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Abstract

Some sufficient conditions for the reconstructability of separable graphs are given proceeding along
the lines suggested by Bondy, Greenwell and Hemminger. It is shown that the structure and
automorphism group of a central block plays an important role in the reconstruction.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 C 60.

1. Introduction

1.1. Notation and Terminology
We consider only finite, unoriented, ordinary graphs and follow Harary

(1969) for basic terminology and use the following additional terminology.
The maximal subgraph without pendant vertices of a graph G is called the

pruned graph of G. The block or cutpoint corresponding to the unique central
point of the block-cutpoint-tree (be (G)) of G is the autocenter of G denoted by
C(G) or C. The autocenter of the pruned graph is the pruned center P of G. Let
v e V(P). If P is a block the maximal connected subgraph of G whose
intersection with P is v is the branch of P at v. If P ( = v) is a cutpoint, then any
maximal connected subgraph of G which contains v as a noncutpoint is a
branch at t>. Let B be a block of G and A' be a block or cutpoint of G. The block
distance D(X, B) is the number of blocks between X and B, including B and
excluding X if X is a block. This is k if the distance between the corresponding
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points of bc(C7) is 2 k or 2 k — 1. The block length of a branch at X is defined as

max D(X, B) where B is any block in that branch. A branch at C of maximum

length, say r, is called a radial branch and r is called the block radius of G. A

block of G is called a peripheral block if it corresponds to a peripheral point (end

of a diameter) of bc(G) . Figure 1 may be helpful in understanding these

concepts.
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where the multiplicities of the G - M'S are also taken into account.
G is said to be reconstructable (or 1-reconstructable or P-reconstructable)

if G is reconstructable from the collection § (or S, or §p, respectively).
Clearly § D §p D 8,. Thus, 1-reconstructability => P-reconstructability =>
reconstructability.

1.2. Review and Scope
The reconstruction conjecture states that every graph G is reconstructable.

This has been settled in the affirmative for a few classes of graphs, in particular
for separable graphs without pendant vertices (Bondy (1969)). Bondy's conjec-
ture that G is 1-reconstructable if |F , | is sufficiently large was disproved in
Bryant (1971). However, 1-reconstructability of some classes of separable graphs
with pendant vertices was established in Green well and Hemminger (1969),
making crucial use of the notion of pruned center. In this paper we first show
that not all graphs are P-reconstructable and then give some sufficient condi-
tions for the P-reconstructability of graphs.

This shows that to settle the reconstruction conjecture for separable graphs
eventually one will have to consider cards from the deck @P = {G— u\u G
V{P)}. One attempt to settle the conjecture may be by establishing the recon-
structability of graphs with various mutually exclusive and exhaustive assump-
tions on the nature of P.
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In this paper we show that G is reconstructable if P is regular and P-recon-
structable if P has an abelian automorphism group. In Krishnamoorthy (1976),
one of us has established the reconstructability of a graph whose P is a
composite block (that is, P is expressible as the Cartesian product of graphs).
The 'tree' of results in that thesis is given here for an over all view of the
Reconstruction Conjecture with reference to the present work.

2. A counter example

In the counter example constructed in Bryant (1971) to show that there are
graphs which are not 1-reconstructable, P is a block and all the nontrivial
branches are isomorphic to K2. Clearly these graphs are also non P-reconstructa-
ble. The following steps explain the construction of some graphs which are not
P-reconstructable, and in which the branches are not restricted to be K2.

Step 1: Let {Hx, H2, . . . , Hm] be a set of distinct nonisomorphic branches
(connected rooted graphs) such that if u is any noncutpoint (excluding the root)
of //,-, then Hi — u is some Hp where 1 < i,j < m.

Step 2: Consider a block H, such that {«„ . . . , vm) C V(H) and the auto-
morphism group of H when restricted to {u,, . . . , vm) gives Am, the alternating
group on m letters. Existence of such a graph is proved in Bouwer (1969) and
Krishnamoorthy and Parthasarathy (1978).

Step 3: Identifying the root of Hi with vit for 1 < i < m, we get G. Inter-
change the positions of any two branches to get G', non-isomorphic to G. //, can
be chosen such that H is the pruned center of G.

It can be easily seen that the collection §p is the same as the corresponding
collection for G' and hence G is not P-reconstructable.

Note 2.1: We can adjust the set {//,} in such a way as to include any given set
of branches.

Note 2.2: The counter example can be modified so that the branches occur at
different similarity classes of V(P). When we talk of points of P similar to each
other we consider P as a graph.

3. /'-reconstructability

The above counter example leads to the natural question: When is G P-recon-
structable?

We first assume that there exists a pendant vertex v such that G — v has at least
two branches with pendant vertices {Assumption I). This gives us all the branches
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of G (at P) (see Green well and Hemminger (1969), p. 105), and hence if P is a
cutpoint G is obviously P-reconstructable. Henceforth let P be a block. Once we
know all the branches and P, we can find whether C is a cutpoint or not and
whether C intersects P. This is found by noting that in whatever way the
branches are attached to different points of P, D(C, P) is going to be the same.

THEOREM 3.1. If C n P ¥= C, then G is l-reconstructable.

PROOF. If w is a pendant vertex of G, it is obvious that C(G — u) will be the
same as C(G) or C(G - u) will be a cutpoint on C(G) if C(G) is a block and it
will be a block containing C(G) if C(G) is a cutpoint. Since C n P ¥* C and P
is a block, in any G - u G §,, C(G - u) ¥= P. Hence in any G - « 6 § „ we
can find P(G - u) (= P) and fix the branch containing C(G - w) and C(G).
Choosing a G - « G 9, such that the branch at P containing C(G — u) is not a
branch of G, we can reconstruct G, by replacing this branch by the suitable
branch of G.

Henceforth we assume that P n C = C.

THEOREM 3.2. //" /Aere is a branch B containing a noncutpoint u such that B — u
is not a branch of G, then G is P-reconstructable.

PROOF. Case 1. C(G) = P. In the collection of branches of G, replacing one B
by B — u, we can find r(G — u) and determine whether C(G — u) is a block or
a cutpoint.

Case la. Suppose r(G - u) = r(G) and C(G - u) is a block. Then C(G - u)
is the same as P. Find a G' G § with r(G') = r(G) and C(G') as a block
isomorphic to P. Moreover choose G' such that a branch B — u appears instead
of a B. G is reconstructed from this G' by replacing the branch B — u by B.

Case lb. r(G - u) = r(G) and C(G — u) is a cutpoint. This implies that « is
the only pendant vertex in the only peripheral block in B and there exists only
one more branch with peripheral blocks and P(G — u) = P{G) and C(G — u) is
a cutpoint on P(G). Considering such a graph G' G §, since we can find out
P(G — u) = P(G) in that G', we can reconstruct G by replacing the branch
B - u by B.

Case lc. r(G — u) > r(G). As before we know whether C(G — u) is a cutpoint
or a block. Choose a C ' G § which has a block isomorphic to P, having all the
branches of G except one B replaced by B — u. If the choice of such a block
isomorphic to P in G' is unique, then G is reconstructed in the usual way.
Suppose there are at least two choices for P in G'. It can be easily checked
(Krishnamoorthy (1976)) that the other choices for P are only among the blocks
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in between P and Bv (where G' = G — v and Bc is the block containing the
point v) or the blocks in Bv — v. Hence the existence of the second choice for P
in G' implies that the number of points in B is more than the total number of
points in all the other branches and P. Hence if B contains a pendant vertex w,
then clearly B — w is also not a branch and in this case we will be in one of the
previous cases. So, let there be no pendant vertex in B.

Since there are at least two pendant vertices in the other branches and as these
branches appear in B — v (by the second choice for P), and since B does not
have pendant vertices, these pendant vertices of B - v have come from the
points of degree 2 in Bv and they are adjacent to v in G. Now we can choose a
point w of degree 2 (adjacent to at most one point of degree 2) in Bv which gives
only one end vertex in B — w. In this case, there will be only one choice for P in
G — w and hence G is reconstructed.

Case 2. C(G) is a cutpoint on P. The proof is not much different from that of
Case 1 and is omitted.

This completes the proof.

Henceforth we assume that if E is a branch of G, then so also is any E — w,
w e V(E) {Assumption II). This leads to the following observations.

COROLLARY 3.3. P is the block with maximum number of points in G.

Note 3.4. The deck §p can be recognized in §.
Note 3.5. In any G' G §p, P can be identified.
Note 3.6. In any G — u, where u e V(P) and P — u is a block, P — u can be

identified.
Theorem 3.2 is sharpened as follows.

THEOREM 3.7. Suppose there is a branch B of G, rooted at v £ V(P) and a
noncutpoint u of B such that no branch isomorphic to B — u is rooted at a point
similar to v in P. Then G is P-reconstructable.

PROOF. Let Sx, S2, • • •, Sk be the similarity classes in P where P is considered
as a graph. These are known, as P is known. Note that there will be nontrivial
(¥= K}) branches attached to at least two S,'s, because of Theorem 3.2 and the
assumption following it. First we find the branches at each 5, separately.

Consider a G' e §p which contains maximum number of points at the
branches in an Sr Clearly this gives all the branches at S,, as the deleted point
has come from a branch attached to some 5,, where i ¥=j.

Let B be a branch attached to a point in S,, say, such that B — u is not a
branch in any point in S,. Now considering & G' E. §p where at 5,, one B — u
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appears instead of a B, we can reconstruct G. (Note that by Note 3.4, P is
identified in any G' G @p.) This completes the proof.

Henceforth we assume: If B is a branch with a noncutpoint u, at a point v of P,
then there is a branch isomorphic to B — u at a point similar to v in P (Assumption
III).

4. Reconstructability

Theorem 3.7 highly restricts the separable graphs that are left out to be
considered for reconstruction. It is of interest to know under what conditions on
P, G will be P-reconstructable or reconstructable.

The following example shows that P is regular does not imply the /'-recon-
structability of G.

FIGURE 2

However we have

THEOREM 4.1. If P is regular then G is reconstructable.

PROOF. Case 1. P is regular of degree > 3. Then P is a noncritical block
(Behzad and Chartrand (1971), Theorem 2.10). So, there is a point u in P such
that P — u is a block. Now consider a C ' e § such that there is no block
isomorphic to P and there is a block isomorphic to P — u. Since P is regular, it
can be reconstructed from the P — u in G' and the missing branch if any, can
be attached to the new vertex added to P — u, to get G.

Case 2. P is a cycle. In this case P is the largest cycle in G and proceeding
exactly as in the case of unicyclic graphs (Manvel (1969)) G is reconstructed.

The proof is complete.

5. Abelian groups

We first show that under certain conditions, the only counter examples one
can have to /'-reconstructability are the ones described in Section 2. We know
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that the group An plays a vital role in these examples and in an attempt to avoid
this group, we consider abelian groups in this section.

Let T be the restriction of T(P) to S where S = A u B and A = {x G
V(P)\x is a nontrivial root in P) and B = {y G V{P)\y is similar (in P) to
some x E. A). Let G satisfy assumption I. Hence we know P and all the
branches of G. Suppose G is not P-reconstructable. This implies that Assump-
tions II and III are also satisfied and if H is any graph with §p = %p(n), then
clearly P(H) = P, the branches of H are the same as those of G and the only
difference between G and H is in the attachment of the branches to P.

THEOREM 5.1. Let G be non P-reconstructable and §p = %p. Let S defined
above be a similarity class. If every branch {including the trivial one) occurs only
once at the points of S then T is the alternating group An, where \S\ = n.

PROOF. By assumption II, if B is a branch of G, so also is any B — u, u a
noncutpoint of B. Let Bt denote the branch at the point i of P. Let

S = {1, . . . , n) where | V(B,)\ < | V(Bj)\ if / <j.

Hence Bx = A",, B2 = K2 and \V(B3)\ = 3. Consider the G' G §p where one
Aj-branch (that is, a branch isomorphic to K^ is missing. In this G', there are
two points in S with trivial branches and since, by assumption, G is not
P-reconstructable, by attaching a K2 to the point 1, we must get H of the
theorem. This further implies that (1 2) ( = (1 2)(3)(4) • • • (n)) <? T. Now, con-
sider a G' in which B3 is missing and instead a K2 appears at 3. Since the
corresponding H' is isomorphic to this G', we get (1 2 3) G T. Hence F gives A3

on {1, 2, 3} when restricted as identity on (4, 5, . . . , n} pointwise.
Let the following statement be the basis for induction. ' T gives Ar on

{1, 2, . . . , r ) , when it is restricted as identity on [r + \, . . . , n) pointwise,
where 3 < r < n."

We show that T when restricted as identity on [r + 2, . . . , « } pointwise,
gives Ar+l on {1, 2, . . . , r + 1}. Let u be a noncutpoint of Br+l. Let Br+l — u
a Bk where 2 < k < r. Then G - u at H - u implies that (1 2) (k r + 1) e T.
Using this, it can be easily shown that T contains all the even permutations on
(1, 2, . . . , r + 1} when restricted as identity on {/• + 2, . . . , / ? } pointwise.
Since this group cannot be the symmetric group Sr+{ (since it does not contain
(1 2)) it is Ar+l. Thus, the proof is complete by induction.

Now, we assume that T is abelian. (This is slightly more general than assuming
that T(P) is abelian).

If F is transitive (on S), that is when S is a similarity class of P, we have
|F| = \S\ and there is only one element in T taking a point « 6 S t o a point
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[9] Reconstructing separable graphs 315

c 6 S (Wielandt (1964), Proposition 4.4). Hence labeling any arbitrary point of
S, say v, as e, the identity element of T, we can uniquely label the other points of
S with the other elements of T as follows. If a(v) = w, then label w as a.

If F is intransitive, that is when S is a union of (more than one) similarity
classes, restricting T to each of the similarity classes, we can proceed just as
above.

THEOREM 5.2. Let T be transitive on S. Let there be at least 3 branches in G
with at least one of them different from K2. Then G is P-reconstructable.

PROOF. Let B be a branch such that | V(B)\ > 3.
Case 1. Suppose there is only one 5-branch in G. We can assume that B has

maximum number of points among all such branches appearing only once.
From a G' where one K2-bTanch is missing, we can find the positions (in terms
of labeling) of the other branches with respect to the 5-root (that is, root of a
5-branch) at e. If there is a branch D, apart from the missing K2, such that
D — u & B, then from the corresponding G — u where one D-branch is missing,
we can find the position of the missing K2 in G' and hence G is reconstructed.

Suppose there is only one ^T2-branch and for every other branch D »* B,
D - u » B. This implies that | V(B)\ = 3 and | V(D)\ = 4 and the number of
D-branches is at least two. Now, consider all the graphs (in Qp) in which two
5-branches appear. In each of these graphs label the unique Aj-root as e and the
5-roots accordingly. Only the labels of the B-roots are common in all these
graphs. This indicates the position of the missing D-branch in any such graph
and hence G is reconstructed.

Case 2. Every non ^2-branch appears at least twice. Let B be such a branch
with maximum number of points. Consider a G' where one ^-branch is
missing. Let {e, a,,..., ak) be the labels of the 5-roots starting with some
5-root as e.

Subcase 2.a. Suppose starting with some other 5-root, say a,, we get the same
labels for the fi-roots. This implies that

{e, a,, . . . , ak} = {af1, ar
l a,, . . . , arl ak).

That is, in any labelling of S if there is a 5-branch at B, then there are
5-branches at a,/J and aflB also. Hence in any G' where one B-branch is
missing we can easily find the position of the missing B-branch and hence G is
reconstructed.

Subcase 2.b. Suppose starting with each 5-root as e, we let different sets of
labels for the 5-roots. Let {e, a,, . . . , ak] be the labels of 5-roots starting from
a certain 5-root, say v. If all the 5-branches are present in a G', then we can
distinguish the point v in G'.
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Suppose there is a branch D different from B and K2. Since | V(B)\ is
maximum, any D — u m B. Now from a G' where one Aj-branch is missing,
find the labels of the D-roots with the point v as e. Now from a G" where one
Z)-branch is missing, G is easily reconstructed.

Suppose the branches different from B are all isomorphic to K2. Hence
| V(B)\ = 3 (by Assumption II). If there are at least two A2-branches, then
comparing two graphs where one ^-branch is missing in each, we can recon-
struct G (as we can fix v in both these graphs). So, let there be only one
A2-branch in G. Suppose { B,,..., Bk) are the labels of the B-roots where the
Aj-root is e (we do not know these labels now). Consider a G' in which there are
two A2-branches. So there are two choices for fixing the A2-branch. One choice
gives the labels [Bu . . . , Bk) for the fi-roots and the other choice gives
{ BrxBv • • • > ft 'ftt> ft"1} ~ ie) where 1 < i < k. Considering some other simi-
lar G", we can get

{ Bv . . . , Bk) and { B/%, ..., fi/%, /?,-'} - {e},

where y ¥= i. If
{ ft-%, . . . . 0,-%, ft"1} ¥- { P/%, ..., B-%, Rr'}

then we can distinguish { /?,, . . . , Bk) and using this in the G' considered, G is
reconstructed. Otherwise,

{ Br\ ar%, ..., fr-%} = { flr\ Br%, ..., B;%),

where 1 < i,j < k.
This implies

{ Br\ B , - % , . . . , Br%) = [e, /Sf1, B 2 \ . . . , B k > } .

Multiplying all the elements by Bjy we get

{e,Bl,...,Bk} = { A, Mi*, ftA"1. • • • . ftA"1}-
Hence every BtBrx G {e, Bx, . . . , Bk] (where 1 < i,j < k) and

{Br\Br%,...,Br%} = {e,Bl,...,Bk}.

This shows {e, Bv . . . , Bk) is a subgroup of T.
Hence starting from any 5-root as e, we will get the labels of the 5-roots as

{e, /?„ . . . , Bk) - { Bf} for some j , and the A2-branch will be at Bt. Now G is
easily reconstructed from the G' where the A2-branch is missing.

THEOREM 5.3. Let T be intransitive. Let there be at least 3 branches with at least
one of them different from K2. Then G is P-reconstructable.

PROOF. AS we can deal with each of the similarity classes of 5 separately, by
the previous theorem it is enough to consider the case where each of the
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similarity classes having a non AT2-branch has just two nontrivial branches. This
implies that any (non-trivial) non ^-branch has just 3 points. Let S, be a
similarity class of S with the non ^-branch B. From a G' where one AT2-branch
is missing from some other similarity class, we can find the label of the AT2-root
at 5,, with the fi-root at S, as e. Now from the graph in which the AT2-branch at
5, is missing, G is reconstructed. This completes the proof.

The remaining case is when all the branches are isomorphic to K2. In this case
we prove a theorem under the assumption that T is cyclic and transitive.

THEOREM 5.4. Let T be cyclic and transitive. Let all the branches be isomorphic
to K2. If the number of branches is at least 4, then G is P-reconstructable.

PROOF. Since V is cyclic and transitive on 5, any generator of F contains a
single cycle of length J5|. Let ( 1 2 - • • k) be such a generator. In any P(G'),
G' e §p, we can fix the orientation given by this cycle. We can imagine a
directed cycle corresponding to (1 2 • • • k) and for our purpose, think that P is
replaced by this directed cycle.

(Note that here we cannot proceed as in the case of unicyclic graphs, by
deleting the points of the cycle, since the cycle is an imaginary one.)

Two nontrivial roots are said to be consecutive if there is a path joining them
in the (imagined) directed cycle such that the other points of the path are trivial
roots. A new distance between two consecutive roots is defined as the length of
such a path.

Since all the branches are isomorphic to K2, it is enough to find the distances
between the consecutive roots in the cyclic order. First, we determine these
distances without any order. For this, choose a C £ ^ which has a maximum
distance, say p, between two consecutive roots. Since this p is a sum of two
adjacent distances of G, the other distances of this G' are distances in G also.
Let r, s be two adjacent distances of G given by G'. Consider a G" G §p with
maximum number of distances equal to r + s and minimum number of dis-
tances equal to r. Clearly by splitting a distance r + s in G " as r and s, we get
all the distances of G.

In any G', which has a distance p, we can find out which combination of
distances (without any order), say m and n, has given rise to the distance p, by
comparing the distances of G and G'.U m = n, G is easily reconstructed. Hence
for definiteness let m > n. Let cmn be the number of combinations of adjacent
distances m and n in G giving rise to p where the distance m occurs first (in the
cyclic order). Let c^ be defined similarly. Let c = c^, + cnm. Clearly c is the
number of graphs in §p with a distance p appearing, instead of an m and an n.
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Of course, we don ' t know the numbers c^, and cnm now, though we know c. Let
c'mn> c'nm' c' denote the corresponding numbers for any ( ? ' £ § ; with a distance
p . These numbers are, of course, known.

Case 1. Suppose c > 1. Once we know the numbers ^ and c^ we can
reconstruct G as follows. Five different cases arise.

(a) c' = c - I; ?„„ = cm - I; c'm = cnm.
(b) c' = c - 1; c'mn = c^; 0'^ = c ^ - 1.
(c) c' = c - 3; c'mn = c^ - 1; c^, = c M - 2.
(d) c' = c - 3; <,„ = ^ - 2 ; ^ = ^ - 1.
(e) c' = c - 2; c^, = Cmn - 1; c^, = Cnm - 1.

In the first case the distance p in G' is replaced by w and then /i to get G. The
second case is similar. In case c, the distances in G' will be of the form
. . . n,p, m . . . and they are replaced by n, m, n, m, . . . to get G. In case d, the

distances . . . m,p, n, . . . of G' are replaced by . . . m, n, m, n, . . . . Suppose
every G' considered is in case e. The four possibilities for the consecutive
distances with p in the middle are

(1) . . . r, m + n, m, . . . , r ¥= m, n (2) . . . m, n + m, r,. . . ; r =£ m, n

(3) . . . r, n + m, « , . . . ; r ¥= m and (4) . . . n, m + n, r, . . . ; r =£ m.

The splitting of m + n is easily found in the first two cases and also in the
other cases if r ^ n. Suppose r = n. Now, consider a G" with a distance p and
minimum number of n's occurring consecutively after/?. In this G" clearly m
appears first in the splitting of/?. Hence G is reconstructed.

Now our aim is to find cmn and cnm. If there are at least two different
combinations of adjacent distances of G, such that m + n=p = x+y then
from a G' where x andy give rise to/?, we can find cmn and c^,. Suppose only
the combination m and n gives p. If there is a C where c' = c — 2, then
cmn = c'mn + l a n d cm = c'm+ I. If there is G' where c' = c - 3, then c^ and
c^,, are easily found out from our discussion of the reconstruction of cases c and
d. So, in every G' considered, let c' = c — 1. We can easily find from all these
graphs whether cmn or c^, is zero or not. If both are different from zero, a G'
with maximum c'mn gives cmn and hence c^ also. Suppose c^, = 0. Then in any
G'> C'nm = Cnm ~ '• H e n C e Cnm i s f ° U n d -

Case 2. c = 1. Consider the unique Gt with the distance/?. Let the distances in
this be . . . r,p, s, t, . . . . Suppose r ¥= s. Then consider a G' which does not
have the consecutive distances m and n and which has minimum number of
distances equal to m. In this if the new distance formed is m + r then m occurs
first and then n, and if the new distance formed is m + s, then m occurs after n.
Suppose r = s. Clearly r ^ m, n (since c = 1). Two cases arise depending on /.
If t ¥=" n, consider a G' where there are minimum number of distances equal to
m, maximum number of distances equal t o m + s and the combination (m, n)
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does not occur. If in this G' the distance n occurs after a distance m + s, then m
occurs first and then n in p. Otherwise n occurs first and then m in/>.

Suppose t = n. Then n will occur after m + s, whether m occurs first or not in
p. But now, consider a C in which the combination {m, ri) does not occur and
in which the distances n and 5 combine to give n + s. If there is an m after an
n + s, in the G', clearly n occurs first in the (m, n) combination. Otherwise n
occurs first.

This completes the proof.

Note 5.5. Theorem 5.4 is not true when there are only three /T2-branches. For
example, consider P where S = {1, 2, . . . , 6 } and T is the cyclic group on 6
elements whose generator is (1 2 3 4 5 6). By choosing the distances as 1, 2 and
3 (in that order) we get G. If we chose the distances 1, 3 and 2 (in that order) we
get H ss G. It is easy to see that G is not P-reconstructable.

This counterexample can be modified such that the pruned center is a cycle.
The G and H for this case are shown in Figure 3.

FIGURE 3

This shows that the corresponding subcases of Theorem 4.10 and Corollaries
4.13 and 4.14 in Greenwell and Hemminger (1969) are not true.
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