces.
Let B(") € A() be such that B") — B. Then B + (") — B + € and hence
for larger r, B(") + C(") € S, and hence there exists A € A such that A+C € S.
This proves Lemma 2.

If Q) denotes the group of automorphs of the form z, - - - z,, generated by the
permutations of z; and the transformations of the type z; — A;zi, A; € R and
I1 i = 1, then we have following result due to Birch and Swinnerton-Dyer [2].

LEMMA 3. Let A be a lattice tn Ry, with mp(A) = 0. Then there ezists a
sequence wy in () such that {w,A} tends to a lattice I' having a basis Ay --- Ay
such that for some k, 1 < k < n, A;,...,Ar lie tn a k-dimensional coordinate
plane.

Theorem 1(a) is a consequence of

THEOREM 1A. Let A be a lattice tn Rz of determinant 1 with my(A) = 0.
For any given A > 0, € > 0 and C = (c1,¢2,¢3) tn R, there exists a point
A = (a1, a2,a3) of A such that

@) _(+¢

(14+¢€)A
8\ '

8

< (a1 + Cl)(ag + 62)((13 +C3) <

PROOF. By Lemma 3, we can find a sequence w, € {1 such that w,A - T =
{(L1, L2, L3), for integral values of variables}, where either

either (1) Li=ay1z1+a12z2 + a1323

Ly = a29Z2 + a23T3
L;= azaTz + 03373
or (2) Ly =ay121 +a1222 + a1323
Ly = a2121 + azex2 + @233
Lz = a33Z3.

On replacing w, by w - w, for suitable w € {1, we can suppose that in case (1)
a1; =1 and in case (2) az3 = 1.
In view of Lemma 2, it is sufficient to prove the result for the lattice T'.
Case 1. Since ay; = 1, the set & = (L1, L2) for integral values of variables is
& lattice of determinant 1. By Lemma 1, with A = 1, there exist integers uq, us
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such that for (z2,z3) = (u2,us)

(5) |(La +c2)(Lz +¢3)| < §.

If in (5), (L2 + ¢2)(L3 + c3) = 0, then (4) holds for any choice of u; € Z.

Suppose that (L2 + 62)(L3 + 63) # 0. Let é; = aiouq + a1zus + ¢;. First
suppose that (L + ¢2)(Ls + ¢3) > 0. In this case, for any given A > 0, there
exists u; € Z such that

(6) ——<u +¢é <

8o >

1
2)
Since 0 < (La+co)(La+cz) < % and Ly +c; = uy+¢é;, we have for (ug,ug,u3) €
23 that

| >

1
—ax S L1+ e1)(La +ea)(Lg +c3) <

and hence (4) holds for the lattice I' and the point C. The case
(La + c2)(Ls + c3) <0

follows on replacing A by 1/) in (6) and repeating the same argument as in the
case of (Lg + ¢2)(Ls + ¢3) > 0.

Case 2. Since agz = 1, there exists uz € Z such that |Lz + ¢3| £ 1/2. As in
Case 1, if L3 + c3 = 0, we are through. We can suppose that L3 + ¢3 # 0.

Let L1 = a1121 + a12%2,6; = azug + ¢1, and Lo = a2121 + anzs,éy =
ag3ug + €2, so that the set of points (L, Lo) for integral values of variables is a
lattice of determinant 1.

Firstly suppose that L3 +c3 > 0. By Lemma 1, for A > 0, we can find integral
values u1, up of variables such that

(7 —;113 < (Ly +¢1)(Lac2) < %

Since 0 < L3 +¢3 < %, we get

1 A
Y <(Li+e))(La+ea)(Lz+eg) < 3

When L3 + c3 < 0, the result follows on replacing A by % in (7). This completes
the proof of Theorem 1A and therefore of (a).
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3. Proof for case (b)

This is equivalent to proving

THEOREM 1B. Lt A be a lattice of determinant 4.1, with mp(A) > 0. Then
for any given real numbers p,o > 0, with po = 1, and any given point C € R3,
the grid A + C has a point in the region

(8) S: —p<zyz<o.
In order to obtain some restrictions on p and o, we need

LEMMA 4. Let Ly, La, L3 be three real linear forms in three variables z,y, 2z
of determinant A # 0. Then given any real numbers ¢, ca,c3 there ezist integers
z,y,2 such that

A
I(L1 + 61)(L2 + 02)(L3 + C3)| < I—sl

This result is due to Remark [8].
For the one sided inequality Chalk [3] proved

LEMMA 5. IfL,,...,Ly, aren real linear forms in n variables of determinant
A # 0, then for any real numbers ¢1,...,¢cn, we can find integral values of
variables such that

n
0<J[@i+e)<lAl,  Li+ei>0, i=1,...,n

=1

COROLLARY. It is sufficient to prove Theorem 1B for the case 8/4.1 < p <
4.1.

PROOF On replacing A by A/, where A’ = {(—z,y,2)|(z,y, z) € A}, if neces-
sary, we can suppose that p > 0. Now for p < 8/4.1, we have p > o > 4.1/8,
and the result follows by Lemma 4.

For p > 4.1, the result is a consequence of Lemma 5. Hence the Corollary
follows.

It is enough to prove Theorem 1B, when my(A) is attained, for otherwise as
in Birch and Swinnerton-Dyer [2, Theorem 2], following Mahler (7, Theorem 20],
there exists a sequence w, € ) such that w,A — T', mp(A) = mu(T) and the
homogeneous minimum is attained for I'. In view of Lemma 2, it is sufficient to
prove Theorem 1B for the lattice I'. Since Theorem 1B is invariant under {2, we
can further assume that my(A) is attained at the point P = (a,a,a) € A, a > 0.
By a well known theorem of Davenport [4], it follows that a® < 4.1/7.
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LEMMA 6. Let A be a lattice in R of determinant 4.1, with P = (a,a,a) €A,
a > 0, such that a® = mp(A). Let & be the projection of A on the z,y plane,
parallel to the vector (a,a,a). For any given real numbers p > 0, ¢ > 0, with
po =1, and any point z € Ry, the two dimensional grid, £ + X has a point in
the region K in the plane, given as the set of points (z,y) such that

9) _(4.1)o << (4-1)p

4a 4a
and either |z + y| < 12.3/8a? or |z — y| < 12.3/8a2.

PROOF. Woods [9, Theorem 1B] proved that for a lattice of determinant 8,
the corresponding grid . + X, for any given X € R;, has a point in the region
consisting of points (z,y) such that

20 2p
(10) ———Says—
and either |z + y| < 3/a? or |z — y| < 3/a®.

Now, if A is a lattice of determinant 4.1, then for d® = 8/4.1, dA is a lattice of
determinant 8, with the point Q = (ad, ad, ad) € dA, where my(dA) is attained.
Its projection on the z,y-plane parallel to the vector (ad, ad,ad) is d.%Z, so that
for any X € Rz, A& + dX has a point in the region defined by (10) and hence
& + X has a point in the region K. This completes the proof of Lemma 6.

For any given p, 0 > 0, po = 1. Let K; be the set of points (z,y) such that
for any given to € R there exists t = ¢y (mod a) satisfying

(11) —p<(z+t)(y+t)(t-b) <o, whereb=4a/41.

LEMMA 7. Let K be defined by (9) and let Ky be as above. If for some p, 0,
with po = 1, K; D K, then Theorem 1B 1s true for that choice of p and o.

PROOF. Let C € R3 be any given point. Projection of the grid A + C parallel
to the vector (a,a,a) on the plane Z = —b is a translate of the lattice .%° and
hence in view of Lemma 6, has a point (z*,y*,—b) in K + (0,0, —b), so that
A + C has a point of the type (z* +to,y* + to, o — b), for (z*,y*) € K, for some
to € R. Since K C K, there exists t = ¢y (mod a) satisfying (11). Also since
(a,a,a) € A, the point (z* +t,y* +t,t — b) € (A+ C) NS, which completes the
proof of Lemma, 7.

The corollary to Lemma 4 and Lemma 5, and Lemma 7 imply that Theorem
1B is consequence of

THEOREM 2. Leta > 0 be a real number satisfying a® < 4.1/7. Let p,o > 0,
with po = 1,8/4.1 < p < 4.1 be two given numbers. Then for any point (z,y) of
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the region K, defined by (9), and any real number tq, there ezists t =ty (mod a)
such that

(12) —p<(z+t)(y+t)(t—b) <o, whereb= %.

4. Proof of Theorem 2

From the symmetry in z,y we may assume that |z| < |y|. Further for (z,y) €

K, we have
p . (123 p
1 <? < 229 Y
(13) o < 5 1ol < min (o +1el, 1)
Also
123\? 41

< fniniid bl
(14) Iz+yl_\[(8a2> +—p
and
(15) —p< —zyb<o.

Let f(t) = (t+z)(t + y)(t — b). For X = (z,y) € Rz, denote by Sx the set of
all real numbers ¢ satisfying (12). We have

LEMMA 8. Forall X €K, [b,a] C Sx.
PROOF. For b <t < a, we have

|F ()] = |zy + t(z +y) + 2]|t — ]
< (|zyl + alz + y| + a®)(a — b)

1/2
p 1 [[12.3\? 5 1,
<L (=2 . - by (13) and (14
—40+41(<8 +(4.1)pa + 70 (by (13) and (14))
if
) 9 1/2 )
%4_%((1_1_-3:) +(4.1)pa3) +Ha3<1 (since po = 1).

Since a® < 4.1/7 and p < 4.1 the above holds and hence [b,a] C Sx for all
X ek

REMARK 1. In view of Lemma 8, it is enough to prove that for X € K, we
have either

(16) (0,8 € Sx,
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or

(17) Sx contains a half open interval I of length a,
or

(18) there exist real numbers ¢, < t; < t3 < t4

such that t4 —¢; > 2a,t3 —t3 < a and Sx
contains [t;,t3) U (¢3, ta].

REMARK 2. If g(t) = (t — a)(t — B)(t — 7) is a polynomial with «, 3, real
and satisfying a < g < v then it is easy to see that

(i) g(t) is monotonically increasing for t < o and ¢ > 7,

(i) g(t) is monotonically decreasing function for (a + 8)/2 <t < (8 +17)/2.

From now onward (z,y) will stand for a point in K. We distinguish the
following cases.

Case L: (z,y) in the first quadrant.

Subcase I (i): z > b. Since y > z > b, f(t) is negative and has no root in the
interval (—z,b), so f(t) is monotone in either the interval [—z,0) or the interval
(0,b]. Since by (15), f(0) = —zyb > —p, either (0,b] or [—z,0) is contained in
Sx. Now if z > a, we are through. Otherwise for —a <t < —z < —b, we have

701 = (& + 0w+ 0 - b
< (452) ol

2 a? . p P
<22 <Pt <2
=ne’ (Smce W< 5z S
<o,

since p < 4.1. So in this case either [—a,0) or (0, b] is contained in Sx, the result
follows in view of Remark 1.

Subcase 1 (ii): z < b and p > 2.11. For 0 <t < b, we have f(t) <0 and
IF(®)] = (6=t +y)(t +2)
<(b—t)(t+x+£§>(t+z) (by (13))
- 8a?

<@ -o0+n+ 22 (1) < g0,

say. Since g(¢) has maximum value at ¢t = b/3 we have

4.1
If#®)| <g¢ (g) <2108---<p (since b= %,03 < —)

so (0,b] C Sx, and the results follows by (16).
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Subcase 1 (iii): z < b, a® < 11/25,8/4.1 < p < 2.11. Again as in Case I (ii),
we have, for 0 <t < b, that

[f(t)] < g(b/3) < 1.9477--- < 8/4.1<p (since a® < ;—;) .

So (0,b] C Sx and the result follows by (16).

Subcase I (iv): 0 < z < (9.1)b, a® > 11/25, p < 2.11. We have, for 0 < t < b,
that f(t) is negative and

IF @) =®-t)(z+t)(y+1)

< (b-1t) (100b+t) <ﬁb+ 12.3 +t> by (19)
=(b-t) (mb+t)2+(b_t) <m”+t)%

2
191 12.3\ [ b2
= h’(t)’
say. Since h(t) has a maximum at ¢ = (109/300)b, we have
109
<
6] < (30) <19<p,

so (0,b] € Sx and the result follows by (16).
Subcase I (v): (91/100)b < z < b,y < (114/100)b,a® > 11/25 and p < 2.11.
In this case, for 0 < t < b, we have

lf@®)=-fEO)=(@=+)y+)(b-1¢)
2
(IT“’) (%b+b) (A. G. mean)

214\
< | 2=
< ( 100) b® < p,
so that (0,b] C Sx. The result follows by (16).
Subcase I (vi): (91/100)b < z < b,y > (114/100)b,a3 > 11/25 and p < 2.11.
By Remark 2, f(t) is monotonically decreasing for —a <t < —z. Since f(t) is

positive for these values of ¢, to prove that [~a, —z] C Sx it is enough to prove
that —a € Sx. We have

0< f(—a)=(—z+a)b+a)(ly—a)

4. o1 41\ (100° 41
< [Zp- 2 kot N I <
= (40" 100") <b+ 40") <91b2 40") (Smce i< Ib)

<o,

IA
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23\ (81 (100 , [40\® , _ _
(ﬁ) (E) [ﬁp - (H) a’p|l <1 (s1nce po = 1)
Since the L. H. S., as a function of p, is monotonically increasing, and for p = 2.11
and a3 > 11/25, the above holds, we have —a € Sx and hence [-a,-z] C Sx.

Now arguing as in Subcase I (i), we have either [—a,0) or (0,b] is contained in
Sx. This completes the proof for Case I.

if

Case II: (z,y) in the second quadrant.

Subcase I1 (i): |z| > b. Since y > |z| > b, in view of Remark 2, f(t) is positive
and monotonically decreasing in the interval (0, b]. Since, by (15), f(0) < o, we
have (0, 5] C Sx. The result follows from (16).

Subcase 11 (ii): |z] € b. As in Subcase II (i) above, (0,—z] C Sx. For
—z <t < b, we have

0<—-ft)=0-t)(z+t)(z+1)
(b+z)%(y +1)

1
4
1 12.3
<= =
__4(b+z) <8a2 +|:c|+b>
1
4

2
(1-p)? (% <§> + ub® + b3> (where |z| = bp)
= 9(u),

say. Since g(u) is a decreasing function of u for 0 < u < 1, we have |f(t)] <
9(0) < p, so (0,b] C Sx. This completes Case II.
Case IIL: (z,y) in the third quadrant.

Subcase IIT (i): |z| = b. Since |y| > |z| > b, b is the smallest root of f(t) and
by Remark 2, f(¢) is negative and monotonically increasing for 0 < ¢t < b. Since
by (15), f(t) > —p, we have (0,b] € Sx. This proves the result for Subcase
III (i)..

Subease 111 (ii): |z] < b, |y| < 40/b%. As in Subcase III (i), we have (0, —z] C
Sx. For —z <t < b, f(t) is positive and

|£(8)] < (¢ + 2)(b — t)(max(|yl, |¢]))
2
< bzma.x(|y|,b) <o,

since b3 < # < 40. So (0,b] C Sx.
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Subcase 111 (iii): |z| < b, |y| > 40/b%, p < 2.733, s0 o > .36598. As before
(0,—z] C Sx. Since 40/b*> > b, we have |y| > b and thus f(t) is positive for
—z <t < b and we have

0<f®)=(z+t)(b-t)(-y—1)

< (t—le)b-1) (£3-+lx|—t) (by (13))

= g(p, 1),

say, where u = |z| > 0. Since g(u,t) as a function of u is a decreasing function
of u, for all ¢t € (0, b], we have

12.3
10 00 =t0-0) (g —1)
¥ (123
- 4 8a2
Thus (0,5] C Sx and the result follows from (16).
Subcase 111 (iv): |z| < b, |y| > 40/b%, a® < 4317, p > 2.733.
As in Subcase III (iii), for —z <t < b, we have

()] < 9(0,8) < t(b— 1) (12 3) = h(t),

say. Since h(t) is monotonically decreasing for ¢t > b/2, then for ¢ > (8/10)b, we
have

)< 3659 <o (A. G. mean).

8 1
< il -
h(t)_h(mb) < <o
Now for |z| > 8b/10, we have ¢ > 8b/10, so [—z,b] C Sx and (0,—z] C Sx.
As in the earlier case we have (0,b], and in particular [$b,5] C Sx, for all X in
this case. :
Since a® < 4317, |y| > 40/b% > (73/40)b, so f(t) is negative for b < t <
(73/40)b and
—ft) = (z+)(t - b)(-y - ¢)
12.3
<= laDe-b) (g +1al-¢) =arluo)

say, where p = |z| > 0. Since ¢t < (73/40)b < 12.3/16a?, for a® < .4317, we have
g1(u,t) is a decreasing function of u, and hence

—f(8) < 91(0,8) = £(t — b) (% - t)
< (%b) (%b) (%53) =2.2033 < p,
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so ((8/10)b,(73/40)b] C Sx. Since this interval is of length a, we are done in
view of (17).

Subcase 111 (v): |z| < b, |y| > 40/b%, p > 2.733 and a® > .4317. Since
40/b? > (71/40)b, we have |y| > (71/40)b.

Again as in Subcase III (iv), [£6,b] € Sx. Then for (71/40)b < |y| < (73/40)b
and for (71/40)b < t < (73/40)b, we have

73
£ = [t + ][t — bljt + 3] < (Eb) (%b) (%b) <o

Also for b < t < min(|y|, (73/40)b), f(t) is negative and

(&)= (z+t)(t - b)(-y 1)

< (t—al) (5é tla| - t) (t—b) (by (13)

8a2

(ﬁy (t—b) (A.G. mean)

IA

=\'16 ) ot
and so [8b/10, (73/40)b] C Sx. The result follows as in Subcase III (iv). This
completes the proof for Case III.

2
< (12'3) L2 < p (since a® > .4317, and p > 2.733)

Case IV: (z,y) in the fourth quadrant.

Subcase IV (i): |z| > b. By Remark 2, f(t) is monotone in the interval (0, b],
so we have (0,5] C Sx.

Subcase IV (ii): (25/40)b < z < b. In this case, since —z is the smallest
root of f(t), f(t) is negative and a monotonically increasing function of ¢ for
—a<t< -z and

|f(—a)l = (a —z)(a +b)(-y +a)
<(a—z)(a+b) (ﬁ +z+ a) (by (13))
8a?
= h(z),
say. Since h(z) is monotonically decreasing, for z > (25/40)b, we have |f(—a)| <
h(25b/40) < 1.92--- < p, s0 [~a,z] C Sx.
If |y| > b, then f(t) has a single extreme point between —z and b, so either
[-z,0) or (0,b] C Sx and hence [—a,0) or (0,b] C Sx.
Otherwise, we have either [—a,0) or (0,—y] C Sx as before, and for
—y<t<h,

b+zx

2
O = —f(8) = (t+2)b— )y +1) < ( ) b< b <p.
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So either [—a,0) or (0,b] C Sx and result follows by Remark 1.

Subease IV (iii): 0 € = < (25/40)b, |y| < (59/40)b, p > 2.9. In this case, we
have

|[f(=a)l = - f(—a) = (a - 2)(a + b)(-y +a)
<(a-z){a+b) (;—a)

<a(a+b) <ga) <2892---<p.

Arguing as in Case IV (ii), we have either [—a,0) or (0,5} C Sx.

Subcase IV (iv): 0 < z < (25/40)b, |y| < b, p £ 2.9, 50 0 > .344.
For b/10 <t < —y, f(t) is positive and

fA)=@+z)(b-t)(-y—1)
(‘-" + ”) (b=1) (A.G. mean)

2

IA

2

65\% /9
< (2 Z Y,3
: (80> (10)” <o

so [b/10, —y] € Sx or [-y,b] C Sx as in Case IV (iii). Also for b <t < (9/8)b,
we have

(””)2 (b—t) (since |y] <b)

0< f(t) = (t+8)(t - b)(t - |y])
<(t+z)(t—-b)(t—z) (sincelyl >z)
<t*(t—-b) (A.G. mean)

9\?1
<l{-] -<.1
_<8) 8< 6 < o,

so [b/10, (9/8)b] C Sx. Since (9/8)b — b/10 = a, the result follows by (17).

Subcase IV (v): 0 < z < (25/40)b, b < |y| < (59/40)b, p < 2.9.
For |y| — (9/10)b <t < b, we have

0< /() =(+2)(6-t)lyl -2)

2
< (%2) 0-9 (& G.mea

< —_ —_
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g0 [-y — (9/10)b,b] C Sx. For b <t < —y, we have
0< —ft)=(z+8)(t—-d)(-y—1)
2% 59 2
< [ £
= <4ob b) (40 ) <
so [b, —y] C Sx. Also for —y <t < —y + b/8, we have
0< f(t)=(t+z)(t-b)(t+y)

64 24\ (1
< | — )
= <4ob 40") (40”) <8b) <

249

so [-y,—y + b/8] C Sx and hence [—y — (9/10)b,—y + b/8] C Sx. This is an

interval of length a and the result follows by (17).

Subcase IV (vi): 0 < z < (25/40)b, |y| > (59/40)b.
We have

o1 ()= (e-2) () ()
< (i-2) (82 2) (&)

= g(z),

say. Since g(z) is monotonically decreasing, for z > 0, we have

—f( (—i—gb) < g(0) < 1.8316---zp

so —(25/40)b € Sx and hence [—(25/40)b, —z] C Sx. For b <t < (57/40)b, we

have

0< —f(t)=(t+2)(t-b)(-y—1)
< (t+2)(t-b) (53 +z— t) (by (13))
<(2a )(17 ) (ﬁTf) (since z < b < t)
<p

so [b, (57/40)b] C Sx.

Between —z and b, f(t) has a single extreme point, so f(t) is monotone in
either the interval [—z, 0) or the interval (0, b]. In view of (15), either the interval
[—z,0) or the interval (0, }] is contained in Sx. If (0,b] C Sx, the result follows
by (16). Otherwise we have [—(25/40)b,0) U [b, (57/40)b] C Sx and the result
follows by (18). This completes the proof for Case IV and hence completes the

proof of Theorem 2.
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