CORRECTION TO: ANALYTIC TAF ALGEBRAS

J. R. PETERS, Y. T. POON AND B. H. WAGNER

We would like to inform the reader of an error in [1]. First, Remark 1.10 should read as follows:

REMARK 1.10. Suppose $\mathcal{T} = \mathcal{A}(\mathcal{P})$ is a strongly maximal triangular subalgebra of \mathfrak{A} with diagonal \mathfrak{D} . For each n, let $\mathfrak{B}_n = C^*(\mathfrak{A}_n, \mathfrak{D})$. Then there exists a clopen subset \mathcal{R}_u of \mathcal{R} such that $\mathcal{A}(\mathcal{R}_u) = \mathfrak{B}_n$. Note that $\mathcal{R} = \bigcup_n \mathcal{R}_u$. Let $\mathcal{P}_n = \mathcal{P} \cap \mathcal{R}_u$ and $\mathcal{P}_n^+ = \mathcal{P}_n \setminus X$. Since \mathcal{T} is strongly maximal, we have $\mathcal{R}_u = \mathcal{P}_n^+ \cup X \cup (\mathcal{P}_n^+)^{-1}$. Now suppose that for each n, we can define a cocycle c_n on \mathcal{R}_u such that $c_n(x, y) > 0$ if $(x, y) \in \mathcal{P}_n^+$. Suppose also that for each $(x, y) \in \mathcal{R}$, there is some m such that $(x, y) \in \mathcal{R}_n$ and $c_n(x, y) = c_{n+1}(x, y)$ for all $n \ge m$. Then $d(x, y) = \lim_{n\to\infty} c_n(x, y)$ exists (as a finite number) for every $(x, y) \in \mathcal{R}$, d satisfies the cocycle condition d(x, z) = d(x, y) + d(y, z)of Definition 1.7, and $\mathcal{P} = d^{-1}[0, \infty)$ since $\mathcal{P} = \bigcup \mathcal{P}_n$. Conversely, if $\mathcal{T} = \mathcal{T}_d$ for some cocycle d, then $c_n = d|_{\mathcal{R}_u}$ is a cocycle on \mathcal{R}_u such that $c_n(x, y) > 0$ for $(x, y) \in \mathcal{P}_n^+$, and $d(x, y) = c_n(x, y)$ for all $n \ge$ some m since $\mathcal{R} = \bigcup \mathcal{R}_u$.

Note that if the c_n 's are given and d is defined by $d(x, y) = \lim_{n\to\infty} c_n(x, y)$, then d satisfies the cocycle condition, but in general d need not be continuous. This leads to a revised Theorem 2.2.

THEOREM 2.2. Let $\mathcal{T} = \mathcal{A}(\mathcal{P})$ be a strongly maximal triangular subalgebra of \mathfrak{A} . If \mathcal{T} is \mathbb{Z} -analytic, then $\lim_{n\to\infty} d_n(x,y) = \hat{d}(x,y)$ exists (as a finite number) for each $(x,y) \in \mathcal{R}$, \hat{d} satisfies the cocycle condition on \mathcal{R} , and $\mathcal{P} = \hat{d}^{-1}[0,\infty)$. Conversely, if \hat{d} is finite and continuous (i.e., locally constant), then \hat{d} is a cocycle on \mathcal{R} and \mathcal{T} is \mathbb{Z} -analytic with $\mathcal{T} = \mathcal{T}_{\hat{d}}$.

PROOF. Suppose $\mathcal{T} = \mathcal{T}_d$ for an integer-valued cocycle *d*. If $(x, y) \in \mathcal{P}_m$, then $\{d_n(x, y) : m \leq n < \infty\}$ is an increasing sequence bounded above by d(x, y), so $\hat{d}(x, y)$ exists, and it satisfies the cocycle condition on \mathcal{R} by Remark 1.10. Also, if $(x, y) \in \mathcal{R}$, then

 $d(x, y) \ge 0 \Leftrightarrow (x, y) \in \hat{v} \quad \text{for some matrix unit } v \in \mathcal{T} \cap \mathfrak{A}_n$ $\Leftrightarrow d_n(x, y) \ge 0 \quad \text{for some } n$ $\Leftrightarrow \hat{d}(x, y) \ge 0.$

Therefore, $d^{-1}[0, \infty) = \hat{d}^{-1}[0, \infty)$.

Received by the editors February 4, 1994.

AMS subject classification: 46H20, 46L05.

[©] Canadian Mathematical Society 1994.

On the other hand, suppose \hat{d} is finite and continuous. Then the sequence $\{d_n(x, y)\}$ is eventually constant since $d_n(x, y)$ is always an integer, and therefore \hat{d} is an integer-valued cocycle such that $\mathcal{T} = \mathcal{T}_{\hat{d}}$ by Remark 1.10.

EXAMPLE. There are \mathbb{Z} -analytic TAF algebras for which the function \hat{d} defined in Theorem 2.2 is not continuous. The authors would like to thank Alan Hopenwasser and Allan Donsig for introducing them to the following example.

Let $\mathfrak{A}_n = \mathbf{M}_{2^n}$ with matrix units $\{e_{ij}^{(n)}\}$, and let σ_n denote the standard embedding from \mathfrak{A}_n to \mathfrak{A}_{n+1} . For each *n*, let P_n be the $2^{n+1} \times 2^{n+1}$ permutation matrix formed by interchanging rows 2^n and $2^n + 1$ of the identity matrix, and define $j_n: \mathfrak{A}_n \hookrightarrow \mathfrak{A}_{n+1}$ by $j_n(a) = P_n \sigma_n(a) P_n$. Now let \mathcal{T}_n be the set of upper triangular matrices in \mathfrak{A}_n and let $\mathcal{T} = \lim_{n \to \infty} (\mathcal{T}_n, j_n)$. For $(x, y) \in \hat{e}_{i,i+1}^{(n)}$, define d(x, y) = 1 if $1 < i < 2^n - 1$ and d(x, y) = 2if $i = 1, 2^n - 1$. Then *d* can be extended uniquely to an integer-valued cocycle such that $\mathcal{T} = \mathcal{T}_d$. However, if $x_0 = (\hat{e}_1^{(1)}, \hat{e}_1^{(2)}, \hat{e}_1^{(3)}, \ldots)$ and y_0 is the unique element of *X* such that $(x_0, y_0) \in \hat{e}_{12}^{(2)}$, then $\hat{d}(x_0, y_0) = 1$ but $\hat{d}(x, y) = 2$ for all $(x, y) \in \hat{e}_{12}^{(2)}$ with $x \neq x_0$. Hence, \hat{d} is not continuous at (x_0, y_0) .

Because \hat{d} is not always continuous, we make the following definition.

DEFINITION. If $\mathcal{T} = \mathcal{T}_d$ is a \mathbb{Z} -analytic TAF algebra and the function \hat{d} of Theorem 2.2 is continuous, then we say that \mathcal{T} is *standard* \mathbb{Z} -*analytic* and that \hat{d} is the *generic* form of d. Note that \hat{d} is determined by the clopen subset $\hat{d}^{-1}(\{1\})$.

For the rest of Section 2, we assume that the \mathbb{Z} -cocycles are given in generic form, particularly in Definition 2.6 and Lemma 2.7. Also, in Theorem 2.8 and Corollary 2.9, \mathcal{T} is assumed to be standard \mathbb{Z} -analytic, and the algebras \mathcal{T} and \mathcal{S} in Example 2.10 and $\mathcal{T}(\phi, x_0)$ in Theorem 2.4 are standard \mathbb{Z} -analytic.

In a subsequent paper [2], it is shown that the standard \mathbb{Z} -analytic algebras are precisely the inductive limits of direct sums of upper triangular matrix algebras generated by "standard" embeddings, *i.e.*, generalizations of lim(\mathcal{T}_n, σ_n).

REFERENCES

J. R. Peters, Y. T. Poon and B. H. Wagner, *Analytic* TAF *Algebras*, Canad. J. Math. 45(1993), 1009–1031.
Y. T. Poon and B. H. Wagner, Z-analytic TAF algebras and dynamical systems, Houston J. Math. 19(1993), 181–199.

Department of Mathematics Iowa State University Ames, Iowa 50011 U.S.A.

396