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MULTIPLIERS FOR AMALGAMS AND THE 
ALGEBRA S0(G) 

MARIA L. TORRES DE SQUIRE 

1. Notation and background material. Throughout the whole paper G 
will be a locally compact abelian group with Haar measure m and dual 
group G. The difference of two sets A and B will be denoted by A ~ B, 
i.e., 

A ~ B = {JC e A\x £ B} and 

A - B = {x e y\x e A and y e B}. 

For a function f on G and s e G, the functions / ' and fs will be defined 
by 

/ ' ( * ) = / ( - * ) and/,(x) =f{x - s) (x e G). 

As usual C0(G) = C0, and CC(G) = Cc, will be the linear space of 
continuous functions on G which vanish at infinity, and have compact 
support, respectively. For E c. G compact, CE(G) = CE will denote 
the space of functions / G CC(G) whose support is included in E, i.e., 
s u p p / c E, endowed with the supremum norm; DE(G) will be the Banach 
space of functions 

where gt, hi are in CE(G) and 

II/IIE = 2 HftllJIA.-lloo < °° 

defined in [12, Section 2], and D(G) will denote the internal inductive 
limit of the spaces DE(G). That is, D(G) = UDE(G) and the 
neighborhood bases of the origin are of the form 

Ue = {/I / e D£(G), | | / | | £ < «}. 

A quasimeasure is an element of the continuous dual ô ( ^ ) °f ^ ( ^ ) - We 
will note by Lfoc ( 1 ^ / 7 ^ oo) the space of measurable functions f on G 
such that/restricted to any compact subset E of G belongs to LP(G), i.e., 

f\E G LP. The space of Radon measures on G will be denoted by V{G). 
The pairing between a Banach space B and its dual B* will be denoted by 
< , >. That is, 
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124 MARIA L. TORRES DE SQUIRE 

(h, a) = a(h) (h e B, a e B*). 
A A 

For x e G, we put 

[x, x] = x(x) (x e G), 

hence the Fourier-Stietljes (inverse Fourier-Stietljes) transform of a 
bounded measure /x on G (on G) will be a function /x (LV) on G (on G) 
defined by 

£(*) = JG [*, x]J/x(^) = JG [-x, *W(x) 

[H*) = J£ [x, x]dii(x)j. 
A 

For a bounded measure it on G (on G) we define 

Rx) = £'(•*) = k~x) 

(kx) = fr(x) = k~x)). 

The following definition of amalgam spaces and spaces of unbounded 
measures of type q is due to J. Stewart [21]. For a definition of these spaces 
on locally compact not necessarily abelian groups see [1] or [5]. 

Definition 1.1. By the Structure Theorem [15, Theorem 24.30] G is 
topologically isomorphic to R* X Gx, where a is a nonnegative integer and 
Gj is a locally compact abelian group which contains an open compact 
subgroup H. Let 

L = [0, I f X H and / = Z" X T, 

where T is a transversal of H in G1? i.e., 

Gx = U{t + H\t €= r>. 

For a e / we define L a = a + L, and therefore G is equal to the disjoint 
union of relatively compact sets La. We normalize m so that 

m(L) = m(La) = 1 for all a. 

Let 1 ^ /?, # ^ oo. The amalgam space 

(Z/\ /*)(G) = (Z/\ /*) 

is the linear space 

{/e ILI II/IU = [2 [ l i / ^ n ^ < TO} 
endowed with the norm ||-|| and the space M (G) = Mq of unbounded 
measures of type q is the linear space 
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[M G V(G) I Ml, = [ S \ix\ (La)«]Vq < 00} 

endowed with the norm ||-|| ; with the appropriate changes when/?, q are 
infinite. 

Definition 1.2. For 1 ^ p, q ^ 00 we define the amalgams: 
i) (CQ, l") = (C0, l")(G) = C0(G) n (L°°, /«)(G). 

ii) (If, c0) = (LP, c0)(G) is the space of functions in (LP, l°°) such 
that 

lim||/ | |L , (La) = 0. 

That is, given e > 0 there exists F c / (finite) such that 

\\f\\if(Lj < € for all a £ F. 

The Banach spaces (Lp, lq) and M (1 Si p, q = oo) satisfy the following 
inclusion relations and inequalities [21, p. 1284]. 

(1.1) (LP, /<") c (L*,/fc) <?, ^q2 

2) (Z/ \ /*) c (LP\ l«) px i= p2 

3) (LP, lq) a L? C\ L« p ^ q 

4) (Lp, lp) = V 

5) Mq<Z Ms q^s 

6) ll/IU2 ^ ll/IU, <72^<7, 
7) \\f\\p2q tk | | / | | m P] ^p2 

8 ) M l , ^ HMII , <7 ^ * -

Note that the usual LP spaces are particular cases of amalgams and that 
Cc and (C0, ll) are included in all amalgam spaces. 

If / G (L\ lq) (1 ^ q ^ oo) then the measure fm (where J g dfm 
= jgf dm) belongs to M and 

ll/HI, = 11/11,,. 
Hence fi-*fm is a natural (isometric) embedding from (L1, /^) into Mq. In 
this sense we say that (L\ lq) c Mq. Therefore from (1.2) and (1.5) 

(1.9) (If, lq) c (Lx, lq) c Mq c M^ for \ ^ p,q ^ oo. 

Remark 1.3. Since G = R^ X Gj and Gj contains the open compact 
subgroup 3tif which is the annhilator of H, (J? = {x e G| [x, x] = 1 for 
all JC e H} ) we can choose^7 to define 

L - [0, I f X 3tf 
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126 MARIA L. TORRES DE SQUIRE 

and for /? e /, / = 7? X T where 

Gx = U{t + ^ k e r } , Lfi = P + L. 

Then using { ^ } j we can define as in Definition 1.1 the amalgam 
spaces (LP, lq)(G) and the spaces of unbounded measures Mq(G), 
[21, Section 3]. 

A 

Hereafter a, Gx, 7/, 3% J, I, L and L will be as in Definition 1.1 and 
Remark 1.3. 

We will state now the results we will need in the next sections. 

THEOREM 1.4 [21, Theorems 3.2 and 4.3], [22, Theorems 3.1 and 3.2]. 
i) Let 1 = p, q < oo. The amalgam (LP, lq) ( (LP, / ) ) is isometrically 

isomorphic to (LP, lq)* ( (LP, c0)*) via the map g I—> (/ , g), where 

<f, g) = X /»** 
(g e (Z/ , /«') ( (If', / ' ) ), / e (Z/, /«) ( (If, c0) ) (/>' te/ng //K? «wi/Kgaft? 

Moreover 

\/f \ i < il /-n il u 0 ^ ^ inequality) 

ii) Let I = q = oo. If T ^ (C0, /^)* z7ze« //zere exists a unique /x, e M . 
swc/z that 

T(f) = fGfdp (/e(C0,/")) 
and 

\\T\\ S IWÎ  ^2-lirH ifl^q<oo 

\\T\\ = H/ill, i / 9 = oo. 

I </, g> I = I ffg\ ^ ll/ll«*llglli, if e (C0, /«), g e (L1, /*) ). 
THEOREM 1.5 [22, Theorem 3.14]. Let I ^ p, q < oo, \ ^ s ^ oo. Iff 

belongs to any of the amalgams (LP, lq), (Lp, c0), (C0, Z5), //zerc z7ze map s ^>fs 

is continuous on G. 

THEOREM 1.6 [2, Section 7, i) ], [5, Theorem 4.2], [22, Theorems 4.7 and 
4.8]. If p, q, r, s are exponents such that 

\/p + \/r - 1 = Mm ^ 1 W 

\/q + I/* - 1 = 1/n ^ 1 

z7ze« 
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a) (W, l") * (Lr, Is) c (Lm, I") 

b) (If, /<?) * (If', /"?') c C0 

c) (LP, l") * (LP', Is) c (C0, /") 

d) (LP, 11) * (Lr, 11) c (Lm, c0) 

e) (LP, c0) * (LP', / ' ) c C0 

f) (Z,', c0) * (L°°, / ' ) c (Z,00, c0) 

g) (L", /«) * Ms c (Z/>, /") 

h) (LP, 11) * Mq, c (LP, c0) 

i) (C0, /«) * Ms c (C0, /") 

j) (L°°, /«) * ^ c (L°°, c0) 

^ p ^ oo, l < q < oo 

= p, s = oo, l < q < oo 

= p, r ^ oo, l < q < oo 

<L p <L oo 

^ p, q, s ^ oo 

= p = oo, l < g < oo 

= q = oo, l ^ s < oo 

< # < oo. 

Moreover iff e (Z/, /^), g e (Z/, f ), JU <= M5, r/ze« Young's inequalities for 
amalgams are: 

| | / * g l U ^ 2 a | | / | g | g | U ifm*\ 
\\f * g\\xn ^ I 7 - \ \ f \ \ x q \ \ g \ \ x s 

l l /* / i | | p n^2»i i / igiM i i , ifP*i 
\\f*riUH^22*\\f\\lqMs. 

It follows from Theorem 1.6 that all amalgams and all M spaces 
are Mx- and Z^-modules [7, Definition I4.l] and that the spaces (If, l]) 
(l ^ p ^ oo), (C0, ll) and Mj are algebras under convolution. 

Definition 1.7. A net {^} in a commutative, normed algebra A is 
an approximate identity, abbreviated a.i., if for all a e ^4, lim aen = a 
in A. 

PROPOSITION 1.8. [22, Corollary 4.14]. Let A be any of the amalgams 
(If, lq\ (If, c0), (C0, Is) (\ ^ p, q < oo, I ^ s ^ oo). //{*>„} is an a.i. i/i 
L1, then 

Mm\\en *f - f\\A = 0 for all f e A. 

2. The algebra S0(G). The algebra S0(G) was originally defined by 
H. G. Feichtinger [10] and studied independently by J. P. Bertrandias [3]. 
We will denote by A(G) the Fourier algebra of functions/in C0(G) such 
t h a t / = / with / G Ll(G), norm given by 

\\/\\A = ll/lli, 
and pointwise multiplication. The space ^4C(G) will be the intersection of 
A(G) and CC(G), and for a compact subset £ of G, we define 

^ « 7 ) = { / e ^ ( G ) | s u p p / c E). 

The definition of S0(G) is based on a bounded uniform partition of 
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unity in A (G). We will give an explicit construction of such a partition for 
the sake of completeness. 

Definition 2.1. Consider the following function/:R —» R given by 

fo ifW ^ l 
JKX) ~ \ \ - \x\ if W ^ 1. 

Since 

f(x) = 2/\/2TT(\ — cos x/x ) and s u p p / = [— 1, 1], 

we conclude t h a t / e AC(K). For n e Z we define/„ to be the function 
fn(x) = f(x — n) on R. It is clear that 

/„ G >4C(R) and supp/„ = n 4- s u p p / = [H - 1 , w + 1]. 

Moreover for each i G R, 

2/„(x) = i. 

For s = (x, t) = (JCJ, . . . , xa, t) in G = F? X G, we define the function 
^ : G - ^ R b y 

# * , /) = / ( J C 1 ) . . . / ( X J - X / / ( 0 , 

s ince /and X// belong to 4̂C ( i / is compact and xH = XJF) w e n a v e t n a t 

^ G ,4r(G) and supp ^ = [ - 1 , I f X H. 

Then for a = (wj, . . . , Ma, t) in J the function 

• X, + H 

has the following properties: 

P.l) * a e ^C(G) 

P. 2) supp \pa = a + supp ip 

P.3) 2 W J ) = 1 for all s e G 

P.4) supl^JU ^ IÎ IU. 

Therefore {^a}j is a bounded uniform partition of unity in A(G) [11, 
Definition 2]. 

Definition 2.2. Let {^a}y be the family defined above. Then S0(G) = S0 

is the linear space of continuous functions/in A(G) such that 

ll/llSo = 2 \\/UA < ^ 
endowed with the norm \\-\\s . 

It follows from [11, Theorem 2] that Definition 2.2 is equivalent to 
Feichtinger's original definition of S0 in [10], [11] and that it is 
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independent of the partition of unity chosen. The following are some of 
the properties of S0(G). For a proof see [11] and [19]. 

P.5) SQ(G) is a Segal algebra. Hence it is an l)-module and has an a.i. 
{en} such that ||ej|] = 1 for all n [20, Section 8, Proposition 1 ii) ]. 

P.6) AC(G) is dense in S0(G). 
P.7) M œ c S0(G)* c Q(G). A 

P.8) S0(G) c {/ G (C0, l')(G) | / e (C0, /^(G) }. 
P.9) S0(GT = S0(G). 

Definition 2.3. [10, Theorem B2]. The Fourier transform a of 
a e S0(G)* is an element of S0(G)* given by 

<A, ô> = (h', a) = <£, a> (A e S0(G) ). 
V A 

Similarly the inverse Fourier transform o o f o G SO(G)* is an element of 
S0(G)* given by 

</*, a) = <£',a> = (ko) (h e S0(G) ). 

It is clear from P.9) that o and a are well defined and by P.7) and (1.9) 
Definition 2.3 provides a definition for a Fourier transform on all 
amalgam spaces and all spaces of unbounded measures of type q. 

Remark 2.4. i) By P.8) any h in S0(G) is equal to the inverse of its 
Fourier transform, i.e., h = (hf. Hence for any \pa (as in Definition 2.1) 

\Ha\\A = \\h * ill, 
and, 

Wah c (Q> I') by [2, Section 7 h) ]. 

ii) If a e S0(G)*, then a = (a)v by i). 
hi) From Definition 2.3 it follows immediately that if a, i) e S0(G)* and 

o = rj, then a = 17. 

PROPOSITION 2.5. Let A be as in Proposition 1.8. Then S0(G) is dense 
in A. 

Proof. It is enough to prove that D(G) is dense in (Cc, \\'\\A) because 
AC(G) is dense in S0(G), ^4C(G) and D(G) are homeomorphically 
isomorphic as spaces of functions on G [6, Theorem 3.1] and CC(G) is 
dense in 4̂ [2, Section 7, e) ]. 

Let <f> e CC(G) with supp <f> = E, and let {en} be an a.i. in Ll(G) such 
that {en } c Ck(G) for some fixed ^ c G. Hence {<j> * en } c D(G) and, by 
Proposition 1.8, 

limite * en - 4>\\A = °-
Proposition 2.5 together with Theorem 1.4 gives a necessary and 

sufficient condition for an element of 50(G)* to be in an amalgam or Mq 

space. 
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PROPOSITION 2.6. Let o e S0(G)*. Then o belongs to (LP, lq) (1 < p ^ oo, 
1 ^ q ^ oo) (M5, 1 ^ 5 = oo) if and only if there exists a constant C such 
that for all h e S0(G) 

(2.1) | (h, a) | ^ C P H ^ ( | <A, a> | g CHAH^,)-

Moreover, if (2A) holds then 

\\a\\pq S C ( ||a||, ^ 2»C). 

Remark 2.7. From Proposition 2.6 we easily recover what is already 
known about the Fourier transform of functions in (LP, lq) (1 = p, q = 2) 
and measures in Ms (1 ^ 5* ̂  2), namely, the Hausdorff-Young theorem 
for amalgams ( [1, Theorem II], [16, Theorem 8], [21, Theorem 4.2] ). That 
is, 

{ip, iqy c ( z / , ip), M ; C ( / / , /°°) 

and there exists a constant C depending on G, p and q such that 

(2.2) \\f\\qy^ C\\f\\pq (\^p,q^2) 

(2.3) HAIU ^ C||ju||s ( 1 ^ ^ 2). 

Now, since (If, lq) c (L2, Z9) for 1 S # g 2 < p â oo, we have 
that (If, lqT c (Lq', /2). So, by (2.2) and (1.7), f o r / <= (If, lq) and 
1 ^ ^ 2 < ^ c o , 

(2.4) \\f\\q,2fkC\\f\\pq. 

By property P.5) we can define o * / f o r o e S0(G)* a n d / e LX(G) to be 
an element of S0(G)* given by 

(2.5) (h, o*f) = (h*f,o) (h e S0(G) ). 
1 A V 

Moreover, if g e L (G) and h e S0(G), then % belongs to ^ ( G ) because 
for any \pa (as in Definition 2.1) 

tthbPah = l l^*g*^l l , ^ Hgll.lltyX-
So we have that 

\\hg\\So ^ \\g\U\\h\\s0 

and we can define og for o e ^ (G)* , g e LX(G) to be an element of 
S0(G)* given by 

(2.6) (h, og) = (hg, o) (h e S0(G) ). 

PROPOSITION 2.8. Let o e S0(G)*, / e L](G), g €= LX(G). Then 

i) (a * fT = of 

ii) (ag)A = o * g. 
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Proof. Let h e S0(G). By (2.6) and Definition 2.3 we have that 

(h, ô /> = (hf, a) = < (h/y, a) = ( (h * / ) ' , a) = <A' * / , a> 

= (h',a*f) = (h,(o*fT). 

Therefore i) holds. Now, by Remark 2.4 and part i), 

(o * g ) v = ag, 

so 

0 * g = (og)A. 

3. The main theorem. 

Definition 3.1. Let ̂  b e a Banach algebra and 5 be a Banach A -module 
[7]. A continuous linear operator T:A —> B is a c-multiplier from v4 to 5 if 7" 
commutes with convolution. That is, for al l / , g in ^4, 

Tf*g= T(f*g). 

The space of omultipliers from A to B will be denoted by c-M(A, B). 

THEOREM 3.2. Let 1 ^ p, q fk oo. If B is any of the spaces (IP, lq), 
(C0, lq), (If, c0), Mq, S is any of the algebras (If, l \ (C0, ll), and T:S -» B 
is a linear operator, then the following are equivalent: 

i) T G c-M(S, B). 
ii) There exists a unique o e S0(G)* such that (Tf)A = of for all f e S. 

iii) There exists a unique ji e ,S0(G)* swc/z //za/ Tf = [i * f for allf e S. 

Proof. First observe that S c L1 (see (1.3)) and B is an Z^-module, 
hence an S-module. By Proposition 2.8 it is clear that ii) is equivalent to 
iii) with a = jx. We will show that i) is equivalent to ii). 

Suppose i). If B is any of the spaces (If, lq), (LP, c0) (1 = p, q < oo) 
or (C0, Is) (1 ^ s ^ oo), then B* is either an amalgam space or Ms,. If 5 
is any of the spaces (L°°, lq) (1 ^ 4 ^ 00), (2/, /°°) (1 < p ^ 00), or 
M5(l ^ ^ ^ 00), then B is the dual of an amalgam space C. Hence by the 
Holder inequality for amalgams (Theorem 1.4) 

1 (f, g> I =i | | / y | g | | B . ( / e B, g e B*), and 

I </, g> I ë ll/Wlglla ( / e C, g e B). 

If 5 is either (L°°, c0) or (L1, /°°), then 5 can be considered as a subspace 
of M ^ (see (1.9) ), so again by Theorem 1.4 and (1.7) 

| (f, g> | â H / I U I g l l ^ (f e (C0, / ' ) , g e (L1, /°°) ) 

| < / g> | â H/H^.llglL ( / e (C0, / ' ) , g G (L°° c0) ). 

In either case we conclude by (1.6) and (1.7) that 

(3.1) | ( / , g> | â | | / I U I g | | B (g e 5 , / e (C0, / ' ) ). 
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(Remember that (C0, / ) is included in all amalgam spaces.) For / , g e S, 
we have that 

Tf* g = T(f* g) = Tg * / . 

So 

(TfTg = (TgTf 

by Proposition 2.8 and this implies by (2.6) that for all / , g e S and 
h G S0(G), 

(3.2) (hAg, (TfT) = (h, {Tf)% = (K (TgTf) = (hf, (TgT). 

Let {t/^}/ c AC(G) be as in Definition 2.1 and W = supp ^. To each 
a e / we associate a function Xa in (C0, / ){G) as follows. Take \ w in 
(C0, /^(G) such that 

A A A 

A^ = 1 on W and A^ e CC.(G) 

[21, Theorem 3.1]. Then Xa = [•, «JA^. It is clear that each Xa has the 
following properties: 

1) \a e ( Q ^ ' X G ) 

2) Aa(x) = A ^ x — a), hence Aa = 1 on supp t//a. 

3) %a e CC(G), hence Aa = (Xa)
v 

4) IIAJL, = IIAJL,. 
A 

We define a on S0(G) by 

<A, o) = 2 <tya, (rAa)
A> (A e S0(G)). 

First of all, if h <= S0(G) then /n//„ e ^4C(G) because 

hl>a e CC(G), W a ) v = A * ^ a and A * * a G (C0, / ')(G) 

(Theorem 1.6). Also 

by P.2) and this implies that 

II (Wl loo i = \\h * k * XJIooi ^ IIXJIooillA * "Llli 

= IIMooilWdU-
Therefore by (3.1) and (1.7) 

I <**„, (T\aT) i = i < w x ( rx j > | ^ nrxjyi W I L , 
^ \\T\\ llxjyiAJIooill^JL 
^ uni l lx jù l^JU. 

Hence a is well-defined and for all h e S^G) 
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| (h, a) | â ||ni \\\w\L\\\h\\s0-
If i-w is another function in (C0, / ')(G) with the same properties as \ w and 
£« = [s «]Cpy, then by (3.2) we have that for all h G S0(G) 

<hi>a, (T\ary = <^J«, (rA„r> 

Hence a is independent of the choice of the function \w. 
Now, if h e v4£(G), then 

{A*a}7 c AC(G), h^a = 0 

for all but finitely many a's and h = 2 /n/v pointwise by P.3). Then, for 

<A, ( W = 2 <Wa, (7/y>; 
this together with (3.2) and (2.6) implies that f o r / G S and & G ylc.(G) 

<A, a / > = </>/, a) = 2 </r* a / , (7-Aar> = 2 < A * X ( W 

= 2 <tya, (3/)A> = <A, (r/)A>. 
Since AC(G) is dense in S0(G) we conclude that (7/)A = of for a l l / G S. 

On the other hand, if h G yl£(G) and X£ is a function in (C0, / ' ) (G) 
such that AE = 1 on is then we have that 

(3.3) </*, a> = (hiE, a> = <A, aÂ£> = </*, ( r \ £ ) A >. 
A 

Finally if a' is another element of S0{G)* such that 

(TfT = °'f for a l l / e 5, 

then by (3.3) for all h e ^ ( G ) 
<A, a> = (h, (TXET) = (h, o'\E) = (h\E, a'> = (K a'>. 

Again by P.6), a = a' and therefore i) implies ii). 
Conversely if ii) holds, then by Proposition 2.8, for/ , g e S, we have 

that 

( H / * g) )A = a ( / * g f = (pf)è = (TfT g = ( 7 / * gf . 

Therefore T commutes with convolution by Remark 2.4. Finally an 
application of the Closed Graph theorem implies that T is continuous and 
the proof is complete. 

COROLLARY 3.3. Let S be as in Theorem 3.2 and B be any of the spaces 
(If, 1% (C0, 1% Mq (1 ^ p ^ oo, 1 ^ q ^ 2). / / T:S -» B is a linear 
operator, then the following are equivalent: 

i) T e c-M(S, 5 ) . 
ii) 77zere ejcwte « unique <p e (L9, l°°)(G) such that 

(TfT = «P / /or allf G 5. 
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Proof. Let y e G and \py be a function in S such that \j/v(y) = 1. De-
fine 

<p(y) = my)\y) (y e G). 

If r e c-M(S, B) then <p is independent of the choice of v/y Indeed if £v is 
another function such that £y(y) = 1 then 

(TtyT(y) = (T4>vy(y)ly(y) = ( 7 ^ * iy)\y) 

= (7Î, * ty)Xy) = (nyy(yHv(y) = (7pA(j>). 

Also f o r / e S and y e G 

«p/(j) = Wy)Xy)f(y) = (TfT(yWy(y) = {Tf)\y). 
A 

Let a be the element in S0(G)* associated to T by Theorem 3.2. Then 
by (3.3) for h e y*£(G) 

<A, a) = <A, (T\ET) = ^ M j ) ( r A £ ) A ( ^ ) ^ 

JEh(y)<p(y)\E(y)dy = J M J M ) ' ) ^ . 

Therefore 

(A, a) = JA A(^M^)rfv for all h e ^ . (G). 

Now t a k e / G CC.(G) such t h a t / = 1 on L a n d / €= 5" [21, Theorem 
3.1]. Then for /? G / , the function/^ belongs to Q(G), fp = 1 on L^, 

jp = [*, /? ] / belongs to S, and 

(see Remark 1.3). By the definition of the norm |HLr> 1 = r ^ oo, it is 
clear that 

ikx^ii,- ^ ii</Av (1 = r =°°>-
So by (2.2), (2.3) and (2.4) of Remark 2.7 we have that 

ii<pX^sicimiii/iis. 
To see this note that 

IIW/jll,, = ll«P fflrfr = II (Tf0)%r (1 ^ r =i OO). 

Since this holds for all /? e / , we conclude that 

cp G ( z / , /°°)(G). 

Hence i) implies ii). 
Conversely if ii) holds, then we define o on AC(G) by 
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(h,a) = j ô h(y)<f(y)dy (h e AC(G)). 

Then as above 

(h, a) = (h, (TXET) for h e .4£(G). 
A A 

Since AC(G) is dense in S0(G) this implies that a is the element in 
S0(G)* given by Theorem 3.2 (see the proof of Theorem 3.2) and therefore 
ii) implies i). 

Let B be a linear space of functions on G. If fs G 5 for all / G 5 and 
for all s G G then B is said to be translation invariant. If 2? is translation 
invariant the linear operator/—>fs (s G G) is called a translation operator. 
It is easy to see that all amalgams and all M spaces are translation 
invariant. 

Definition 3.4. Let A, B be two translation invariant spaces. A multiplier 
from A to i? is a bounded linear operator T.A —> 5 such that T commutes 
with translations. That is, Tfs = (Tf)s for all s G G a n d / G A The space 
of multipliers from A to B will be denoted by M (A, B). 

Let (L°°, Z1)* be the amalgam (L°°, Z1) endowed with the weak*-
topology induced by (L1, c0) (see Theorem 1.4). Hence 

(L°°, /'r* = (L\ c0) 

via the formula 

</, S> = j f(~t)g(t)dt ( / G (L°°, Z1), g G (L1, c0) ) 

[17, 5.17.6]. The space Aff is defined similarly and therefore 
Aff* = C0. 

A relation between multipliers and omultipliers is given in the next 
result. 

PROPOSITION 3.5. Let S be any algebra (Lp, Z1) (1 ^ p < oo), (C0, Z1), 
(L°°, Z ]f or Aff, awrf £ to? as /w Theorem 3.2. 77ie« 

Af(S, 5 ) c c-M(S, 5 ) . 

Proof. An easy calculation shows that f o r / g G S and \p G £*, 

(3.4) < / * g, *> = / g ( . )< / , *>& ( = / ( / , Wg(s) if S = MT). 

If 5 is any of the spaces {If, lq), (LP, c0) (1 ^ p, q < oo), (C0, Zs) 
( 1 ^ ^ oo), then 5* is an amalgam space or Ms,. So for h G 5", k G B, 
and F G 5* 

(3.5) (k*h,F) = J h(s)(ks,F)ds( = J (ks,F)dh(s) if S = A ^ j . 
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If B is any of the spaces (If, /°°) (1 < /> ë oo), (L°°, ls)oiMs(l S 5 ^ 00), 
then 5 = C* for some amalgam space C. Then (3.5) holds with h G S, 
A: G 5 and F G C. If fi = (Lx, l°°) then (3.5) holds with h e 5, k G fi 
and F G C, C = (C0, / ' ) (think of (L1, /°°) as a subspace of MTO). Hence 
for F G 5* (F G C) the map 

(3.6) ( / , AF> = <7T, F) (f e 5 ) 

belongs to S*. So, (3.4), (3.5) and (3.6) imply that for/ , g G S, F G fi* 
(F G C) 

<7/-*g,F> 

= / g(*)< (F/),, F>& ( = / ( (Tf)s, F)dg(s) ifS = M,H ) 

= / g(s)(Tfs, F)ds ( = / (Tfs, F)dg(s)) 

= / g(s)(fs, AF)ds ( = / (fs, AF)dg(s)) 

= < /*g , AF> = (T(f*g),F). 

Therefore 7" commutes with convolution. 

THEOREM 3.6. Z^/ A be any of the spaces (LP, lq), (C0, lq) (1 ^ /? < oo, 
1 ^ <? ë 2) awd to 5 be any of the spaces (Lr, Is), (C0, / J) (1 ^ r < oo, 
1 ^ s = 2). If T:A —> B is a linear operator, then i) implies ii). 

i) T <= M(^l, 5 ) . 
ii) TTzere ex/sta « unique <p e (Z/, l°°)(G) such that 

(TfT = <pf forallfeA. 

Proof. We will prove the theorem for 

A = (If, lq) and B = (If,.Is) (\ ^ r, s ^ 2). 

The remaining cases are similar. 
Suppose T <= M(A, B). Then T\ (If, lv) belongs to c-M( (IP, l]), B) by 

Proposition 3.5. So by Corollary 3.3 there exists a unique <p in 
(Z/, /°°)(G) such that 

(TfT = <pf for a l l / G (J / , Z1). 

Now by (2.2) f o r / G (Z/, Z1) we have that 

Ik/lLv - IKmiLv ^ air/iu ^ c||r|| ||/||^. 
Therefore the map / —» <JP/ is continuous on ( (Z/, lq), IHLJI). Since 
(If, l]) is dense in (Z/7, /*) ( [2, Section 7 e) ] and (1.1) ) this map has a 
unique continuous extension on (If, lq) and this implies that 
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norm IHI; , such that 

(4.1) i i / * ^ ^imi.iy;, 
and 

ii-iU 

VII •H;, ̂  n\q 

(TfT = vf for a l l / e (If,l«). 

4. Equivalent norms. We need to introduce now, several equivalent 
norms in order to characterize the space of o multiplier s from L1 to 
amalgams and Mq spaces. 

Since (LP, lq) (1 ^ p, q ^ oo) is an Lx-module there exists an equivalent 

( / e l ^ / i e (Z/ \ /*)) . 

[7, (4.14)]. The amalgam (LP, lq) endowed with the norm \\-\\' will be 
denoted by (LP, lq)'. 

Let {ea} be an a.i. in L such that 

IkJI, = 1 for all a. 

For \x e (Z/*, /^) (1 ^ p, q ^ oo) we define 

(4.2) Hl/illl = sup ll/x * e j | ; 
a 

It is clear from (4.1) that \\\-\\\pg is well defined and that 

lll-HU ^ IMI;,. 

Now by Theorem 1.4 if ju e (Z/\ lq) (1 < /> ^ oo, 1 g ^ ^ oo) then 

M I M = sup{ | <<*>, M> I; * e (If', /«'), U\\p,q, ^ 1} 

if q ih 1, and 

Ml , , = sup{ I <</,, |i> I; * e ( / / , c0), ||«i>ll/oo ë 1}. 

Let </> e ( / / , /*') ( ( / / , c0) if q = 1) such that 

By Proposition 1.8 and Theorem 1.4 we have that 

| (<j>, /i> | = lim| <<J) * ea, /x) | = lim | <<>, /x * ea> | 

^ II^H^ lim \\n * e j | ^ 

Therefore 

urupq — u\rw\pq 

and this means that |||-||| is an equivalent norm in (Lp, lq) (1 < p = oo, 
1 ^ # ^ oo). We will denote by (LP, lq)~ the amalgam (Lf, lq) endowed 
with the norm \\\'\\\pq. 
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Finally we introduce in the next theorem an equivalent norm originally 
defined in [2, Proposition VIII] (see also [18] ). For a complete proof see 
[22, Theorem 1.21]. 

THEOREM 4.1. i) Let 1 ^ p, q ^ oo. A function f belongs to (IP, lq) 
( (IP, c0) ) if and only if the function f# on G defined by 

f#(<) = I I / W D 
belongs to Lq(C0). Lf 

then 

,pq = H / % 

2-11/H,, =i Il/H* Si 211, „„. 
ii) Le/ 1 = q = oo. A measure JU, belongs to M if and only if the function 

/x defined by 

ix#(t) = |/i| (f 4- L) 

fefo/ig* to Lq. / /H/ i l f = | | M % fA** 

2 - > | | f l ^ ll/xll* ^ 2 > | | , . 

The amalgam (LP, lq) endowed with the norm ||-|| w/7/ be denoted by 
(Lf, lq)#. Similarly for M*. 

The next result is a direct consequence of the definition of | | | | . 

PROPOSITION 4.2. [22, Corollary 4.6]. Iff e LX(G) and /A G Àf^G) 
(1 ^ g ^i oo), //jew 

/ * M e (L1, /«) a«J ||/* M||* S H/IIJlMllf -

5. omultipliers from L1 to amalgams and M spaces. Because of 
Theorem 3.2 in each one of the following theorems it will be enough to 
show that the "/A" given by Theorem 5.1 belongs to the corresponding 
space, and establish the isometric isomorphism. 

In this section {en} will be an a.i. in S0(G) (hence in L](G) ) such that 
lk j | , = 1 for al l*. 

THEOREM 5.1. Let I < p, q < oo, 1 ^ s ^ oo and let B be any of the 

spaces (Lp, lq), (Lp, l°°), (L°°, Is). If T:Ll -> B is a linear operator, then 
the following are equivalent: 

i) T e c-M(Lx, B). 
ii) There exists a unique JU, e B such that Tf ' = /x * f for all f e L . 

iii) There exists a unique o e S0(G)* (o = ft) such that 

(Tff = of for all/ e L1. 

https://doi.org/10.4153/CJM-1987-007-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-007-7


MULTIPLIERS FOR AMALGAMS 139 

The correspondence between T and JU establishes an isometric isomorphism 
from c-M(L], (Lp, lq)') onto (Lp, lq)'; c-M(Lx, (If, /°°)') onto 
(If, r)~; c-M(L\ (L°°, IS)') onto (L°°, ls)~. 

Proof. We will prove the first part of the theorem for B = (If, lq), 
e rema 

in S0(G) 

the remaining cases are proved similarly (remember that (L , c0)* = 
(L°°, / ' ) ). Let ju be the element in 50(G)* given by Theorem 3.2, then for h 

| (h, ti) | = lim| (h * e„, M> I 

= lim| (h, p*e„)\= lim| (h, Te„) 

fk \\h\\p,q, MM\Ten\\pq ^ \\T\\ \\h\\p,ql. 

Hence /A e (LP, lq) by Proposition 2.6, and if 

T e= c-M(L\ (LP, lqY), 

then 

\\T\\ ^ ||M||;, 

by (4.1). 
On the other hand, by Proposition 1.8, 

limllja * en - n\\pq = 0. 

So given £ > 0 there exists N such that 

IIM * eN - ii\\'pq < €. 

So 

\\TeN\\'pq = ||p * eN\\'pq > \Wpq - e 

and this implies that 

IWI;, ^ urn. 
If T G c-M(L\ (If, l°°Y) then 

llpco ^ sup\\Ten\\'poo ^ \\T\\ supllejl, = | |r | | . 

Now, f o r / e L1 

\\Tf\\pCO = limWTf* en\\'poo = l i m | | / . ju * en\\'p!X1 

â H/11, limll/x * ej i ;^ 

= ll/llillMIUo-
Hence 

\\T\\ ^ IIHIU-
The proof for B = (L°°, Is) is similar to the previous case. 
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THEOREM 5.2. Let 1 ë q ë oo and let B either (L1, Z*7) or M If 
T:L] -* 5 w « linear operator then the following are equivalent: 

i) T G c-AfCL1, 5 ) . 
ii) There exists a unique fi e M swc/z //to Tf = fi * f for all f ^ L . 

iii) There exists a unique o e *S(G)*(a = jd) swc/z //*6tf 

(TfT = °f forallfeL1. 

The correspondence between T and fi establishes an isometric isomorphism 
from c-M(L, M*) onto M* and 

c-M(L\ (L\ lq)#) = c-M(L\ M*\ 

Proof. The first part is the same as the first part of Theorem 5.1. 
For B = M^ the second part is [9, Theorem 1.3]. It should be 

mentioned here that the definition of a multiplier used throughout 
[9] corresponds to what we call a omultiplier and not the one given 
in [9, p. 342]. 

If> <= Mq(\ g q S oo) and Tf = /* * / f o r a l l / e L1, then 

\\T\\ ^ H/xllf 

by Proposition 4.2. Since fi e Lq and # is finite, given e > 0 there exists a 
neighborhood U of 0 such that 

\\h * fi# - V*\\q < £ 

for all h e L1, ||Zi||, = 1, Zi ^ 0 and 

[15, Theorem 20.15]. Clearly the function 

/ = \/m(U)-Xu 

satisfies all the above conditions and an easy calculation shows that 

( / * M ) # = / * J " # -

So we have that 

\\Tf\\* = l l / * / < = II </*M)*II, = \\f*v#\\q >\H* - € . 
Therefore 

\\T\\ ̂  UHlf. 
Finally, 

Ll * Mq a (L\ lq) (1 ^ q ^ oo) 

by Theorem 1.6, hence 

c-MCL1, M ) c c-M(L\ (L\ lq)\ 
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this together with (1.9) implies the rest of the theorem. 

Remark 5.3. Theorem 5.2 for B = (L1, lq) is already known [18, 
Corollary 6.3] and it can also be deduced from [9, Theorem 1.5]. 

The next theorem was proved for q = 1 by Burnham and Goldberg 
[4, Theorem 4.6] using a different method. Its proof is the same as that of 
Theorem 5.1. 

THEOREM 5.4. Let 1 ^ q < oo. If 

T:Ll -> (C0, lq) 

is a linear operator, then the following are equivalent: 
i ) T e c-M(L],(C0,l

q)). 
ii) There exists a unique /x Œ (L°°, lq) such that 

Tf=»*f for all fe l). 

iii) There exists a unique o e S(G)* (o = (i) such that 

(TfT = of for all/ e L1. 

The correspondence between T and /i establishes an isometric isomorphism 
from c-M(V, (C0, /*)') onto (C0, lq)~. 

To characterize the space c-M(L , (LP, c0) ) (1 ^ p < oo) we use 
Feichtinger's results in [9]. First we see that (If\ c0) (1 ^ p < oo) is a 
homogeneous Banach space (as in [9, p. 342] ). 

1) Since (LP, c0) c (L1, c0) we have that 

(LP, c0) c L,'oc. 

2) (Z/7, c0) is translation invariant and by Theorem 1.5 the map s M » / is 
continuous on G for a l l / e (Z/7, c0). 

3) For s e G a n d / e (Z/7, c0) we have that 

H / J I * = H ( / , ) # H o o - l l ( / # ) - J l o o = l l / # l l o o = l l / l l / o c , 

4) Convergence in (LP, c0) implies convergence in measure. Indeed, let 
/ , {/„}, be in (LP, c0) such that 

l i m | | / „ - / | | p o o = 0. 

Since (fn — / ) belongs to C0, given c > 0 there exists a compact set 
E c G such that 

H/* - / H L > ( * + L) < * for all x € £. 

Let 

£„(€) = W l / „ ( i ) = / ( x ) | â € } 

and suppose that 

(G ~ E) n (£„(€) - L) # 0. 
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So for x in this intersection 

x + L c En(e), 

hence 

* > a -/)*(*) = ( l + i i/„(o -m\p)Up 

^ ew(x + L)1/<p = e. 

This contradiction implies that En(e) c E + L and therefore the 
cardinality of the set 

F = {a\E„(e) n La ¥= 6} 

is finite [22, p. 35]. So 

H/„ - / I U ^ ll/„ -/Hi.'^nE.W) = <™(L« n ^(O)'"-
Then, 

0 = \im\\fn -f\\poo ê € lim m(La n ^ ( c ) ) 1 " 

for all a ^ J. Since 

we conclude that 

m(En(e)) = 0. 

Moreover (LP, c0) (1 ^ /? < oo) is an essential C0(G)-module [2, 
Section 7, e) ] and [9, Lemma 2.6]. This implies the following theorem 
where, in the notation of [9], 

(Z/7, c0)ï = {/x e K(G) | {en * JU} is bounded in (If, c0) } 

endowed with the norm 

|||/i||I = sup||e„ * MII/OO, 

{e,7} being an a.i. in L1. 

THEOREM 5.5. L^/ 1 ^ p < oo. If 

T:LX -»• (L", c0) 

w # linear operator, then the following are equivalent: 

O r e C-MCL'.CL'.CO)). 

ii) There exists a unique n e (Z/\ c0) SMC/I ?/ia? 

Tf=n*f for all / e L1. 
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iii) There exists a unique o e S0G)* (o = ju,) such that 

(TfT = of forallfel). 

The correspondence between T and fi establishes an isometric isomorphism 
from c-M(U, (LP, c0)#) onto (LP, c0)^. 

We should note that 

(If, c0)4~ c (If, l°°) 

since 

(is, co) c (v, n, 
and by Theorem 5.1 this inclusion is proper because clearly constant 
functions belong to (LP, Z°°) but they do not determine omultipliers from 
L1 to (LP, c0). 

For fi G (LP, Z°°) we write jit0 to be the function on G defined by 

If {en} is the a.i. in L (G) formed by suitable multipliers of characteristic 
functions of compact neighborhoods of the identity, then the space (LP, c0) 
is equal to 

{M <= (If, Ie0) |ju° G (LP, Co) } = { ( .£ (If, I00) lM * Xu G (L", c0) 

for all (arbitrarily small) compact sets (7 c G}. 

6. Multipliers from amalgams and M spaces to L°° and C0. We will start 
this section with the characterization of the space of omultipliers from the 
algebras (Lp, Z1) (1 < p ^ oo), (C0, Z1) to L°°. 

THEOREM 6.1. L ^ S Z>e any of the algebras (LP, Z1) (1 < /? ^ /A), (C0, ll) 
and T:S —> L°° Z>e « linear operator. The following are equivalent: 

i) T e c-MCS, L°°). 
ii) TTzere ex/'sta a unique p ^ S* (if S = (LP, I ), 1 < p < oo), ju e M œ 

(otherwise) such that 

Tf=tL*f for all / e 5. 

iii) There exists a unique o e SQ(G)* (O = jl) such that 

(TfT = o / /or a/// G 5. 

The correspondence between T and JU establishes a continuous isomorphism 
from c-M(S, L°°) onto L°°. The isomorphism is an isometry if 

S = (Lp, Z1) (1 < p < oo). 

Proof. Let {en} be as in Section 5 and let ju, be the element in S0(G)* 
given by Theorem 3.2. As in the proof of Theorem 5.1, for h e S0(G) 
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I (h, ju> | = lim| (e„, li*h)\ = lim| (e„, Th) | = lim|77r * e„(0) \ 

â lim||7% * e J L =i HTTilU limlkjl, Si | | r | | ||//||5. 

We conclude that /i. e S1* if 

S = (If, / ' ) (1 < /> < oo) 

and n G M œ if S is either (C0, / ' ) or (L°°, / ' ) ; and 

Ml,*» ^ ll^ll 
by Proposition 2.6. The conclusion of the theorem follows from the Holder 
inequality (Theorem 1.4). 

The next theorem is an extension of Edwards' result for If spaces 
[8, Theorem 3]. 

THEOREM 6.2. Let B be any of the spaces (LP, lq), (C0, lq), (Lp, c0) 
(1 ^ p, q < oo). If T.B —» L°° z's « linear operator, then the following are 
equivalent: 

i) T e M(£, L°°). 
ii) There exists a unique ji G B* such that 

Tf = n *f for all f G B. 

The correspondence between T and \x establishes a continuous isomorphism 
from M(B • L°°) onto B*. The isomorphism is an isometry if 

B = (LP, lq) or (LP, cQ). 

Proof We will prove the theorem for B = (LP, lq). The remaining cases 
are similar (again remember that (Lx, c0)* = (L°°, ll) and note that (C0, Z1) 
is dense in (C0, lq) and (LP, c0) ). 

If 

T e M( (Z/\ /*), L°°), 

then r | (I/7, Z1) belongs to c-M((Lp, if, L°°) by Proposition 3.5. So by 
Theorem 6.1 there exists a unique ji G (Z/7, /°°) such that 

Tf=fi*f for a l l / G (Z/\ Z1). 

Since the map/—> ju * / f r o m ( (Z/, Z1), ||-|| ) into L°° is continuous and 
(LP, Z1) is dense in (If, lq) ([2, Section 7, e) ] and (1.1)) we conclude 
that 

Tf=ii*f for a l l / G (If, lq). 

Similarly to the proof of Theorem 6.1, for h G SQ(G) we have that 

i (h, ix) i ^ uni \\h\\pq. 

Again 
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H e (If', l<) and U\pq ^ \\T\\ 

by Proposition 2.6. The rest of the proof follows from Theorem 1.4. 

Definition 6.4. For 1 < p < oo, let (LP, Z°°)~ be the space 

{M e (// ' , /~) I {/. * en) c Q } 

where {en} is an a.i. in (Lp, Z1) ( (Z/\ Z1)* (1 < p < oo) is a Segal algebra 
[22, Theorem 4.16]). 

THEOREM 6.5. Le/ 1 < p < oo. If 

T:(If, / ' ) - C0 

is a linear operator, then the following are equivalent: 
i ) r G c . M ( ( L M ' ) , C 0 ) . 

ii) There exists a unique /A G (LP, /°°)j swc/z //*#/ 

Tf=ix*f for all/e (Z/\ 71). 

77ze correspondence between T and \x establishes a continuous isomorphism 
from c-M( (U, Z1), C0) o>zto ( (Z/, Z00)^ \\-\\pool 

Proof By Theorem 6.1 if i) holds then there exists a unique JU, e (Z/7, /°°) 
such that 

Tf=ti*f for a l l / e (Z/\ / ' ) . 

In particular 

{Ten = /x * e j c C0, 

hence 

i, G (z/, o r . 
On the other hand if 

M G ( / / , /°°)~ and / e ( Z / , / ' ) 

then 

{/X* £>„ * / } C Q 

because 

C0 * (L>, / ' ) c C0 

(Theorem 1.6, i), see also (1.9) ) and 

ll/l * * „ • / - M * / l l o o ^ llMllp'oolk» * / - / H p . -

Since {en} is an a.i. in (LP, ll) we conclude that /x * / e C0. Therefore /x 
determines a omultiplier from (Z/\ Z1) to C0. By the Holder inequality 
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iM H = \m\p'oo 

and as in Theorem 6.1, 

IWI^oo ^ liril. 

Remark 6.6. Theorems 1.5, 6.1 and 6.2 imply that 

i) c-M( (C0, / ' ) , L°°) = c-M( (C0, / ' ) , C0). 

ii) M( (LP, /<?), L°°) = M( (tf, /<?), C0)
 i f ] = P < °°> ! < ? < °°-

iii) M( (C 0 ,1% L°°) = M( (C0, /«), C0) if 1 < 9 < °°-

iv) M( (L", c0), L°°) = M( (L', c0), C0)
 i f » < /> < °°-

v) M( (L1, c0), L°°) = M( (L1, c0), (L°°, c0) ). 

7. Inclusion results and the algebra M, (G). 

PROPOSITION 7.1. Let S be any of the algebras (LP, / ' ) (1 S p Si oo) or 
(C0, / ) and B be as in Proposition 3.5. Then 

c-M(S, B) c M(S, B). 

Proof. If T e c-M(S, B) then for a l l / e S, 

Tf — ^ * f f ° r some JU e ^ o ^ ) * 

(Theorem 3.2). Hence f o r / <= S, h <= S0(G), and j e G, 

<A, r / > = (h, /i • / ,> = <A * / „ M> = <A, • / , M> 

= (hs,n*f) = (hs,Tf) = (h,(Tf)s). 

Since 5 G S0(G)* we conclude that T commutes with translations. 

COROLLARY 7.2. Let S be any of the algebras {LP, Z1) (1 = p < oo) 
(L°°, Z1)*7 or (C0 , Z1) <ww/ £ Z>e as in Theorem 3.2. 77ié?w 

c-M(S, B) = M{S, B). 

We do not know if 

M{ (L°°, Z1), ,4) c c-Af( (L°° Z1), ,4) 

for some amalgam space or some M space A. 
Let B be as in Theorem 3.2. If 

is a linear operator and T has the form J/i = <p * ju, for some <p e Z? then by 
the properties of convolution and M, -module [7] T is a c-multiplier. 

Conversely if T is a c-multiplier from Mj to B and 5 is the identity in 
M1? then for |i G M, we have that 

7/A = T{8 */x) = r<8*/z = <p*jU with <p = To. 
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So we conclude that a linear operator T:MX —> B is a omultiplier if and 
only if there exists a unique <p e B such that 

7/x = <p * JU, for all JU G M J . 

By the properties of convolution this implies that 

c-M(Ml9 B) c M(MX, B). 

But we know that there exists a multiplier T e M(MX, Mx) such that Tis 
not defined by the convolution with an element of Mx [14, p. 94]. So 

c-M(Mx, Mq) * M(Mh Mq) (1 ^ q ^ oo). 

Indeed if 

c-M(Ml9 A^) = M(Afl9 M^) and T G M(M l5 Mj) 

then 71 G M(MX, M ) since Mj c M^, therefore 

T e c-M(Ml9 M^) and 

7)x = T8 * fi for all \x ^ Mx. 

This contradiction proves our claim. 

We do not know if M(MX, A ) c c-M(Mx, 4̂ ) for some amalgam space 
y4. However when we consider Af̂  the situation is different. Since 

S * ju,5 = (8 * /x)5 for all ju e M J 

and s e G we have by Proposition 3.5 and our previous discussion that 

M(M\, B) = c-M(Atf, B) 

for B as in Theorem 3.2. 

Added in proof. The author learned recently that Theorems 5.1 and 6.2 
were known to Professor H. Feichtinger some time ago although they were 
not published. 
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