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Abstract

A steady supply of hosts at the susceptible stage for parasitism is a major component of mass
rearing parasitoids for biological control programs. Here we describe the effects of storing 5th
instar Plodia interpunctella larvae in dormancy on subsequent host development in the con-
text of host colony maintenance and effects of the duration of host dormancy on the devel-
opment of Habrobracon hebetor parasitoids reared from dormant hosts. We induced
dormancy with a combination of short daylength (12L:12D) and lower temperature (15°C),
conditions known to induce diapause in this species, and held 5th instar larvae of P. inter-
punctella for a series of dormancy durations ranging from 15 to 105 days. Extended storage
of dormant 5th instar larvae had no significant impacts on survival, development, or repro-
ductive potential of P. interpunctella, reinforcing that dormant hosts have a substantial shelf
life. This ability to store hosts in dormancy for more than 3 months at a time without strong
negative consequences reinforces the promise of using dormancy to maintain host colonies.
The proportion of hosts parasitized by H. hebetor did not vary significantly between non-dor-
mant host larvae and dormant host larvae stored for periods as long as 105 days. Concordant
with a prior study, H. hebetor adult progeny production from dormant host larvae was higher
than the number of progeny produced on non-dormant host larvae. There were no differences
in size, sex ratio, or reproductive output of parasitoids reared on dormant hosts compared to
non-dormant hosts stored for up to 105 days. Larval development times of H. hebetor were
however longer when reared on dormant hosts compared to non-dormant hosts. Our results
agree with other studies showing using dormant hosts can improve parasitoid mass rearing,
and we show benefits for parasitoid rearing even after 3 months of host dormancy.

Introduction

The potential to store insects for prolonged durations at low temperatures could be beneficial
for use in mass rearing of biological control agents (Leopold, 1998; Colinet and Boivin, 2011;
Filho et al., 2014). Long-term storage could supplement, or even replace, expensive continuous
rearing practices currently being used in mass rearing facilities (Cagnotti et al., 2018). The abil-
ity to store insects could open new opportunities for producers of biological control agents to
stockpile insects when levels of production are higher than levels of demand, and then deliver
these insects quickly when demand increases (Siam et al., 2019). The two basic strategies for
low-temperature storage of insects are (1) the cryopreservation of embryos at cryogenic tem-
peratures, most often in liquid nitrogen at —196°C, and (2) long-term storage at temperatures
below the threshold for development, which is typically applicable for insects in diapause but
can also be used for insects induced into other types of deep states of dormancy (Leopold,
2007; Denlinger, 2008). However, prolonged low-temperature storage may result in develop-
mental failures, depletion of energy substrates, loss of metabolite homeostasis, and oxidative
damage as potential mechanisms responsible for accumulation of indirect chill injury in
insects (Colinet et al, 2007, Hahn and Denlinger, 2007). Methods must be developed to
understand and mitigate the stresses of long durations of storage at temperatures below the
developmental threshold.

Insects often face harsh environmental factors during their life cycle that must be endured
to complete their development and reproduction. Diapause, a programmed state of dormancy,
is the principal mechanism by which insects survive non-favorable seasonal conditions in their
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environment (Kostal, 2006). Diapause takes place in the life cycle
of most stored-product Lepidoptera (Bell, 1994), and thus may be
of use in developing protocols for biological control in stored-
product systems. Specifically, for programs wishing to implement
biological control of stored-product pests, the ability to keep hosts
in a dormant state may be advantageous for the production of
parasitoids for augmentative biological control in commodity
storage facilities.

Using dormant hosts to rear parasitoids for biological control
programs may be advantageous because dormancy may change
host physiology in ways that are favorable for parasitoid produc-
tion (Hallman and Denlinger, 1999; Sanowar et al., 2018). For
example, diapause programming is often associated with increases
in metabolic reserves of lipids, carbohydrates, and proteins that
can be used by the insect to sustain themselves through a long,
dormant period (Hahn and Denlinger, 2007; Yocum et al,
2011; Sinclair, 2015). Lipids are the primary source of metabolic
reserves that most insects use during diapause (Danks, 1987;
Hahn and Denlinger, 2007, 2011). It has been reported that
lipid reserves provide efficient storage of energy and their metab-
olism can create metabolic water, which may be particularly
advantageous in dry environments, like stored grains (Wharton,
1985; Danks, 2000). Similarly, diapause and other forms of envir-
onmentally induced dormancy (i.e., thermal quiescence) can alter
other aspects of host metabolism besides lipid storage and com-
position, including changes in protein and amino acid contents
or blood and tissue carbohydrate content that can be advanta-
geous for parasitoid production (Hahn and Denlinger, 2007,
2011). Furthermore, inducing diapause or other forms of dor-
mancy with low temperatures may have effects on the host
immune system that could make them more favorable for success-
ful parasitoid development. For example, Ferguson et al. (2016)
reported that cold acclimation decreased realized immunity at
low temperatures. Thus, inducing dormancy may have extended
benefits for parasitoid production due to host immune
suppression.

The Indian meal moth, Plodia interpunctella (Hiibner)
(Lepidoptera: Pyralidae), is a cosmopolitan pest of warm-
temperate or sub-tropical origin that can now be found on
every continent excluding Antarctica (Howe, 1965; Bell, 1975;
Mohandass et al., 2007). Plodia interpunctella is a severe pest of
stored food products, including grains and grain-based products,
nuts, and fruits (Hamlin et al., 1931; Mohandass et al., 2007).
Aside from direct product loss through feeding, P. interpunctella
also causes economic losses from costs of control, quality reduc-
tion, and consumer complaints (Phillips and Throne, 2010).
Many populations of P. interpunctella facultatively enter diapause
in the last (fifth) larval instar in response to photoperiod and/or
temperatures (~20°C or lower), although some populations have
either lost or evolved low incidences of diapause (Tzanakakis,
1959; Masaki and Kikukawa, 1981; Kikukawa and Masaki, 1984;
Bell, 1994). Diapause is a topic of particular interest in stored-
product settings because diapausing P. interpunctella have been
found to be more difficult to control when using fumigants
such as phosphine, and in modified-atmosphere packaging
(Adler, 2001; Gourgouta et al., 2021). The mechanistic basis for
diapause or other forms of dormancy reducing the efficacy of
fumigants like phosphine in stored-product pests is currently
unknown. However, insects that have become dormant either
through programmed diapause or environmental factors, like
low temperature or low humidity, also frequently have both
lower respiration rates that could limit the entrance of gaseous
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fumigants into the insect’s body, and increased expression of a
number of stress hardiness mechanisms such as antioxidants
that could help reduce intracellular damage due to off-target
effects of pesticide metabolism by mixed-function oxidases
(Denlinger, 2002; Hahn and Denlinger, 2011; Sahoo et al., 2018;
Moreira et al., 2021).

One of the most promising and effective biocontrol agents for
P. interpunctella in stored-product settings is the Braconid wasp,
Habrobracon hebetor (Say) (Hymenoptera: Braconidae), a cosmo-
politan, gregarious, and koinobiont ectoparasitoid of a wide range
of lepidopteran species (Ghimire and Phillips, 2010; Liu et al.,
2015; Glupov and Kryukova, 2016; Hasan et al, 2020).
Habrobracon hebetor also has the potential to be integrated with
other biological control agents for the management of pest
moth populations (Mbata and Shapiro-Ilan, 2005, 2010). A
major challenge in mass rearing H. hebetor derives from the
fact that the parasitoid has a narrow window during host develop-
ment in which it can successfully parasitize their hosts, which are
late instar Pyralidae caterpillars that pupate within few days under
optimum conditions (Akinkurolere et al., 2009). Efficient mass
rearing is one of the prerequisite criteria to be taken into consid-
eration for an augmentative biological control program. A mass
rearing protocol for H. hebetor has not yet been established.
Rearing of H. hebetor on diapausing host larvae could potentially
produce higher numbers of progeny because diapausing host lar-
vae develop very slowly, thus providing a broader window of time
for parasitism (Na and Ryoo, 2000; Sanower et al, 2018).
Dormant host larvae can survive for long periods, and once in
a state of dormancy, produce less silk than non-dormant larvae
further facilitating parasitoid rearing (Williams, 1964; Bell, 1977;
Bell et al., 1979; Mbata, 1987; Mohandass et al., 2007). Other
characteristics of dormant larvae of P. interpunctella that could
potentially enhance progeny production by H. hebetor include
alterations in lipid, carbohydrate, and protein metabolism
induced by dormancy that may favor parasitoid development,
as well as dormancy and cold-induced reductions in host immun-
ity that may favor parasitoid production (Ferguson et al, 2018).
Our overarching hypothesis for this study is that storage of
P. interpunctella hosts in dormancy for short periods of time
would benefit parasitoid production while having little negative
effects on host parameters, but that longer term storage would
eventually lead to a decline in host quality and subsequently para-
sitoid production and quality. This investigation had two major
objectives. First, we tested the extent to which storing dormant
P. interpunctella larvae at 15°C for a variety of durations would
affect the ability of larvae to successfully molt to adulthood and
subsequent adult reproductive parameters. The ability to keep
P. interpunctella larvae in dormancy for prolonged periods
could both benefit rearing of parasitoids on those hosts and
improve the maintenance of the host colony itself by allowing
the host colony to be put in dormancy when parasitoid rearing
is not necessary to suit demand. Second, we tested the extent to
which rearing H. hebetor on P. interpunctella host larvae that
had been held in dormancy for various periods affected parasitoid
development.

Materials and methods
Host rearing

The Indian meal moth, P. interpunctella, colony used in the
current study was originally collected from local food facilities
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in 2014 and has been continuously cultured at the Post
Harvest Laboratory, Department of Zoology, Rajshahi University,
Bangladesh. Moths were reared in 1 liter glass jars on a mixed stan-
dardized larval diet (350 g) of corn meal, chick laying mash, chick
starter mash, and glycerol (Phillips and Strand, 1994) at a volumetric
ratio of 4:2:2:1, respectively. Cultures were maintained in an incuba-
tor (Sanyo MIR-553, South Korea) set at 27 + 0.5°C, 70 + 5% relative
humidity (RH), with a photoperiod of 16:8 (L:D) h, conditions that
clearly maintained non-diapause development.

Parasitoid origin and rearing

Habrobracon hebetor adults were obtained from the Bangladesh
Agriculture Research Institute (BARI), Gazipur, Bangladesh in
2014. The parasitoids were cultured and mass-reared on last instar
(5th instar) larvae of P. interpunctella in the laboratory at 27 + 1°C,
70+5% RH, and photoperiod of 16:8 (L:D) h (Mbata and
Shapiro-Ilan, 2010).

Larval dormancy induction in P. interpunctella

To induce larval dormancy, we shifted larvae from warmer, long-
day photoperiodic conditions to cooler, short-day photoperiodic
conditions. Specifically, 14-day-old (5th instar) P. interpunctella
larvae were transferred from one climate chamber set at 27°C
16:8 (L:D) to another climatic chamber set at 20°C 12:12 (L:D)
for one day to provide a brief acclimation period to cooler
temperatures, and then the following day larvae were transferred
to 15°C and 12L:12D photoperiod to induce dormancy (fig. 1).
Throughout this manuscript, we refer to larvae as being dormant
rather than as in diapause because while diapause is induced in
many P. interpunctella strains (Bell, 1976; Wijayaratne and
Fields, 2012) we changed both photoperiod and temperature
between our non-dormant and dormant animals and thus cannot
distinguish the contributions of programmed diapause vs. thermal
dormancy due to exposure to 15°C over the long periods of
delayed development observed in our study. Dormant larvae
were experimentally kept at 15°C individually in plastic rearing
trays (Lx W x H: 9.6” x4.1” x 2.0”) (HL-B025, Jiangsu, China)
containing 50 small holes (2 ml) filled with food medium (6 g)
for one of seven durations: 15, 30, 45, 60, 75, 90, or 105 days
(Tzanakakis, 1959; Mohandass et al., 2007), with all treatments
and replicates run concurrently. Trays were covered with a trans-
parent plastic sheet with tiny holes to allow exchange of air. The
development of larvae was observed every day during different
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storage periods. If a larva did not pupate during the exposure per-
iod at 15°C, the larva was considered to be dormant. Furthermore,
some moths emerged early during the induced dormancy period.
These early emerging moths were considered to be non-dormant,
and 5 days after the last individual emerged from the first clear
bout of early emergence, other larvae in the tray that were still
clearly in the larval stage showing no sign of metamorphosis
into pupae or adults were considered dormant larvae.

The number of pupae and adults per tray was recorded separ-
ately for each experiment. The percentage of larvae that success-
fully survived dormancy and emerged as adults was also recorded.
The transition from the dormant larval stage to reinitiate develop-
ment was made by gradually increasing temperature to avoid pos-
sible thermal shock. First, the temperature was increased to 18°C
for one day and then increased again on the second day to 23°C,
both with a photophase of 14:10 (L:D) and on the third day
insects were transitioned to 27°C, RH 70 + 5%, and a photophase
of 16:8 (L:D). Plastic pots (500 ml) containing non-dormant lar-
vae were kept in an incubator set at 27°C, RH 70 £ 5%, and a
photophase of 16 h throughout as a control group for comparison.
Three replicates were performed, each having 200 larvae in each
condition. For this experiment, 18-day-old non-dormant
last-instar larvae and dormant larvae stored for different periods
of time were used for comparison.

Biology of P. interpunctella developing from dormant larvae

Three replicates of 25 dormant larvae from each storage period
and 25 non-dormant larvae of P. interpunctella were placed sep-
arately in plastic jars (500 ml) containing 100 g of standard food
(Phillips and Strand, 1994) and allowed to complete development.
Jars were kept in an incubator set at 27 + 0.5°C, 70 + 5% RH, and
16:8 (L:D). Larvae were weighed at the end of the dormancy hold-
ing period to test whether the duration of dormancy had an effect
on mass loss. The time from removal from larval dormancy con-
ditions to pupation, the time to adult emergence, and the percent
of dormant larvae that yielded emerged adults were recorded for
each dormancy duration treatment. The sex of each emerging
moth was recorded to test whether the duration of dormancy
had an effect on the sex ratio of moths produced, and thus indi-
cated any sex-specific mortality. Five pairs (one male and one
female) of newly emerged adults resulting from each duration
of dormancy treatment were kept separately in a small plastic con-
tainer (100 ml) for mating and egg laying. Eggs were counted for
each pair in each treatment (fecundity) and kept separately in a
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Figure 1. Schematic experimental procedures for our larval dormancy treatments in P. interpunctella and potential for implementation for biological control mass

rearing.
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Figure 2. Mean (+SE) weights of P. interpunctella larvae stored at
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control 15 30

plastic petri dish (100 x 20 mm) to record the proportion that
hatched (fertility). To test whether the duration of larval dor-
mancy had an effect on host biochemical composition, the total
protein content of different dormant and non-dormant host lar-
vae was measured according to Kjeldal method (Jonas-Levi and
Martinez, 2017). Percent nitrogen as estimated by the Kjeldal pro-
cedure was transformed into protein content by multiplying with
a conversion factor of 5.3 (McCarthy and Meredith, 1988; Korel
and Balaban, 2006). Three replicates of pooled larvae (244-672
total larvae per treatment) were sampled for control and each dor-
mancy duration.

Effects of host dormancy history on H. hebetor

To test the extent to which host dormancy duration affects the
performance of H. hebetor progeny, ten dormant and ten non-
dormant host larvae were placed separately in 500 ml rearing
jars containing a pair of newly emerged virgin, naive H. hebetor
(one male and one female). Jars were covered with black cloth
to encourage wasp mating. Wasps paralyzed host larvae and
laid eggs. Experiments were conducted in an incubator main-
tained at 27 £ 0.5°C, 70 + 5% RH, and 16:8 (L:D) until the emer-
gence of parasitoid progeny. The number of parasitized host
dormant larvae was recorded in each jar. The total number of
parasitoid progeny, larval and pupal periods, sex ratios, and
body size of male and female adult parasitoids were recorded.
Body size measurements (mm) of the head length, total body
length from head to tip of abdomen, and wing length of each
individual parasitoid were measured using an eyepiece-
micrometer (New York Microscope Company, Hicksville, NY,
USA). For longevity studies, three pairs of adults of both sexes
developing from dormant and non-dormant larvae were kept sep-
arately in a plastic container (100 ml) and checked daily until all
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15°C for a range of exposure periods. Distinct letters for each
storage duration indicate statistically significant differences
after correction for multiple comparisons with Duncan’s
multiple-range test.

105

adults died. Three replicates were conducted for each duration of
larval dormancy.

Statistical analysis

Statistical analyses were performed using R software (v.4.0.2).
Analysis of variance (ANOVA) procedures were used to deter-
mine the effects of storage duration on growth and development
of P. interpunctella, as well as on H. hebetor reared on hosts stored
at 15°C for different durations. All metrics that were subjected to
ANOVA were verified to meet the assumptions of homoscedasti-
city through the use of Levene’s tests. When the assumptions of
homoscedasticity were not met due to unequal variances among
groups, we used generalized linear models that are robust to
departures from homoscedasticity. A linear model was used to
estimate the relationship between P. interpunctella pupation dur-
ation as storage period at 15°C increased. Means within any of the
tests were separated in comparison to the un-stored control using
Duncan’s new multiple range test (P <0.05).

Results

Effects of storage on Plodia interpunctella survival and
reproduction

Storage at 15°C for any duration of time significantly reduced
average larval weight compared to larvae that were not stored
(F716=137.9, P<0.001, fig. 2). Although some average weights
were statistically significantly different among stored groups,
there was no clear pattern with regard to duration of storage
(fig. 2). Storage duration significantly impacted the time to pupa-
tion after removal of dormant larvae from storage, with larvae
stored for 105 days taking significantly more time to begin pupa-
tion than any groups stored for less time, 15-90 days (Fg 14 = 56.4,
P <0.001, fig. 3). Duration of the pupal stage was significantly
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differences after correction for multiple comparisons with
Duncan’s multiple-range test.

impacted by larval storage duration (Fs;s=160.57, P<0.001),
with pupal duration negatively correlated with time stored
(R*=0.70, fig. 4). Interestingly, larvae stored for 105 days pupated
as quickly as the control group (t=-1.0, P=0.42). The percent
adult emergence was not significantly impacted by storage at
15°C for any of the storage durations in this study (F,;5=1.53,
P=0.23). Similarly, storage duration had no significant impact
on the sex ratio of moths (F; ;4= 2.18, P=0.09), with an average
of 2.5 females per male across all groups. Storage duration also
had no effect on moth fecundity (F; 30 =0.08, P=0.779), nor on
fertility (F;30=0.45, P=0.508), with an average of 202.5 eggs
laid by mated females and 43.8% of eggs hatching across all
groups. The percent of total protein in the bodies of larval
P. interpunctella differed significantly (F;;s=>55.92, P <0.001)
among some storage duration groups, but there was no clear pat-
tern with regard to duration of storage in dormancy (fig. 5).

Effects of host storage on Habrobracon hebetor

There were no significant differences in parasitism percentages
across hosts stored for different durations (Fy;6=1.90, P=0.14),
with an average of 82.0% hosts parasitized (fig. 6). Host storage
in dormancy at 15°C for any duration significantly increased
the number of parasitoids per host compared to hosts that did
not undergo storage (F;,;6=11.57, P <0.001, fig. 7). Percent para-
sitoid pupal formation (F;;4=2.31, P=0.080) and adult emer-
gence (F;16=1.59, P=0.209) were not impacted by the
duration of host storage in dormancy. Parasitoid larval develop-
ment was significantly longer by ~2 days in hosts that were stored
at 15°C for any duration compared to the control (F;;¢=11.29,
P <0.001, fig. 8). There was no impact of host storage duration
on parasitoid sex ratio (F; ;6= 1.59, P=0.21), with an average of
0.52 females per male across all host dormancy duration groups.
With respect to effects of host storage on parasitoid size, there was
no effect of host dormancy duration on any of the three traits.
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However, females had significantly larger head lengths and
wing lengths, with the sex effect on body length only marginally
significant (two-way ANOVAs, head length: host dormancy
duration F;,,=0.01, P=0.99, sex F;;=32.39, P<0.001,
wing length: host dormancy duration F;o=0.21, P=0.65, sex
Fi70=1049, P=0.002, body length: host dormancy duration
Fy.70=0.10, P=0.74, sex F; 7= 3.3, P=0.074).

Discussion

Performance of dormant P. interpunctella larvae was surprisingly
resilient to storage in dormancy at 15°C for prolonged durations.
Despite the fact that all groups held in dormancy had less mass
than non-dormant control larvae, all P. interpunctella stored at
15°C survived to adulthood at similar proportions and main-
tained reproductive potential not different from control moths
that were never put into dormancy. Dormant insects, either in
diapause or cold storage, typically lose substantial mass as the
dormancy period increases due to expenditure of nutrient reserves
(Hahn and Denlinger, 2007). Prolonged durations in dormancy
conditions have often been found to increase mortality and
decrease a number of life-history traits from lifespan and fat
reserves to fertility and fecundity, particularly in females of
some species (Ellers and Van Alphen, 2002; Williams et al.,
2003; Munyiri et al., 2004; Matsuo, 2006; Hahn and Denlinger,
2011; Margus and Lindstrom, 2020). Thus, in our study, we
expected to find that hosts held longer periods of time were less
suitable than those held for only short durations in dormancy.
In our study, P. interpunctella larvae do have less total mass
after dormancy than larvae that did not undergo dormancy
(control larvae), but there appears to be no major loss of host
quality for either parameters important to mass rearing of hosts
or parasitoid rearing and production with the time hosts spent
in dormant conditions from 15 days to over 100 days. Some
insects are capable of severely suppressing their metabolic rates


https://doi.org/10.1017/S0007485322000153

Bulletin of Entomological Research 771

Pupal Duration (Days)

0 1'5 3'0 4'5 ﬁb 7-5 a0 105 Figure 4. Mean (+SE) duration of P. interpunctella pupal periods

Storage duration (days) ;?jrtag:\;etlc;gfg from larvae exposed to different durations of

>

45 A

401

35+

30+

Percent Total Protein
[#]
m

(g}
(@]

251

c C
201 i ‘

Figure 5. Mean (+SE) percent total protein content of P. inter-
' y . . x . . . punctella larvae exposed to different durations of storage at
control 15 30 45 60 75 90 105 15°C. Distinct letters for each storage duration indicate statistic-
Storage duration (days) ally significant differences after correction for multiple compar-

isons with Duncan’s multiple-range test.

to limit loss of resources over time (Pullin, 1996; Hahn and lag between being placed in dormancy conditions and the larvae
Denlinger, 2011). The initial decrease in wet mass between con-  initiating a reduction in metabolism (Sinclair, 2015), after which
trol larvae and larvae stored for 15 days may be indicative of a  depletion of stores may be very slow. Interestingly, the lowest
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weights were observed in the group of larvae held only 15 days
and larvae held in longer durations of storage were all intermedi-
ate between the heavy weights seen in control animals and the
lightest weights seen at 15 days. One possible explanation for
this unexpected pattern is that the differences in weights observed
among groups held dormant for different periods of time are
reflective more of body water content than dry mass differences.
While we do not know whether dormant P. interpunctella larvae
are capable of taking up water from their environment, we do
know that other diapausing insects are capable of gaining body
water from water vapor in the air around them (Yoder and
Denlinger, 1991; Danks, 2000; Benoit et al, 2015; Doherty
et al., 2017). Given that P. interpunctella has evolved to live in
relatively dry conditions found in stored grains (Bell, 1975;
Mbata, 1987), it seems possible that dormant individuals may
be able to gain body water content from water vapor in the air,
but rigorous testing of this idea will require substantial further
work.

Perhaps our most important finding is that P. interpuntella lar-
vae emerging from dormancy served as better hosts for H. hebetor
parasitoids than moths that had not undergone any dormancy, at
least based on the parameters tested so far. Hosts exiting dor-
mancy produced more parasitoids with no impacts on parasitoid
size, whether hosts were held dormant for 15 or 105 days. While
others have previously shown that dormant P. interpuntella hosts
produce more H. hebetor (Sanower et al., 2018), our work stands
out as a novel contribution because we have shown that this pat-
tern of dormant hosts being better for parasitoid production is
not just true for hosts early in dormancy, but that hosts can be
stored for more than 3 months and still provide improved parasit-
oid yields. Body size is an important correlate of parasitoid fitness
in general and a very important trait for biological control agents
because size affects flight ability, parasitism efficiency, longevity,
and female fecundity and thus efficacy of the control agent
(Visser, 1994; West et al., 1996; Ellers and Jervis, 2003; Gao
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et al., 2016). We had expected parasitoid body size might decline
with extended dormancy of hosts, but we found no effect of host
storage duration on parasitoid body size in this study. We hope
that these results combined with several other studies that have
shown improved performance of parasitoids on dormant hosts
(e.g., Leopold, 1998; Colinet and Boivin, 2011; Filho et al,
2014; Sanower et al., 2018) will encourage mass rearing programs
for biological control agents, like H. hebetor, to incorporate host
dormancy into their workflows.

In our study, we do not know precisely why hosts that experi-
enced dormancy allowed for greater parasitoid production, but
several broad possibilities seem likely. One possibility is that
female H. hebetor laid more eggs per host larva when the host
larva was in dormancy than were laid in non-dormant hosts.
There are many factors, from host density to parasitoid density
to host quality and more, that affect both how many larvae are
laid in each host and downstream parasitoid larval performance
(Harvey et al., 1995; Glupov and Kryukova, 2016). Another non-
mutually exclusive possibility for the improvement in parasitoid
production from dormant hosts we observed is that dormant
hosts could have increased nutritional quality, an important fea-
ture for this gregarious parasitoid species. Many insects have
been documented to increase lipid reserves prior to or during dor-
mancy (Lefevere et al, 1989; Joanisse and Storey, 1996;
Atapouret al., 2007; Rozsypalet al., 2014, Sinclair and Marshall,
2018). Exposure to lower temperatures has also been found to
increase fat body protein content while maintaining high lipid
content in other tropical insects (Chowanski et al, 2015).
Sanower et al. (2018) also found increased H. hebetor production
in dormant P. interpunctella. These authors proposed that the
extended duration of the 5th larval instar of P. interpuntella
(the stage that adult H. hebetor attack) combined with an increase
in nutritional quality made dormant larvae better hosts, although
Sanower et al. (2018) did not directly measure any facets of host
nutritional quality. The reduction in weight observed in dormant
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larvae relative to non-dormant in this study may simply be due to
dehydration that many insects undergo during dormancy
(Wharton, 1985; Danks, 2000), but some of the weight loss may
be due to depletion of host nutrient reserves (Hahn and
Denlinger, 2011; Marshall and Sinclair, 2018).

We measured total body protein content as one potential facet
of host nutritional quality through time in dormant larvae. While
there was no difference in body protein content between non-
dormant controls and P. interpuntella larvae held dormant for
15 days, longer periods of dormancy showed higher total body
protein content with the highest body protein contents occurring
after 75 and 90 days of storage. But interestingly, between 90 and
105 days of storage body protein content dropped sharply. These
data also agree with previous work on host protein content from
our group, wherein the protein content of our 15-day dormant
larvae (~18% when held at 15°C, 12:12 LD) is very similar to lar-
vae early in a previous paper with similar conditions (~21% body
protein for 15-day-old diapausing larvae held at 17°C, 12:12 LD in
Hasan et al., 2020). While we do not know what other changes in
body content or metabolism may have accompanied changes in
total body protein content that we observe in this study, we specu-
late that perhaps body protein content initially increased as dor-
mant larvae catabolized fat or other stores, but that once other
stores had reached very low levels, dormant larvae may have
begun catabolizing protein, leading to the precipitous decrease
in protein content between 90 and 105 days of dormancy.
Because P. interpuntella enters dormancy at temperatures well
above freezing, it is highly unlikely that they expend resources
on the synthesis of large quantities of cryoprotectants, such as gly-
cerol, that can consume substantial energy reserves in other
insects (Adedokun and Denlinger, 1985; Storey and Storey,
1986). Carbohydrates, such as glycogen or trehalose, could also
be the major source of energy for dormant larvae (Becker et al,,
1996; Zhou and Miesfeld, 2009). Future studies should investigate
total neutral lipid content, assumed to be indicative of stored tria-
cylglycerides, and carbohydrate substrates within dormant and
non-dormant P. interpuntella held under these or similar
conditions.

It is also possible that dormancy impacts the immune response
of P. interpunctella, making it more susceptible to parasitism.
Although dormant insects have been found to maintain an innate
immune response, lower temperatures and dormancy can impact
behavioral defenses in host—parasitoid interactions (Nakamura
et al, 2011; Le Lann et al, 2014; Ferguson et al, 2016, 2018;
Wu et al., 2016; Warsi and Mbata, 2018). It is important to
note H. hebetor larval development is significantly longer when
being reared from hosts that were previously dormant. This
may simply be due to competition among the parasitoid larvae,
because an increase in developmental time with higher density
of H. hebetor larvae developing in a single host has previously
been noted (Milonas, 2005). Aside from the slightly longer devel-
opment time, there appear to be no other changes in larval devel-
opment or adult size in H. hebetor developing from previously
dormant hosts.

In conclusion, the absence of detrimental effects of storage on
P. interpunctella combined with the increased production of
H. hebetor from stored larvae indicates that prolonged storage
of 5th instar P. interpuntella larvae for mass rearing of H. hebetor
is a viable option. Furthermore, because H. hebetor oviposit on
5th instar P. interpuntella and dormancy extends the duration
of the 5th larval instar, increasing the time that the moths are sus-
ceptible to parasitoid attack would be a clear benefit to parasitoid
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mass rearing programs (Akinkurolere et al., 2009; Warsi and
Mbata, 2018). The ability to produce and maintain a large supply
of host insects is a major barrier in parasitoid mass rearing pro-
grams (Murai and Loomans, 2001; Saleh et al., 2010; Ovruski
and Schliserman, 2012; Sanower et al, 2018). Thus, we join
other authors in advocating for using host dormancy to improve
the efficacy and cost efficiency of biological control (Mohandass
et al., 2007; Li et al., 2014; Sanower et al., 2018).
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