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FIRST-CROSSING AND BALLOT-TYPE RESULTS
FOR SOME NONSTATIONARY SEQUENCES

CLAUDE LEFÈVRE,∗ Université Libre de Bruxelles

Abstract

In this paper we consider the problem of first-crossing from above for a partial sums
process m + St , t ≥ 1, with the diagonal line when the random variables Xt , t ≥ 1, are
independent but satisfying nonstationary laws. Specifically, the distributions of all the
Xt s belong to a common parametric family of arithmetic distributions, and this family
of laws is assumed to be stable by convolution. The key result is that the first-crossing
time distribution and the associated ballot-type formula rely on an underlying polynomial
structure, called the generalized Abel–Gontcharoff structure. In practice, this property
advantageously provides simple and efficient recursions for the numerical evaluation of
the probabilities of interest. Several applications are then presented, for constant and
variable parameters.
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1. Introduction

A considerable amount of literature is devoted to the first-crossing problem of a certain
stochastic process with a given boundary, lower or upper, linear or nonlinear. This is especially
true for Poisson and compound Poisson processes (e.g. Stadje (1993), Picard and Lefèvre
(1996), Ignatov and Kaishev (2000), (2004), Perry et al. (2002), and Zacks (1991), (2005)) and
for Brownian motion (e.g. Perry et al. (2004) and the references therein).

In this framework, ballot-type results play an important role for the study of various problems
in probability and statistics, in particular in queueing, risk theory, reliability, sequential analysis,
and random graphs. Much on these problems can be found in the comprehensive book by
Takács (1967); see also the review paper by Takács (1997).

A classical ballot theorem is concerned with a sequence {Xt, t = 1, 2, . . . } of independent,
identically distributed (i.i.d.) random variables taking on values in the set N = {0, 1, 2, . . . }.
Specifically, let

St = X1 + · · · + Xt, t ≥ 1,

denote the associated partial sums (with S0 ≡ 0). Then, for any m = 1, . . . , n with n ≥ 1,

P(St < t for t = 1, . . . , n | Sn = n − m) = m

n
. (1.1)
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Nonstationary sequences 493

We mention that (1.1) holds true when the sequence {Xt, t ≥ 1} is not only i.i.d. but cyclically
exchangeable, i.e. when the Xt s are still equidistributed but with cyclical exchangeability as a
dependence structure. A version of (1.1) also exists for a continuous time analogue of such a
process.

Now, in (1.1) the left-hand side represents the conditional probability that the process St

remains below the diagonal line (i.e. a line of slope one through the origin) between times 1
and n, given that at time n it is under the line at level n − m. Alternatively, the Xt s being i.i.d.,
the variables St and Sn − Sn−t for 1 ≤ t ≤ n are equidistributed, so that (1.1) can be rewritten
as

P(m + St > t for t = 1, . . . , n − 1 | m + Sn = n) = m

n
. (1.2)

The left-hand side in (1.2) represents the conditional probability that the process m+St remains
above the diagonal line between times 1 and n, given that it crosses (and meets) the line at time n;
in other words, this is the probability that a crossing-time n is in fact a first-crossing time for
the process. We note that the passage from (1.1) to (1.2) can be visualized graphically since it
amounts to operating a rotation of 180 degrees and following the trajectories in reversed time,
from time n to time 0. In the sequel, it will be more convenient for us to consider (1.2) rather
than (1.1).

In this paper we consider a similar problem of first-crossing for the processm+St , t ≥ 1, with
the diagonal line, but this time for some nonstationary sequences. More precisely, the Xt s are
still assumed to be independent, as above, but now they are no longer necessarily equidistributed,
at least in a specific sense. The central assumption is that the laws of all the Xt s belong to
the same parametric family of arithmetic distributions, possibly with different parameters, and
that this family of distributions is stable by convolution. Now, we will show that under this
condition, the first crossing-time distribution and the associated ballot-type formula rely on
a remarkable algebraic structure of polynomial form. This result advantageously provides
simple recursions, directly implementable and numerically efficient, for the computation of the
probabilities of interest. To the best of our knowledge, boundary crossing for nonstationary
processes like here has received little study to date.

The paper is organized as follows: in Section 2, we consider parametric families of arithmetic
distributions that are stable by convolution, and we point out that such laws exhibit a polynomial
component in the parameter. In Section 3, we give a short presentation, adapted to the present
framework, of a particular family of polynomials, named generalized Abel–Gontcharoff (A.G.)
polynomials. In Section 4, we examine the first-crossing problem of the process m + St ,
t ≥ 1, with the diagonal line when the random variables Xt , t ≥ 1, are independent and
of laws belonging to a parametric family such as described before (possibly with different
parameters). Using the generalized A.G. polynomials as a mathematical tool, we will first
derive the distribution of the first-crossing level and then deduce an associated ballot-type
formula generalizing (1.2). Finally, various applications are presented: in Section 5 for a
traditional case where all the parameters are identical, and in Section 6 for several less standard
situations (including risk theory).

We indicate that our approach, which is based on the recourse to polynomials of the
A.G.-kind, is inspired from previous works covering the study of epidemic models. The reader
is referred, for instance, to Lefèvre and Picard (1990), (2005) and Ball and O’Neill (1999) for
standard A.G. polynomials; the generalized version used here was initially introduced in Picard
and Lefèvre (1996).
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2. Parametric distributions stable by convolution

Let X(θ) be a discrete random variable valued in N, with a parametric distribution, L(θ)

say, depending on some parameter θ . It is assumed that θ takes on values in a set D which
corresponds either to R

+ = [0, ∞) or to N.
Denote pi(θ) = P[X(θ) = i], for i ≥ 0. To avoid degenerate cases, we put pi(0) = δi,0

(the Kronecker delta), i ≥ 0, and 0 < p0(θ) < 1 for all θ > 0. When D = R
+, we add the

assumption that pi(θ) is continuous at θ = 0 for every i. Now, the main property required for
L(θ) is its stability by convolution, meaning that, for any θ, θ̃ ∈ D ,

pi(θ + θ̃ ) =
i∑

j=0

pj (θ)pi−j (θ̃ ), i ≥ 0. (2.1)

Under these conditions, it is easily seen that when θ ∈ R
+, X(θ) has a compound Poisson law,

and when θ ∈ N, X(θ) is the θ -fold convolution of X(1). This (known) property is derived
below in order to point out that for both cases, the terms pi(θ)/p0(θ), i ≥ 0, are of polynomial
form in θ .

Property 2.1. For θ ∈ D , ei(θ) defined by

ei(θ) ≡ pi(θ)/p0(θ), i ≥ 0, (2.2)

is a polynomial of degree i in θ . Moreover, the following properties hold:

e0(θ) = 1,

ei(0) = δi,0, i ≥ 0,

ei(θ + θ̃ ) =
i∑

j=0

ej (θ)ei−j (θ̃ ), i ≥ 0.

(2.3)

(2.4)

(2.5)

Proof. Let f (θ, z) denote the probability generating function of X(θ), with argument
z ∈ [0, 1]. By (2.1), we have

f (θ + θ̃ , z) = f (θ, z)f (θ̃ , z) for θ, θ̃ ∈ D . (2.6)

First, take D = R
+. As, by hypothesis, f (θ, z) is continuous at θ = 0 for every z, we get

from (2.6) that f (θ, z) is an exponential function in θ (see, e.g. Breiman (1968, Chapter 14)).
In other words, f (θ, z) is infinitely divisible with

f (θ, z) = exp[θλ(g(z) − 1)] for θ ∈ R
+, (2.7)

where λ > 0 and g(z) is the probability generating function of some distribution {qi, i ≥ 1}.
Thus, L(θ) is a compound Poisson distribution, i.e.

pi(θ) = e−λθ
i∑

j=0

(λθ)j

j ! q
∗j
i , i ≥ 0, (2.8)

where {q∗j
i , i ≥ 1}, j ≥ 1, is the j th convolution of {qi, i ≥ 1}, and q

∗j
0 = δj,0, j ≥ 0.
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Now, take D = N. By (2.6), we have

f (θ, z) = [f (1, z)]θ for θ ∈ N, (2.9)

and thus, L(θ) is the θ th convolution of L(1). To express pi(θ), we rewrite (2.9) in the form

f (θ, z) = [p0(1)]θ
{

1 + 1 − p0(1)

p0(1)

∞∑
i=1

qiz
i

}θ

, (2.10)

where {qi = pi(1)/[1 −p0(1)], i ≥ 1} denotes the conditional distribution of X(1) given that
X(1) ≥ 1. By expanding (2.10), we obtain

f (θ, z) = [p0(1)]θ
∞∑

j=0

(
θ

j

)[
1 − p0(1)

p0(1)

]j( ∞∑
i=1

qiz
i

)j

= p0(θ)

∞∑
j=0

(
θ

j

)[
1 − p0(1)

p0(1)

]j ∞∑
i=j

q
∗j
i zi ,

which yields

pi(θ) = p0(θ)

i∑
j=0

(
θ

j

)[
1 − p0(1)

p0(1)

]j

q
∗j
i , i ≥ 0. (2.11)

From (2.8) and (2.11), we then see that in both cases, ei(θ) defined by (2.2) is indeed a
polynomial of degree i in θ . Furthermore, (2.3), (2.4), and (2.5) are straightforward since (2.1)
implies that pi(0) = δi,0 for i ≥ 0 and p0(θ + θ̃ ) = p0(θ)p0(θ̃) for θ, θ̃ ∈ D .

Note that in the case of an algebraic treatment, the right-hand sides of (2.8) and (2.11) may
be directly extended to any real value of θ , positive or negative. In other words, the polynomials
ei(θ) may be extended to R = (−∞, ∞) in an obvious way; their convolution property (2.5),
for instance, will then remain valid on R. Of course, whenever a probabilistic interpretation is
needed, only θ ∈ D can be taken into account.

The existence of this polynomial structure is at the basis of our methodology to extend the
ballot formula. The ei(θ)s are called below fundamental polynomials. Their exact expression
will be of little use in the arguments, but (2.3), (2.4), and (2.5) will play a central role.

Note that each ei(θ) is of degree at most i, its degree being equal to i when q1 �= 0, i.e. if
p1(1) �= 0. We will assume that this condition is satisfied, in order to guarantee that the family
{ei(θ), i ≥ 0} is linearly independent. This is not a real restriction, however, because one may,
without difficulty, let p1(1) → 0.

In Section 2.1 we list a few examples of classical distributions that can be chosen for L(θ)

(and will be used later).

2.1. Particular examples

When θ ∈ R
+,

• the Poisson law P (θ) : pi(θ) = e−θ θ i/i!, i ≥ 0;

• the negative binomial law N B(θ, p):

pi(θ) =
(

θ + i − 1

i

)
pi(1 − p)θ , i ≥ 0,

for fixed p ∈ (0, 1);

https://doi.org/10.1239/aap/1183667620 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1183667620


496 C. LEFÈVRE

• the generalized Poisson law GP (θ, β):

pi(θ) = θ(θ + βi)i−1e−θ−βi

i! , i ≥ 0,

for fixed β ∈ [0, 1] (e.g. Johnson et al. (1992, p. 396));

• the generalized negative binomial law GN B(θ, β, p):

pi(θ) = θ

θ + βi

(
θ + βi

i

)
pi(1 − p)θ+βi−i , i ≥ 0,

for fixed p ∈ (0, 1) and β ∈ [1, 1/p] (e.g. Johnson et al. (1992, p. 230));

• the generalized Pólya–Eggenberger law GPE(θ, β, p, c), which covers the four previous
laws:

pi(θ) = θ

θ + βi
(θ + βi)(i,c)

1

i!
(

p

c

)i

(1 − p)(θ+βi)/c, i ≥ 0,

for fixed p ∈ (0, 1), c > 0, and β ∈ [0, c(1 − p)/p], and using the notation a(i,c) =
a(a + c) . . . [a + c(i − 1)] with a(0,c) = 1 (e.g. Janardan and Rao (1982));

• the compound Poisson law: X(θ)
d= ∑P (θ)

j=1 Wj , for a given sequence of i.i.d. N-valued
random variables Wj .

When θ ∈ N,

• the binomial law B(θ, p):

pi(θ) =
(

θ

i

)
pi(1 − p)θ−i , i ≥ 0,

for fixed p ∈ (0, 1);

• the θ -fold convolution of any basic Lagrangian law, shifted by θ so that its support is
N; for instance, the shifted Poisson P (β)-delta(θ) type (or Borel-Tanner law) (which
is equivalent to GP (θβ, β)), the shifted binomial B(β, p)-delta(θ) type (equivalent to
GN B(θβ, β, p)) and the shifted negative binomial N B(β, p)-delta(θ) type (equivalent
to GN B(θβ, β + 1, p)) (e.g. Johnson et al. (1992, p. 439) and Sibuya et al. (1994));

• the compound binomial law: X(θ)
d= ∑B(θ,p)

j=1 Wj , for a given sequence of i.i.d. N-valued
random variables Wj ;

• the case θ = 1 allows us to deal with the traditional i.i.d. model (for an arbitrary arithmetic
law L ≡ L(1)).

3. Preliminaries: generalized A.G. polynomials

The generalized Abel–Gontcharoff (A.G.) polynomials generalize the classical Abel
polynomials and their extension given by Gontcharoff (1937) (referred to as standard
A.G. polynomials). They have been introduced by Picard and Lefèvre (1996), under a more
general form of pseudopolynomials. Hereafter, we adapt to our framework the elements of the
theory which are useful for our analysis.
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We start with the above fundamental polynomials {ei(θ), i ≥ 0}, for θ ∈ R. Let G be the
real vector space generated by this family of polynomials, i.e. the set of polynomials Bn(θ) of
the form

Bn(θ) =
n∑

i=0

bn,iei(θ), n ≥ 0. (3.1)

A linear shift operator � is defined on G by

�e0(θ) = 0 and �ei(θ) = ei−1(θ), i ≥ 1. (3.2)

Put �j = �(�j−1) = �j−1(�), j ≥ 1, where �0 is the identity operator. Now, any
polynomial in G admits a Taylor-type expansion with respect to {ei(θ), i ≥ 0} and built
with the operator �. As proved below, this is a consequence of (2.3), (2.4), and (2.5) of the
fundamental polynomials.

Property 3.1. For any Bn(θ) ∈ G, and given any a ∈ R,

Bn(θ) =
n∑

j=0

�jBn(a)ej (θ − a), n ≥ 0. (3.3)

Proof. Using (2.5), Bn(θ) defined in (3.1) can be expanded as

Bn(θ) =
n∑

i=0

bn,i

( i∑
k=0

ei−k(a)ek(θ − a)

)
=

n∑
k=0

ek(θ − a)

( n∑
i=k

bn,iei−k(a)

)
. (3.4)

From (3.4) and using (3.2), (2.3), and (2.4), we find that, for 0 ≤ j ≤ n,

�jBn(a) =
n∑

i=j

bn,iei−j (a). (3.5)

Inserting (3.5) in (3.4) yields (3.3).

Now, let us introduce a family U = {ui, i ≥ 0} of arbitrary real numbers. For r = 0, 1, . . . ,
let ErU = {ui, i ≥ r} be the family U deprived of its first r terms. To U one can attach
a (unique) family of generalized A.G. polynomials {Ḡn(θ | U), n ≥ 0} of degree n in θ by
imposing the following conditions.

Definition 3.1. Each generalized A.G. polynomial Ḡn(θ | U), n ≥ 0, is such that

�rḠn(θ | U) = Ḡn−r (θ | ErU), 0 ≤ r ≤ n,

�rḠn(ur | U) = δn,r , 0 ≤ r ≤ n.

(3.6)

(3.7)

In fact, by (3.3) and (3.6), Ḡn(θ | U) can be expressed as

Ḡn(θ | U) =
n∑

j=0

Ḡn−j (0 | EjU)ej (θ), n ≥ 0, (3.8)

where, by (3.7), the coefficients Ḡn−j (0 | EjU) are provided recursively by

δn,r =
n∑

j=r

Ḡn−j (0 | EjU)ej−r (ur), 0 ≤ r ≤ n. (3.9)
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Using (3.6), it directly follows that any polynomial in G admits an Abelian-type expansion
with respect to {Ḡi(θ | U), i ≥ 0} and built with the operator �.

Property 3.2. For any Bn(θ) ∈ G, and given any real family U ,

Bn(θ) =
n∑

j=0

�jBn(uj )Ḡj (θ | U), n ≥ 0. (3.10)

Choosing Bn(θ) ≡ en(θ), (3.10) with (3.2) yields

Ḡn(θ | U) = en(θ) −
n−1∑
j=0

en−j (uj )Ḡj (θ | U), n ≥ 0, (3.11)

which constitutes another possible recursion to evaluate the Ḡn(θ | U)s.
Notice that Ḡn(θ | U) depends on U only through its first n elements u0, . . . , un−1. It can

also be checked that if U + a is the family {ui + a, i ≥ 0}, with a ∈ R,

Ḡn(θ + a | U + a) = Ḡn(θ | U), n ≥ 0. (3.12)

Later we will discuss a case where the family U corresponds to a family V = {vi, i ≥ 0}
for the first k + 1 terms (k ≥ 0), and to a family W = {wi, i ≥ 0} for the next terms. For this
case, the following Abelian-type expansion holds.

Lemma 3.1. If U = {ui ≡ vi, 0 ≤ i ≤ k, and ui ≡ wi, i ≥ k + 1}, then Ḡn(θ | U) =
Ḡn(θ | V ) for n ≤ k + 1, while for n ≥ k + 2,

Ḡn(θ | U) =
n∑

j=k+1

Ḡn−j (vj | EjW)Ḡj (θ | V ) (3.13)

= Ḡn(θ | W) −
k∑

j=0

Ḡn−j (vj | EjW)Ḡj (θ | V ). (3.14)

Proof. Let us apply (3.10) to expand Ḡn(θ | U) with respect to the Ḡn(θ | V )s. By (3.7),
�jḠn(vj | U) = 0 if j ≤ k (since vj = uj ), and by (3.6), �jḠn(vj | U) = Ḡn−j (vj | EjW)

if j ≥ k + 1 (since uj+i = wj+i for i ≥ 0), hence (3.13) follows. The equality between (3.13)
and (3.14) follows from a similar expansion of Ḡn(θ | W).

Especially interesting is the situation when ui is an affine function of i. We prove below that
each Ḡn then reduces to a simple variant of en.

Lemma 3.2. If U = {ui ≡ a + bi, i ≥ 0}, then

Ḡn(θ | U) = θ − u0

θ − un

en(θ − un), n ≥ 0. (3.15)

Proof. The right-hand side of (3.15), Kn(θ | U) say, is a polynomial of degree n, with
K0(θ | U) = 1 and Kn(u0 | U) = 0 for n ≥ 1. By (3.6) and (3.7), we then see that to
establish (3.15), it suffices to show that �Kn(θ | U) = Kn−1(θ | EU) for n ≥ 1. Now, if ui
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is affine in i, we can easily check that this identity is true by virtue of the following relation
between fundamental polynomials: for θ �= 0,

�

[
iei(θ)

θ

]
= (i − 1)ei−1(θ)

θ
, i ≥ 1. (3.16)

So, it remains to prove (3.16). Let θ ∈ D , and denote by fe(θ, z) = ∑∞
i=0 ei(θ)zi the

generating function of the ei(θ)s, with argument z ∈ [0, 1]. Clearly, (3.16) is equivalent to

�

{
1

θ

dfe(θ, z)

dz

}
= z

θ

dfe(θ, z)

dz
. (3.17)

By (2.2), (2.7), and (2.9), we have

fe(θ, z) = f (θ, z)

p0(θ)
= [f (1, z)]θ

p0(θ)
,

so that
1

θ

dfe(θ, z)

dz
= fe(θ, z)

f (1, z)

df (1, z)

dz
. (3.18)

Substituting (3.18) into (3.17) gives

�fe(θ, z) = zfe(θ, z),

which is indeed satisfied by (3.2). The extension to θ ∈ R is then immediate.

A remarkable particular case is when ei(θ) = θi/i!, i ≥ 0, i.e. if L(θ) is a Poisson law
P (θ). Then, by (3.2) � is the usual differentiation operator, and the Ḡn(θ | U)s correspond to
standard A.G. polynomials, denoted by Gn(θ | U). It can also be seen that if aU is the family
{aui, i ≥ 0}, with a ∈ R,

Gn(aθ | aU) = anGn(θ | U), n ≥ 0.

Moreover, if ui is affine in i, then (3.15) reduces to the classical Abel polynomials, i.e.

Gn(θ | U) = (θ − u0)(θ − un)
n−1

n! , n ≥ 0.

4. First-crossing and ballot-type results

Returning to the initial question, let {Xt, t ≥ 1} be a sequence of independent random
variables taking on values in N. It is assumed that the laws of all Xt s belong to the same
parametric family of distributions, L(θ), which satisfies the conditions indicated in Section 2,
for θ ∈ D . Each Xt may have its own parameter value, and we write

X1
d= L(θ0 + θ1) and Xt

d= L(θt ), t ≥ 2,

where θ0 + θ1, θ2, θ3, . . . ∈ D .
Let us consider the associated partial sums St = X1 +· · ·+Xt for t ≥ 1. L(θ) being stable

by convolution, we have
St

d= L(θ0 + θ+
t ), t ≥ 1, (4.1)
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where θ+
t ≡ θ1 + · · · + θt . It is convenient to define a family U of real numbers as follows:

U = {ui ≡ −θ+
i+1, i ≥ 0}; (4.2)

so, the successive parameters of the sums {St , t ≥ 1} are provided by the family θ0 − U .
Now, fix an arbitrary integer m ≥ 1. We will begin by examining the first-crossing problem

of the process m + St , t ≥ 1, with the diagonal line. Let T be the first-crossing time:

T = inf{t ≥ m : m + St ≤ t}; (4.3)

clearly, the first-crossing corresponds to a first-meeting, i.e. m + ST = T . Let N = ST denote
the first-crossing level; putting t = m + n, n ≥ 0, in (4.3) yields

N = inf{n ≥ 0 : Sm+n = n}. (4.4)

To indicate dependence on m, θ0 and U , set T ≡ T (m, θ0, U) and N ≡ N(m, θ0, U).
In practice, θ0 = 0 quite often (see later). A possible interpretation for θ0 > 0 is that the

initial level is not equal to a constant m but corresponds to a variable m+X0 where X0
d= L(θ0).

Indeed, it is easily shown that T (m + X0, 0, U)
d= T (m, θ0, U).

Lemma 4.1 below states that the first-crossing problem can be reduced to the case m = 1.
As previously, we put ErU = {−θ+

i+1, i ≥ r}, for r = 0, 1, . . .

Lemma 4.1.
N(m, θ0, U)

d= N(1, θ0, E
m−1U). (4.5)

Proof. Denote θ̂1 = θ1 + · · · + θm and θ̂t = θm+t−1 for t ≥ 2. Thus, the family Û defined
as Û = {−θ̂i

+
, i ≥ 1} (similarly to (4.2)) is equivalent to Em−1U . Now, define a sequence of

independent random variables X̂t , t ≥ 1, where X̂1
d= L(θ0 + θ̂1) and X̂t

d= L(θ̂t ) for t ≥ 2.
Putting Ŝt = X̂1 + · · · + X̂t , t ≥ 1, we observe that

Ŝ1+n
d= L(θ0 + θ̂+

1+n) ≡ L(θ0 + θ+
m+n)

d= Sm+n, n ≥ 0. (4.6)

From (4.4) and (4.6), we can deduce (4.5).

In the following theorem we establish a key result, namely, the probability mass function of
N(1, θ0, U) is given by the family of generalized A.G. polynomials Ḡn(θ0|U), n ≥ 0, apart
from a simple multiplicative factor.

Theorem 4.1.

P[N(1, θ0, U) = n] = p0(θ0 − un)Ḡn(θ0 | U), n ≥ 0. (4.7)

Proof. Obviously,

P[N(1, θ0, U) = 0] = P(X1 = 0) = p0(θ0 + θ1). (4.8)

For n ≥ 1, looking at time t = 1, we obtain

P[N(1, θ0, U) = n] =
n∑

j=1

P(X1 = j) P[N(j, −θ1, EU) = n − j ], n ≥ 1. (4.9)

Indeed, if X1 = j ≥ 1, then a new situation begins at time t = 1 that is similar to the previous
one, but now the initial state is equal to j (= 1 + j − 1) and the sequence of independent

https://doi.org/10.1239/aap/1183667620 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1183667620


Nonstationary sequences 501

random variables is the shifted sequence {Xt, t ≥ 2}. Note that the successive parameters of
the associated sums {St , t ≥ 2} are given by {θ2 + · · · + θt , t ≥ 2}, which corresponds to the
family −θ1 − EU . Thus, the first-crossing level under consideration is N(j, −θ1, EU) and it
has to be equal to n − j as indicated in (4.9).

Now, applying Lemma 4.1, (4.9) becomes

P[N(1, θ0, U) = n] =
n∑

j=1

pj (θ0 + θ1) P[N(1, −θ1, E
jU) = n − j ], n ≥ 1. (4.10)

Remember that ej is defined by (2.2) and u0 = −θ1 by (4.2). Therefore, (4.10) can be rewritten
as

P[N(1, θ0, U) = n] = p0(θ0 − u0)

n∑
j=1

ej (θ0 − u0) P[N(1, u0, E
jU) = n − j ], n ≥ 1.

(4.11)
Finally, let us introduce a function Hn(θ0 | U) by

Hn(θ0 | U) ≡ P[N(1, θ0, U) = n]
p0(θ0 − un)

, n ≥ 0. (4.12)

We notice that if θ0 = u0(= −θ1), then X1 = 0 almost surely so that N(1, u0, U) = 0 almost
surely; by (4.8) and (4.11), this implies that

Hn(u0 | U) = δn,0, n ≥ 0. (4.13)

For θ0 > u0, let us divide both members of (4.8) by p0(θ0 − u0) and both members of (4.11)
by p0(θ0 − un) = p0(θ0 − u0)p0(u0 − un); using (4.12), we so obtain

Hn(θ0 | U) =
n∑

j=0

ej (θ0 − u0)Hn−j (u0 | EjU), n ≥ 0. (4.14)

Combining (3.3), (3.6), and (3.7), we then find that (4.14) with (4.13) corresponds to the Taylor-
type expansion of Ḡn(θ0 | U), n ≥ 0, around the point u0. In other words, Hn(θ0 | U) =
Ḡn(θ0 | U), n ≥ 0, and (4.12) thus yields (4.7).

Owing to Theorem 4.1, we are in a position to derive a ballot-type formula for the
nonstationary model under study. Of course, (1.2) will then follow as a particular case
(see Section 5).

Corollary 4.1. For m = 1, . . . , n,

P(m + St > t for t = 1, . . . , n − 1 | m + Sn = n) = Ḡn−m(θ0 | Em−1U)

en−m(θ0 − un−1)
. (4.15)

Proof. By definition,

P(m + St > t, 1 ≤ t ≤ n − 1 | m + Sn = n) = P[N(m, θ0, U) = n − m]
P(Sn = n − m)

. (4.16)

By (4.1), (4.2), and (2.2), we have

P(Sn = n − m) = pn−m(θ0 + θ+
n ) = p0(θ0 − un−1)en−m(θ0 − un−1), (4.17)
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while (4.5) and (4.7) yield

P[N(m, θ0, U) = n − m] = p0(θ0 − un−1)Ḡn−m(θ0 | Em−1U). (4.18)

Substituting (4.17) and (4.18) into (4.16) leads to (4.15).

Let us underline that in (4.7) and (4.15), the probabilities of interest can now be evaluated
numerically without difficulty. Indeed, Ḡn(·) and Ḡn−m(·) are easily determined by recursion,
either from (3.8), (3.9) or from (3.11), and en−m(·) is directly computed from the distribution
L(θ).

To close, we examine below the related problem of first-crossing from above when the
initial level is 0. Let N(0, θ0, U) be the corresponding first-crossing level, defined as
inf{n ≥ 1 : Sn ≤ n}. Its probability mass function follows from Theorem 4.1. Indeed,
we observe that each trajectory linking from above level 0 at time 0 to level n at time n,
can be coupled with a trajectory linking from above level 1 at time −1 to level n at time n,
for the partial sums process of the variables X1

d= L(θ0 + θ1), X2 = 0 almost surely, and
Xt

d= L(θt−1), t ≥ 3. Therefore, N(0, θ0, U) has the same distribution as N(1, θ0, {u0, U})
where {u0, U} is the family {u0, u0, u1, u2, . . . }. From (4.7) we then deduce that

P[N(0, θ0, U) = n] = p0(θ0 − un−1)Ḡn(θ0 | {u0, U}), n ≥ 1. (4.19)

Note that by (3.14) (with k = 0 and {u0, U} for U ), Ḡn(·) in (4.19) can be decomposed as

Ḡn(θ0 | {u0, U}) = Ḡn(θ0 | {0, U}) − Ḡn(u0 | {0, U}), n ≥ 1. (4.20)

5. A situation with constant parameters

Let us assume that all the parameters θt s, t ≥ 1, are equal to each other, i.e. X1
d= L(θ0 +θ1)

and Xt
d= L(θ1) for t ≥ 2, where θ0, θ1 ∈ D . If θ0 = 0 and θ1 = 1, this reduces to the classical

case where all the variables Xt for t ≥ 1, are i.i.d. (with arbitrary law L ≡ L(1)).

5.1. Simplified formulas

By (4.2), ui = −θ1(i + 1) for i ≥ 0, and the sequence is thus affine in i. In this case, the
polynomials Ḡn(θ | U) for n ≥ 0, take the form of (3.15). By substitution in the ballot-type
formula (4.15), we then find that

P(m + St > t for t = 1, . . . , n − 1 | m + Sn = n) = θ0 + θ1m

θ0 + θ1n
, n ≥ 0, (5.1)

which becomes (1.2) when θ0 = 0.
From (5.1), the distribution of N ≡ N(m, θ0, θ1) is given by

P[N(m, θ0, θ1) = n] = θ0 + θ1m

θ0 + θ1(m + n)
P(Sm+n = n), n ≥ 0. (5.2)

In particular, for the main special laws listed in Subsection 2.1, we obtain that, putting θ̃0 ≡
θ0 + θ1m,

• if L(θ) is a Poisson law P (θ), then N has a generalized Poisson law GP (θ̃0, θ1);

• if L(θ) is a negative binomial law N B(θ, p), then N has a generalized negative binomial
law GN B(θ̃0, θ1 + 1, p);
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• if L(θ) is a generalized Poisson law GP (θ, β), then N has a generalized Poisson law
GP (θ̃0, θ1 + β);

• if L(θ) is a generalized negative binomial GN B(θ, β, p), then N has a generalized
negative binomial GN B(θ̃0, θ1 + β, p);

• if L(θ) is a generalized Pólya–Eggenberger law GPE(θ, β, p, c), then N has a general-
ized Pólya–Eggenberger law GPE(θ̃0, θ1 + β, p, c);

• if L(θ) is a binomial law B(θ, p), then N has a generalized negative binomial law
GN B(θ̃0, θ1, p).

Moreover, if m = 0, (4.19) and (4.20) with (3.15) yield

P[N(0, θ0, θ1) = n]
= p0(θ0 + θ1n)

{
θ0

θ0 + θ1n
en(θ0 + θ1n) + 1

n − 1
en[θ1(n − 1)]

}
, n ≥ 1. (5.3)

5.2. A standard application

Consider a Galton–Watson branching process initiated by m ancestors and with i.i.d. family
sizes distributed as a random variable X of distribution {pi, i ≥ 0} ≡ L. Let T (m) be the
total number of descendants including the m initial ancestors. It is well known that extinction
is almost sure and T (m) has a finite distribution if and only if E(X) ≤ 1. From the probability
generating function of T (1) and using the Lagrange expansion formula, it is possible to show
that T (1) has a basic Lagrangian distribution, T (m) being the m-fold convolution of T (1)

(e.g. Consul and Shenton (1972)).
An alternative (known) approach to determine T (m) consists in introducing a new time-scale

t = 1, 2, . . . , to represent the cumulative number of deaths in the course of time. Each t th
case, t ≥ 1, gives birth to a family of size Xt before its death; thus, m + St counts the number
of ancestors plus the total number of direct descendants due to the first t death cases. It is clear
that T (m) can then be represented as the first-crossing time defined in (4.3); more precisely,
T (m)

d= T (m, θ0 = 0, θ1 = 1) using previous notation. Therefore, T (m) = m + N(m) with
the distribution of N(m) given by (5.2).

In the same vein, consider a G/D/1 queue where initially m customers are waiting, the
service time for a customer is of constant length (= 1) and the numbers of arrivals per time unit
are i.i.d. random variables with law L. Then, the total number of customers served during a
busy period is distributed exactly as the random variable T (m) above (e.g. Takàcs (1967) and
Sibuya et al. (1994)).

For illustration, let us consider a discrete-time queue in which per time unit, only three
different events can occur: the departure of one customer, no change or the arrival of α customers
(α being a fixed positive integer), always under i.i.d. conditions; the case α = 1 has been
examined by Mohanty and Panny (1990). With respect to the previous G/D/1 queue, this
amounts to assuming that there is one service after each time unit (if the queue is not empty), and
the number of arrivals per time unit is of law L with probability mass function {p0, p1, pα+1}.
Thus, from (5.2) we get that T (m), the number of customers served during a busy period, is of
probability mass function

P[T (m) = m + n] = m

m + n

∑
a+b+c=m+n,b+(α+1)c=n

(
m + n

a, b, c

)
pa

0pb
1pc

α+1, n ≥ 0. (5.4)
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If p1 = 0, the previous queue corresponds also to the random walk associated with the game
of roulette. Here, starting with an initial capital m, a player can, after each step, either lose
one unit with probability q ≡ p0 (if the capital is not zero) or earn α units with probability
p ≡ pα+1; when α = 1, this is the classical ruin model with one absorbing state at zero (e.g.
Feller (1957) ). In this game, we see that T (m) corresponds to the ruin time of the player. Its
possible values are t = m + (α + 1)l, l = 0, 1, . . . , and from (5.4),

P[T (m) = m + (α + 1)l] = m

m + (α + 1)l

(
m + (α + 1)l

l

)
plqm+αl, l ≥ 0, (5.5)

a result obtained by Hill and Gulati (1981). Note that by (5.5), N(m)/(α +1) has a generalized
negative binomial law GN B(m, α + 1, p). If m = 1, the associated coefficient

1

1 + (α + 1)l

(
1 + (α + 1)l

l

)

is equal to the generalized Catalan number

1

1 + αl

(
(α + 1)l

l

)
,

which reduces to the standard Catalan number when α = 1 (see, e.g. Hilton and Pederson
(1991)). So, for the game of roulette, this number can be interpreted as the conditional
probability that, starting with a capital of one, a player who is ruined at time 1 + (α + 1)l

was not ruined before that time.
Again if p1 = 0 but now when m = 0, the corresponding variable N(0) represents the first

time where a player with an initial capital of zero becomes ruined again (if amounts are payable
at the end of each step). Its possible values are n = (α + 1)l, l = 1, 2, . . . , and from (5.3), we
obtain

P[N(0) = (α + 1)l] = 1

(α + 1)l − 1

(
(α + 1)l − 1

l

)
plqαl, l ≥ 1. (5.6)

It is easily checked from (5.6) that N(0)/(α + 1) has a generalized negative binomial law
GN B(α, α + 1, p) shifted by 1 (also named Geeta distribution by Consul (1990)), and non-
normalized by p.

6. Some situations with variable parameters

6.1. A single change in the parameters

Let us assume that the parameters θt are all equal to θ1 until some time k + 1 (k ≥ 0),
and that the next parameters are all equal to another value θc, where θ1, θc ∈ D . Thus,
ui = −θ1(i + 1) ≡ vi for 0 ≤ i ≤ k, and ui = −θ1(k + 1) − θc(i − k) ≡ wi for i ≥ k + 1.

In a queueing context, as above, this means that the service time is of length θ1 for the first
k + 1 customers and of length θc for the subsequent customers. Such a situation can arise if
the server needs some kind of setup time before becoming quite operational (then, θ1 ≥ θc).

Applying (4.15) or (4.18) requires computing the value of Ḡn−m(θ0 | Em−1U). This
is easily done as follows. If m ≥ k + 2, Em−1U reduces to the affine family Em−1W ,
and it suffices to use (3.15). Suppose now that m ≤ k + 1. Then, Em−1U is the family
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Figure 1: Graph of P(N ≤ n), 0 ≤ n ≤ 50, when m = 1, L(θ) = P (θ), θ0 = 0, θ1 = 1,
k = 3 and either θc = 1 (continuous line), θc = 0.8 (dotted line) or θc = 0.5 (dashed line).

{vm−1, . . . , vk, wk+1, wk+2, . . . } which is of the form discussed in Lemma 3.1, with in addition,
affine families for V and W . Thus, if n − m ≤ k + 1,

Ḡn−m(θ0 | Em−1U) = Ḡn−m(θ0 | Em−1V ) = θ0 − vm−1

θ0 − vn−1
en−m(θ0 − vn−1).

If n − m ≥ k + 2, (3.13) and (3.14) yield

Ḡn−m(θ0 | Em−1U) =
n−m∑

j=k+1

aj

= θ0 − wm−1

θ0 − wn−1
en−m(θ0 − wn−1) −

k∑
j=0

aj ,

where, for j ≥ 0,

aj ≡ vm−1+j − wm−1+j

vm−1+j − wn−1
en−m−j (vm−1+j − wn−1)

θ0 − vm−1

θ0 − vm−1+j

ej (θ0 − vm−1+j ).

Suppose that m = 1 and L(θ) is a Poisson law P (θ), and let us choose θ0 = 0, θ1 = 1
and various values for θc and k. If θc = θ1 = 1, the parameters are constant and we know
from Section 5 that N has a generalized Poisson law GP (1, 1). Figure 1 shows the graph of
P(N ≤ n), the distribution function of N , when k = 3 and θc = 1, 0.8 or 0.5. As indicated
before, the effect of θc appears only from level n ≥ k + 2 = 5. We observe that decreasing θc

implies a higher distribution function for N (i.e. decreases N stochastically). This is natural:
for the previous queue, decreasing the service time will stochastically decrease the number of
customers served during the busy period. Figure 2 is concerned with the case where θc = 0.8
and k = 2, 8 or 14. Since increasing k postpones the use of θc to the profit of θ1 (> θc), this has
the effect, of course, to increase N stochastically. We underline that the numerical procedure
followed is quite fast and precise; the extension to several changes in the parameters can be
treated with no more difficulty.
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Figure 2: Graph of P(N ≤ n), 0 ≤ n ≤ 30, when m = 1, L(θ) = P (θ), θ0 = 0, θ1 = 1,
θc = 0.8 and either k = 2 (dashed line), k = 8 (dotted line) or k = 14 (contiuous line).

6.2. A geometric sequence of parameters

Let us assume that the θt s form a geometrically decreasing sequence in R
+, denoted by

θt = λpqt−1 for t ≥ 1 and where λ > 0, 0 < p = 1−q < 1. Thus, ui = −λp(1+q+· · ·+qi)

= −λ(1 − qi+1), i ≥ 0.
Such a geometric sequence of parameters has been considered by Takács (1989) for the

particular case where L(θ) is a Poisson law. His motivation comes from applications in
queueing and graph theory, which will be discussed in more detail in a forthcoming work.

By (4.5) and (4.7), we obtain

P[N(m, θ0, U) = n] = p0[θ0 + λ(1 − qm+n)]Ḡn[θ0 | {−λ(1 − qm+i ), i ≥ 0}], n ≥ 0.

(6.1)
It is worth pointing out that the recursive method used to compute Ḡn(·) in (6.1) is simpler and
more general than an alternative procedure proposed by Takács (1989) (in the Poisson case).

Following Takács’ (1989) let us now examine the limit situation where λ → ∞, p → 0,
and λp → a (0 < a < ∞). Then, qm+i ≈ 1 − a(m + i)/λ, i ≥ 0, is an affine sequence.
Therefore, from (6.1) and using (3.15) and (2.2), we obtain

P[N(m, θ0, U) = n] → θ0 + am

θ0 + a(m + n)
pn[θ0 + a(m + n)], n ≥ 0,

a formula which is similar to (5.2).

6.3. An application in risk theory

Let us consider a discrete-time risk model for insurance. At the beginning of each period, the
company receives a constant premium equal to one, and at the end of the period, the company
covers the claim amounts occurred during the period. We assume that the successive claim
amounts are random variables Xt , t ≥ 1, independent and distributed as in Section 4. Let Rt

denote the reserves of the company at time t , t ≥ 1. If the initial capital is of amount u (∈ N),
then Rt = u + t − St . Ruin occurs at the first time Tu when the reserves become negative
or null, i.e. Tu = inf{t ≥ 1 : St ≥ u + t}. Much attention has been paid to the ruin problem
in the actuarial literature, generally for the classical model where the Xt s are i.i.d. (see, e.g.
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Asmussen (2000) ). We are going to derive the exact distribution of the ruin time T0 for the
above nonstationary model; the case u > 0 is not treated here.

Obviously, P(T0 = 1) = P(X1 ≥ 1). For t ≥ 1, we can write that

P(T0 ≥ t + 1) =
t−1∑
n=0

P(Si < i for 1 ≤ i ≤ t, and St = n). (6.2)

Operating a rotation of 180 degrees, let us follow the different possible trajectories within
(6.2) in reversed time (i.e. from time t to time 0). We then observe that the probability
P(Si < i, 1 ≤ i ≤ t, and St = n) ≡ a

(t)
n can be re-expressed as

a(t)
n = P(t − n + Xt > 1, t − n + Xt + Xt−1 > 2, . . . , t − n + Xt + · · · + X2 > t − 1,

and t − n + Xt + · · · + X1 = t),

that is, in the notation of Section 4,

a(t)
n = P[N(t − n, 0, U(t)) = n], 0 ≤ n ≤ t − 1,

where the family U ≡ U(t) depends here on t and is given by

U(t) = {−θt , −(θt + θt−1), . . . ,−(θt + · · · + θ2), −(θt + · · · + θ1)}.
By (4.5) and (4.7), this becomes

a(t)
n = P[N(1, 0, Et−n−1U(t)) = n]

= p0(θt + · · · + θ1)Ḡn(0 | Et−n−1U(t)), 0 ≤ n ≤ t − 1, (6.3)

where

Et−n−1U(t) = {−(θt +· · ·+ θn+1), −(θt +· · ·+ θn), . . . , −(θt +· · ·+ θ2), −(θt +· · ·+ θ1)}.
(6.4)

Inside (6.3), applying (3.12) with a = θt + · · · + θ1 ≡ θ+
t to Ḡn(·) yields

a(t)
n = p0(θ

+
t )Ḡn(θ

+
t | {θ+

n , θ+
n−1, . . . , θ

+
1 , 0}), 0 ≤ n ≤ t − 1. (6.5)

Now, denoting

Ān(θ) = Ḡn(θ | {θ+
n , θ+

n−1, . . . , θ
+
1 , 0}), n ≥ 0, (6.6)

we observe that Ā0(θ) = 1 and �Ān(θ) = Ān−1(θ) for n ≥ 1, that is Ān(θ) for n ≥ 0,
is a generalized Appel polynomial in the sense given in Picard and Lefèvre (1996). In other
words, for U = {θ+

n , θ+
n−1, . . . , θ

+
1 , 0}, the associated generalized A.G. polynomials reduce to

the generalized Appel polynomials (a known propery). By (3.8) and (3.9), Ān(θ) can then be
computed from the expansion

Ān(θ) =
n∑

j=0

Ān−j (0)ej (θ), n ≥ 0,
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and using the recursions (where θ+
0 ≡ 0)

δn,r =
n∑

j=r

Ān−j (0)ej−r (θ
+
n−r ), 0 ≤ r ≤ n.

Combining (6.2), (6.5), and (6.6) we finally obtain

P(T0 ≥ t + 1) =
t−1∑
n=0

p0(θ
+
t )Ān(θ

+
t ), t ≥ 1,

a result to be compared with the formulas derived by Picard et al. (2003) and Ignatov and
Kaishev (2004) (for a risk model with continuous claim amounts).

6.4. Randomized parameters

Let us assume that θ0 = 0 and the other parameters form a sequence of i.i.d. random
variables {�t, t ≥ 1} valued in D (and distributed as �, say). Thus, each Xt , t ≥ 1, has a
mixed distribution L(�).

Similarly to (4.1) and (4.2), denote �+
t = �1 + · · · + �t for t ≥ 1 and Ui = −�+

i+1 for
i ≥ 0, with U = {Ui, i ≥ 0}. Now, by construction the model is of the traditional i.i.d. type.
From (5.2), the probability mass function of N ≡ N(m, �) is thus given by

P[N(m, �) = n] = m

m + n
P(Sm+n = n), n ≥ 0, (6.7)

and by randomizing (4.1) and (4.2),

P(Sm+n = n) = E[p0(−Um+n−1)en(−Um+n−1)], n ≥ 0. (6.8)

We note that by (4.18), the law of N can also be expressed as

P[N(m, �) = n] = E[p0(−Um+n−1)Ḡn(0 | Em−1U)], n ≥ 0, (6.9)

which is, a priori, more complicated than (6.8) because of the presence of Ḡn instead of en.
From an algebraic point of view, it is rather surprising that (6.9) can be reduced to (6.8). This
can be proved, however, using Theorem 2.2 in Picard and Lefèvre (2003).

Formula (6.7) and (6.8) are applicable to mixtures of the special laws listed in Section 2.1.
For instance, if L(�) is a mixed Poisson law P (�), then

P[N(m, �) = n] = m

m + n
E

[
(�+

m+n)
n

n! e−�+
m+n

]
, n ≥ 0, (6.10)

and if L(�) is a mixed negative binomial law N B(�, p), then

P[N(m, �) = n] = m

m + n
E

[(
�+

m+n + n − 1

n

)
(1 − p)�

+
m+n

]
pn, n ≥ 0.

Going back to queueing, let us consider a queue model in which each service period is
distributed as the random variable � and the number of customers arriving per service period is
L(�)-distributed. Then, (6.7) and (6.8) provide the law of the number of new customers served
during a busy period with initially m customers. The case where L(�) = P (�) corresponds
to the M/G/1 queue for which formula (6.10) is well known (e.g. Takács (1962, p. 63)).
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