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By the group G(2 cos njq) we mean the group of linear fractional transformations of the
complex plane onto itself, generated by V(z) = — 1/z and £/(z) = z+Xq, where Xq = 2 cos (nlq),
q being a positive integer greater than 2. In this paper we shall be concerned only with the
group given by q = 5, and we shall therefore omit the subscript 5 on the A. We note that
A = A5 satisfies the equation

x2-x-l=0; (1)
henceA = (l + 5*)/2.

It is well known [1] that G(A) is a real zonal horocyclic group (see [4] for these terms);

i.e. G(A) is a fuchsian group of the first kind. We let T = [ I (ad—be = 1) represent the

transformation z' = T(z) = (az+b)j(cz+d), and notice that T and —T represent the same
transformation. If U and V are the corresponding matrices of U(z) and V(z), it is easy to
verify in this notation that the generators satisfy the relations

2 (2)

where / represents the identity transformation.
As a consequence of (2) we can write the transformation T(z) as a word in U and V, namely:

r = U">VUn-" VUr", where the rt are rational integers. In [5] it was shown that these words
with certain conventions could be made unique. The unique word in turn led naturally to a
continued fraction representation of the transformation, and hence a continued fraction
representation of the parabolic points—the transforms of oo. We shall use the fact, which can
be deduced from the theorems of [5], that a parabolic point is a unique finite A-fraction which
we write in the form

(r0X; ellrlX,...,eJrnX), (3)

where the rt (i > 0) are positive integers, while r0 may be a positive or negative integer or zero,
and e{ = ±1 . We shall also assume whatever theorems on continued fractions are necessary,
and especially the results in [5]. We shall however use the current term approximant for
convergent.

If PjQm is the /Mth approximant of a A-fraction (3), it is a consequence of (1) that Pm and
Qm are algebraic integers in the field J?(5*), which when expressed in terms of the basis (1, A)
have the form m+nX, where m and n are rational integers. The parabolic points therefore, as
finite A-fractions, are quotients of integers in the field. We shall denote a typical one by a\b
where a = ax+a2X, b = bi+b2X.
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The motivation for this study arose in connection with the problem of finding the Fourier
coefficients of automorphic forms and functions belonging to G(A). These are given explicitly
by Petersson [3], and involve sums of the type £ | c \~k taken over all substitutions of the group.
The characterization will therefore be directed toward describing c, the third element of the
transformation.

The more interesting problem is the converse one, namely, which rational elements of the
field are parabolic points or cusps. It seems, as a conjecture, that every rational element of the
field is a cusp, as numerical calculations in abundance have not turned up counterexamples.
For the groups G(A,) with q even, the conjecture is false, since it is shownf in [5, p. 558]
that 1 has an infinite A-fraction representation and hence cannot be a cusp. We shall show that
the units Xm are all parabolic points.

We recall the essential property of the reduced A-fraction. If r,A+e,+ 1 < l (sothatr, = 1,
e,+ 1 = — 1), then rl+1 ^ 2, and either et = 1 or r,_! ^ 2 . As a matter of notation we shall
write the numerator and denominator of the wth approximant as

Pm=Pln,+P2ml; Qm=Qlm+Q2ml, (4)

where the subscript 1 denotes the rational component, and 2 the A-component. The following
general formula will be useful:

(5)

We deduce from (1), (4), and (5) that

In particular, £?u = 0, Q2l = ru Q12 = rxr2+e2, Q22 = rYr2.

LEMMA 1. (i) Qi2 > 0 n = 0; (ii) Q22 ^ Q2l > 0; (iii) Q22 > Qi2 or Ql2 = Q22 +1.

Proof. Since Q12 = rlr2 + e2, (i) is obvious if e2 = 1. If e2 = —1, then either rx or r2 ^ 2,
and the conclusion is immediate. Part (ii) is obvious. If e2 = 1, then clearly Q12 = Q22 + 1 .
If e2 = — 1, either r t or r2 ^ 2, so that part (iii) follows easily.

LEMMA 2. (i) Either Ql3 ^ Q12 or Q12 = Q13 +1; (ii) Q23 ^ Q22; (iii) 623 ^ 613 > 0.

Proof. We prove part (iii) first. By (6) we have Q23 = Qi3 + r3Q12+e3Q12, where we
use the fact that g n = 0, so that Q13 = r3Q22. We must now show that r3Q12 + e3Q21 ^ 0,
or more explicitly that r1r2r3+r3e2+rie3 ^ 0 . A careful analysis of the possibilities such as
e3 = — 1, r3 = 1, which forces r2 ^ 2, gives the desired conclusion. We omit the details and
remark that the alternatives of Lemma 1 part (iii) do not cause any difficulty.

To prove part (ii), we must show that Q23 = 2r1r2r3 + e2r3+e3r1 >rxr2 = Q22. This
follows, however, from the similar inequality in (iii).

t There are a few errors in [5] which we correct at this time, (i) In (4.3) r,_\ should be K_v (ii) On p. 557,
line 3, av-i. „ should be <Xy_i, „ . (iii) On p. 558, line 14 from bottom, £ =(B(h + 1), - 1/f). (iv) On line 2 of the
proof of Theorem 4, replace the first A>2 by A<2. (v) Theorem 7, 6th line of proof, should read: Oj^a<_1A/2
ora,_1/o,A>2/All = t/o. (vi) P. 561, line 1, should read a,_1/a,A>2/Aa (vii) In he line above (7.7), replace
Kbyk.
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We prove part (i) by considering cases. Since Q13 = r1r2r3, it is obvious that if e2 = — 1,
then rir2ri '^.rlr2 — \. If e2 = 1, then / ^ r ^ > r ^ + 1 when r3 ^ 2, while Q12 = 2 i 3 + l
when r3 = 1.

We shall say that a finite A-fraction has length m if PJQm is the value of the A-fraction.

LEMMA 3. (i) Either g1 4 k g , 3 or Qi3 = QlA+l; (ii) Q24r £ Q23; (iii) g 2 4 £ e/4 .

iVoo/. Part (i): From (6) we have g1 4 = r^Q23 + eAQ12. We consider three cases,

(a) e4 = 1. Since g2 3 ^ g13> by Lemma 2, the conclusion is obvious.

From (6) we deduce that 2g2 3 - Ql2 = Qi3+A~Ql2. We show that ^ - Q 1 2 ^ 0. If e3 - 1,
this is obvious, since Q21 > Qtl. If e3 = — 1, r 3 ^2 , straightforward estimation produces the
result. We remark that in this case Q13> Ql2. Ife3 = — 1, r3 = 1, we must have r2 ^ 2,
and the required inequality follows easily.

(c)e4= - I , r 4 = l .Le t5= Q ^ ^ - O + ^ Q z , .Wededucefrom(6)thatQ14 = 2
If e3 = l, then B>0. If e3 = — 1 and r3 !> 3, then 5 ^ 2 Q 1 2 - e 2 1 = 2r1r2 + 2e2-r1.
The right side is positive if either rt or r2 ^ 2 when e2 = — 1, but this is the case for a reduced
A-fraction. If r3 = 2,B>0 if e2 = 1, and 5 = — 1 if e2 = — 1, r2 = 1. Hence part (i) is proved,
since r3 cannot be 1.

Part (ii): From (6) we see that the inequality is proved if

Q2* = U(Q13+ Q23) + etQ22 £ Q23.

(a) e4 = 1. The inequality is obvious.

(b) e4 = — 1, r4 ^ 2. By Lemma 2, Q23 > Q22 and the inequality is easily deduced.

( c ) e 4 = - l , r 4 = l
in the right side, the desired inequality follows easily since r3 2: 2.

Part (iii): Let D = Q2tf-Qi4 = r4Q13 + e4(Q22-Qi2); we show that D ^ 0.

(a) e4 = 1. Obviously D ^ Qi3 + Q2i-Qi2- I f 2 n ^ 2n» then D > 0 trivially. If
G12 = Qi3 + 1> then D £ Q 2 2 - l ^ 0.

(*) e4 = - 1 , r4 ^ 2. Since 2Q 1 3 - Q22 > 0, it follows that D > 0.

(c) e4 = - 1 , r4 = 1. Now D = Qi3 + Qi2—Q22, which is easily seen to be positive.

This proves the lemma.
Using exactly the same type of argument, we can prove that for m = 5, only the possibility

Ql5 ~t g1 4 occurs. Hence if the A-fraction has length m ^ 5, we can prove
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THEOREM 1. For m = 5, 6,.... (i) Qlm ^ QHm-l} > 0, (ii) Q2m £ e2(m_1) > 0, and
(iii) Q2m £ Qlm.

Proof. The proof is by induction andrequires exactly the same type of arguments as we used
in the previous lemmas. We shall therefore omit the details, but we state the induction lemma:
If (i), (ii), (iii) are valid for m = 5, 6, ..., k, then (i), (ii), (iii) are valid for m = fc+1.

We are now in a position to say something about the third element of the transformation
T(z).

COROLLARY 1. Let c- ct+c2X, be the third element of T(z). Either c2'£cl'2. 0, or
ci =

Proof. We assume that the transformation has been reduced to minimum length [5], so
that the A-fraction T(co) = ale is a reduced A-fraction. Since a and c are numerator and
denominator of the A-fraction, c is some Qn. UT- U", then c = 0. If T = V, c = OX +1. If
the A-fraction has length 1, c = rtX+0. If the A-fraction has length 2, part (iii) of Lemma 1
applies. If the A-fraction has length n ^ 3, part (iii) of Lemmas 2 and 3 and Theorem 1 apply.

We next define a section of the continued fraction as

a,->m =(rjX; ey+1/r,+1A, ..., eJrmX). (7)

If the A-fraction is finite and of length m, we shall refer to a J m as the tail. We put aJtm =
Pj. mlQj.m a n d s e e t n a t Qj-i.m = Pj.m- Hence the numerator of a section can be expressed
in terms of the denominators

Pi..= Qj-i.m = rjxQl.m + ej+iQj+i.m 0 £j< m). (8)

We note in particular that Pm< JQm_m = rj., so that Qm,m = l, and also that Q0.m = Qm. We
write Q-i>m= Po,m = Pm, so that a special case of (8) is

Pm = rQ^Qm + elQUm. (9)

In Lemmas 1, 2, 3, and Theorem 1, we calculated from the front of the continued fraction.
In order to obtain information about the numerators we shall use (9). It is convenient there-
fore to calculate the tails. The results we obtain are completely analogous in content to the
previous ones, and the proofs use identical arguments, so that we only state the results in

THEOREM 2. Let Qu n=Qj,ln + Qu 2nX (; = « , « - 1 , . . . , 0).

(i) Qj, m £ QJ+i, in > 0 or QJ% in +1 = QJ + uln if) = « - 3 , n - 4 , while

( i i )G; .2n§Q J + i ,2n>0 (j = tt-1, n-2, ...,0).

(i») Qj, 2n § Qj. in 0' = " ~ ! . " - 2 . •••» ! ) ! f°rJ = " ~ 2 the alternative

Qn-2,ln=Qn-2,2n+l
is possible.
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We point out that if the continued fraction a ^ 2/A, then r0 ^ 1, and ifro = l , e 1 = — 1,
then r t ^ 2; i.e. a is reduced from r0 instead of from rl as required in the definition of a
A-fraction [5, p. 555]. Consequently, Theorem 2 is valid fory = - 1 , and from (9) we deduce
information about the numerators.

T H E O R E M 3. 7/" a/c ^ 2/A, a = at+a2X, c = ct + c2X, then (i) al>ci or ay + l^Ci,
(ii) a2 ^ c2, (iii) a2 ^ ax or at = a2 +1, (iv) c2 2: ct or c2 +1 = c P

Proo/. Since a/c ^ 2/A, Theorem 2 is valid fory = - 1 . We point out that the two alterna-
tives in (iii) and (iv) cannot occur at the same time. This is evident from examining A-fractions
of length 1 and 2.

The restriction ajc ̂  2/A is no serious loss of generality, since it amounts to a restriction
to certain members of a coset decomposition of G(A) with respect to the subgroup generated by
U(z) = z+L We denote by G the group of matrices that contains — / and is such that
(az+b)l(cz+d) e G(A) if and only if

G (ad—be = 1). (10)

THEOREM 4. If (10) holds and

where x = a+ct, y = b+dt, then S eG if and only ift = ml, where m is a rational integer.

Proof. If / = wA, then S = C/T, which belongs to G, since U does. Conversely, if SeG
then so does

which is possible only if t — mk.

We point out that we make no claims as to the existence of solutions to the diophantine
equation with fixed integers c, d in i?(5*) which would give a transformation of G(X).
Hutchinson [2] investigated a wide class of automorphic groups in which the coefficients a, b,
c, d were integers in quadratic fields. It can be shown that G(X) does not belong to this class.
What we can assert however, is this: If die is a finite A-fraction which we write as d'jc' = PJQm,
where d' = dk" and c' = cX", for some n, then by Theorem 1 of [5], the penultimate approxi-
mant and d'\c' provide a substitution of G (A), and Theorem 4 gives all substitutions with the
same (c, d).

The next theorem gives us information on the parities of the coefficients of a and c, and
seems to have a curious property relating to A5.
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THEOREM 5. Let ajc be a finite X-fraction, let + denote an even integer,—an odd integer.
The parities of au a2, c1; c2 occur in the following combinations only:

a2 flj c2 c t

2. + + + -

3. - + - +

4. + - + +

5. + - - +

Proof. We consider the tails uJi „. We see that an> „ = (rnX+0)/(0A +1) trivially has the form
of 1 or 2 in the table. Also, by definition we have a^n = r /A+e j + , / a , + l n , so that we can ex-
press the components of aJ>n in terms of the components of a J + l n .

lQj+l,2n :

(11)

Pj, 2n — rj\-

pj. m = rjl

Qj,ln=Pj

Qj, 2n = Pj

Pj+l.ln + P.

/•t"l 2n^^ /•

t l . In >

f l , 2 n •

; + l,2n) + cy-

n 8 j + l, In >

It can be seen that if aJ+! _ „ has one of the forms hsted in the table, then ocJt „ also has one of the
listed forms. In fact the change of form from a,- „ to aJ+i „ is given by the permutation
(15)(24) if rj is even, and by (13524) if ry is odd.

I f / i s a tail of the form i, (i = 1, 2, 3, 4, 5), then it turns out tha t /=A 3 / /A\ X2fjk2, Xf\X
determine three mutually exclusive classes, each class consisting of five distinct possible
arrangements. This means that every rational element in R(5*) can be expressed as in
Theorem 5.

COROLLARY 2. Ifc is the denominator of a parabolic point, then at least one of the components
is even.

Proof. Each row in the table of Theorem 3 has at least one + in the c2 and Cj columns.
It is clear that a similar conclusion holds for the numerators.

LEMMA 5. Let c = Ci + c^; then cx = c2 only ifct = 2, 4 or 6.

Proof. We assume that a/c is a A-fraction of the form (3), and that a = Pm, c = Qm.
Hence Qx = r^X, and if the fraction has length 1, then c^ c2. Suppose that m = 2; then
c = Q2 = rSiX+irji+ei). Clearly, cx = c2 implies that e2 = 0, which is impossible. The
interesting situations arise with m = 3, 4. These we examine in detail.

To have Q13 = Q23, we must have rlr2rz-\-e2ri + e%rl = 0. Clearly, at least one e must
be —1, so that rrr2r3 = rx—r3, r3 — ru or rt + r3. We consider the case rt — r3 = ±k, k^O,
and look for integral solutions of (±k+r3)r2r3 = +k. Since kj(k+r3) is not an integer, the
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upper sign is impossible; the lower sign gives the solutions k = 1, r2 = 4, r3 =^ ; k = 2, r2 = 2,
r3 = 1, rx — — 1; and fc = 4, r2 = 1, r3 = 2, r t = —2. None of these are permissible A-fractions.
The case rt+r3 = k, however, gives two solutions. Indeed, we find that these are

(0; 1/2A, - I/A, - 1/2A) = (2A+ l)/(4A+4) = A/4

and (0; I/A, - 1/2A, - I/A) = (2A+ l)/(2A + 2) = A/2.

If the A-fraction has length 4, we find that Q1A = g 2 4 gives the nice condition r{r2r3rA

= e2e4. Since rt > 0 (1 ^ i ^ 4), we get rt = r2 = r3 = r4 = 1, and, for the A-fraction to be
reduced, we must have e2 = e4 = 1. These conditions yield

(0; I/A, 1/A, I/A, I/A) = (4A+ l)/(6A+6).

We next prove that for m ^ 5, Q2m = 2im- In Theorem 1 (iii) we proved that Q2m ^ Qlm.
If in the inductive assumption we can replace ^ by > , we obtain the desired result. Hence we
prove that the inequality is strict for m = 5. The induction is then exactly as in Theorem 1.
We suppose that Q15 = Q25. The equations of (6) lead to the condition

r5Q^ = e5(Q13-Q23). (12)

Since g 1 4 > 0, and Q2Z ^ Q13, we must have e5 = - 1 . If Q23 = Qi3, then we see that
g 1 4 = 0 or r5 = 0, which is impossible. We now have rsQ14. = Q23 — Qi3>0, and we replace
6i4 ^ r*Q23+e4Qi2 fr°m (6). The equation in (12) becomes

023-013 = r5(r^Q23 + e4Q12) Z r5(Q23-Q12).

From Lemma 2, either Ql3 £: Q12 or 2 1 3 +1 = Qi2. The first alternative leads to a value of
r s < 1 if 0 1 3 > Q12, while r5 = r4 = 1 if Q13 = Q12. Hence the second alternative must
obtain.

The second alternative leads to a further equation

623(V 5 -1 ) = fi12(-l-e4r5)+l,

along with the additional conditions that e2 = 1 and r3 = 1 (Lemma 3 (i)). Since the left side
of this equation is non-negative, it follows that e4 = — 1, because 0 i 2 = ''1r2 + l ^ l . Hence,
if rs = 1, we have 023(r4— 1) = 1. This implies that r4 ^ 2 and Q23 = 1. But 0 2 3 = 1 leads
to the statement rx = 0 or r2 = — e3, which is nonsense. Therefore r5 2s 2, and we obtain

6 " ~ g l 2 (13)

Under the present set of conditions, we deduce that Q23 = 2r1r2+e3r1 + l ^ Q12 + 2if e3 = 1,
and g 2 3 ^ 0 1 2 +1 if e3 = - 1 . If r4 = 1, then e3 = 1, since r3 = 1. We find from (13) that
rj has a value less than 2. If r4 ^ 2, we find that the first and second members in (13) do not
exceed \ and 1, respectively, so that r5 < 2. We therefore conclude that Q25 > 0 1 5 .
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There are two further conditions on the components of c that can be obtained by the same
kind of argument as we have been using all through the paper. To avoid repetition we state
the results only.

LEMMA 6. 3Q13-Q23 + l ^ 0 or Ql2 = Q22±\.

LEMMA 7. 2Qlm- Q2m+2 ^ 0 form ^ 4 .

Although the concluding theorem is a contribution to the converse problem, we include it
here because it seems to be interesting.

THEOREM 6. The units [(l + 5*)/2]m (m = 0, ± 1 , ±2 , ...) are finite X-fractions and con-
sequently parabolic points.

Proof. We shall prove the theorem for m ^ 0, as the statement is then obvious for m < 0.
The units, when represented in terms of the basis (1, A), have the form Xm = UmX+ Um-U where
U, is the ith Fibonnaci number in the sequence 1,1,2,3, ...,and Un+1 = t/B+ l/M_i- The proof
is by induction.

We verify that for m = 0, 1, and 2 the units are finite A-fractions: X° = X- I/A, X1 = X,
X2 = X+1 = 2X—IIX. We assume that X"~2 is a finite A-fraction and we shall prove that A" is
also a finite A-fraction.

We write A" = A2n-2/A"-2 = (E/2n_2A+C/2n_3)/(£/n_2A+l/n_3). We expand the right
side by the nearest integer algorithm [5, p. 560] and obtain formally

U2n-2X+ U2n-z = (Un-2X+ C/ .^KA+e^+M), (14)

where e, = ± 1 and is chosen so that a^+b^ > 0. By using (1) and equating rational and A-
components of both sides, we find that eya^ = U2n-2 — Un.2r0 and elb1 = U2n.2—r0Un-v

If we choose r0 = C/n_2 + t/n and use the two well known formulae [6, p. 10],

and t/2n_3 = C / n _ 3 ^ 1 B 2 n

judiciously, we find that bt = 0 and that e^ay = (—1)"~3. We can choose ev so that a% > 0.
Since we now have (a1+fciA)/(t/(,_2A+t/n_3)< A/2, our choice of r0 is the "nearest

integer ", in the sense of [5], to X"jX. Hence the resulting A-fraction is unique. Another way
of writing (14) is A" = r0X+eJX"'2. The usual inductive argument for odd and even n proves
the theorem.
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