DIMENSION-PRESERVING EXTENSIONS OF PRO-p-GROUPS

TILMANN WÜRFEL

Abstract

We investigate extensions of pro-p-groups $1 \rightarrow N \rightarrow G \rightarrow$ $\Gamma \rightarrow 1$ where N is pro- p-free and $N_{a b}$ is a free $\mathbb{Z}_{p} \llbracket \Gamma \rrbracket$-module. In case Γ is finite we show that such an extension splits modulo the second derived group $N^{\prime \prime}$.

This note is a continuation of [6] where we studied certain presentations of pro-pgroups of cohomological dimension two, generalizing Brumer's characterization of such groups [1]. Here, we remove any condition of finite dimensionality and come up with a type of extension characterized by two properties of its kernel: it is pro- p-free and its abelianization is a free module over the cokernel, in the profinite sense. We then use some Lie algebra technique as in [5] to show that if the cokernel is finite then the extension with the kernel made metabelian splits. We work with the usual cohomology for profinite groups and discrete modules (cf. [3]) and use standard notations.

Proposition 1. Let $1 \rightarrow N \rightarrow G \rightarrow \Gamma \rightarrow 1$ be an exact sequence of pro-p-groups (p a prime) and let $i^{k}: H^{k}\left(\Gamma, X^{N}\right) \rightarrow H^{k}(G, X)$ denote the inflation maps. The following conditions are equivalent:
(a) i^{2} is surjective and i^{3} is injective with $X=\mathbb{Z} /(p)$.
(b) i^{2} is surjective and i^{k} is an isomorphism for all discrete torsion Γ-modules X and for all $k \geq 3$.
(c) N is pro-p-free and $H^{1}\left(\Gamma, H^{1}(N)\right)=0$.

Corollary. If $1 \rightarrow N \rightarrow G \rightarrow \Gamma \rightarrow 1$ satisfies the conditions of Proposition 1 then
(a) $c d(G)=c d(\Gamma)$ unless G is pro- p-free in which case $c d(\Gamma) \leq 2$,
(b) $N_{a b} \simeq \mathbb{Z}_{p} \llbracket \Gamma \rrbracket^{d}$ as Γ-modules where $\mathbb{Z}_{p} \llbracket \Gamma \rrbracket$ is the completed p-adic group ring and d is the $\mathbb{Z} /(p)$-dimension of $H^{1}(N)^{\Gamma}$.

Proof. (a) follows from (b) of Proposition 1. The proof of (b) is contained in [2], Satz 7.7.

Proof of Proposition 1. Let X be a finite p-primary left Γ-module. Embedding X into an induced G-module or Γ-module, respectively, yields the following two exact
sequences of Γ-modules:

$$
\begin{align*}
& 0 \rightarrow X \rightarrow M_{G}(X) \rightarrow A \rightarrow 0 \tag{1}\\
& 0 \rightarrow X \rightarrow M_{\Gamma}(X) \rightarrow B \rightarrow 0
\end{align*}
$$

Next apply $H^{*}(N,-)$ to (1), together with $M_{G}(X)^{N} \simeq M_{\Gamma}(X)$ and (2), so as to obtain the exact sequence of Γ-modules

$$
\begin{equation*}
0 \rightarrow B \rightarrow A^{N} \rightarrow H^{1}(N, X) \rightarrow 0 \tag{3}
\end{equation*}
$$

$H^{*}(\Gamma,-)$ applied to (3) and the connecting isomorphism $H^{k}(\Gamma, B) \simeq H^{k+1}(\Gamma, X)$ now give, for every $k \geq 1$, the exact sequence

$$
\begin{equation*}
H^{k+1}(\Gamma, X) \xrightarrow{j^{k}} H^{k}\left(\Gamma, A^{N}\right) \rightarrow H^{k}\left(\Gamma, H^{1}(N, X)\right) \rightarrow H^{k+2}(\Gamma, X) \xrightarrow{j^{k+1}} H^{k+1}\left(\Gamma, A^{N}\right) \tag{4}
\end{equation*}
$$

If we now define $h^{k}: H^{k}\left(\Gamma, A^{N}\right) \rightarrow H^{k}(G, A) \simeq H^{k+1}(G, X)$, then

$$
\begin{equation*}
h^{k} j^{k}=i^{k+1} \tag{5}
\end{equation*}
$$

(a) $\Rightarrow(\mathrm{c})$: let $X=\mathbb{Z} /(p)$. Since i^{2} is surjective, so is h^{1} by (5). Hence h^{1} is an isomorphism and j^{1} is surjective. Since i^{3} is injective, so is j^{2}. Sequence (4) now implies $H^{k}\left(\Gamma, H^{1}(N)\right)=0$ for $k=1$ and hence for all $k \geq 1$ which, for $k=2$, makes j^{2} surjective and hence an isomorphism. Therefore h^{2} is injective. From the exact Hochschild-Serre sequence for the module A ,

$$
0 \rightarrow H^{1}\left(\Gamma, A^{N}\right) \xrightarrow{h^{1}} H^{2}(G) \rightarrow H^{2}(N)^{\Gamma} \rightarrow H^{2}\left(\Gamma, A^{N}\right) \xrightarrow{h^{2}} H^{3}(G),
$$

it now follows that $H^{2}(N)^{\Gamma}=0$. So $H^{2}(N)=0$ and N is pro- p-free.
(c) $\Rightarrow(\mathrm{b})$: we have $H^{k}(N, A) \simeq H^{k+1}(N, X)=0$ for all $k \geq 1$ because N is pro- p-free. So the Hochschild-Serre sequence reduces to

$$
0 \rightarrow H^{k}\left(\Gamma, A^{N}\right) \rightarrow H^{k}(G, A) \rightarrow 0
$$

and h^{k} is an isomorphism for all $k \geq 1$. Moreover, freeness of N and the vanishing of $H^{1}\left(\Gamma, H^{1}(N)\right)$ imply $H^{k}\left(\Gamma, H^{1}(N, X)\right)=0$ for all $k \geq 1$ because N acts trivially on X. So, by (4), j^{1} is surjective and j^{k} is an isomorphism if $k \geq 2$ which, by (5), establishes the properties of i^{k}.

REMARK. Let $1 \rightarrow N \rightarrow G \rightarrow \Gamma \rightarrow 1$ satisfy the conditions of Proposition 1 and assume Γ is finite. Then i^{2} is an isomorphism for all torsion Γ-modules.

Proof. It suffices to show that i^{2} is injective for X finite, annihilated by some power p^{m}. We then have an epimorphism $S \rightarrow X$ where S is some finite direct sum of copies of $\mathbb{Z} /\left(p^{m}\right)[\Gamma]$. This induces a morphism between the two exact Hochschild-Serre sequences:

$$
\begin{array}{clllll}
H^{1}(G, S) & \longrightarrow & H^{1}(N, S)^{\Gamma} & \longrightarrow & 0 \\
\downarrow & & \downarrow \pi & & \\
H^{1}(G, X) & \longrightarrow & H^{1}(N, X)^{\Gamma} & \longrightarrow & H^{2}(\Gamma, X) & \\
i^{2} & H^{2}(G, X)
\end{array}
$$

By (b) of the Corollary, the Γ-module $N_{a b}$ is projective with respect to (discrete) Γ modules and continuous homomorphisms. Therefore, π is surjective and i^{2} is injective.

We are now concerned with the question whether an extension satisfying the conditions of Proposition 1 and where Γ is finite, splits; if it does, then G is a free pro- p-product of the form $G \simeq F \amalg \Gamma$ with F pro- p-free ([6], Remark 1). By a theorem of Serre [4] one knows that G contains torsion (if $\Gamma \neq 1$), so the answer is "yes" for $\Gamma \simeq \mathbb{Z} /(p)$.

PROPOSITION 2. Let $1 \rightarrow N \rightarrow G \rightarrow \Gamma \rightarrow 1$ be an exact sequence of pro- p groups satisfying the conditions of Proposition 1 and assume Γ is finite and G is finitely generated. Let $N^{\prime \prime}$ denote the second derived group of N. Then the induced extension $1 \rightarrow N / N^{\prime \prime} \rightarrow G / N^{\prime \prime} \rightarrow \Gamma \longrightarrow 1$ splits.

Proof. We shall make use of the module structure of the free metabelian \mathbb{Z}_{p}-Lie algebra $M=\oplus_{i \geq 1} M_{i}$, derived from N, upon which Γ acts and whose first homogenous component M_{1} is a free $\mathbb{Z}_{p}[\Gamma]$-module. We follow Stöhr's work [5] which was suggested to us by the referee of an earlier version of this paper.

By (b) of the Corollary $N_{a b}=N / N^{\prime}$ is a finitely generated free $\mathbb{Z}_{p}[\Gamma]$-module. Therefore, $1 \rightarrow N_{a b} \rightarrow G / N^{\prime} \rightarrow \Gamma \longrightarrow 1$ splits and there is a closed subgroup $S \leq G$ such that $G=N S$ and $N \cap S=N^{\prime}$. So $N^{\prime} / N^{\prime \prime}$ becomes a $\mathbb{Z}_{p}[\Gamma]$-module by restricting the action of G to S. It suffices to show that $H^{2}\left(\Gamma, N^{\prime} / N^{\prime \prime}\right)=0$, for then $1 \rightarrow N^{\prime} / N^{\prime \prime} \rightarrow S / N^{\prime \prime} \rightarrow$ $\Gamma \rightarrow 1$ will split and hence so will $1 \rightarrow N / N^{\prime \prime} \rightarrow G / N^{\prime \prime} \rightarrow \Gamma \rightarrow 1$. Let N_{i} denote the lower central series of N and put $Q_{i}=N^{\prime} / N_{i} N^{\prime \prime}$. Then $N^{\prime} / N^{\prime \prime} \simeq \lim Q_{i}$. We show in the Remark below that $H^{2}\left(\Gamma, \lim Q_{i}\right) \simeq \lim H^{2}\left(\Gamma, Q_{i}\right)$. Also let $M_{i}=N_{i} N^{\prime \prime} / N_{i+1} N^{\prime \prime}$. Then $1 \rightarrow M_{i} \rightarrow Q_{i+1} \rightarrow Q_{i} \rightarrow 1$ is exact and $Q_{2}=1$. So it remains to show that $H^{2}\left(\Gamma, M_{i}\right)=0$ for all $i \geq 2$. This will follow from the Lemma below because $M_{i} \simeq N_{i} / N_{i+1}\left(N_{i} \cap N^{\prime \prime}\right)$ is isomorphic to the i th homogenous component of $L / L^{\prime \prime}$ where $L=\oplus_{i \geq 1} L_{i}$ with $L_{i}=N_{i} / N_{i+1}$ is the Lie algebra of the finitely generated free pro- p group N and is thus a free \mathbb{Z}_{p}-Lie algebra over a \mathbb{Z}_{p}-basis of L_{1}.

REMARK. Let Γ be a finite group and Q_{i} an inverse system of compact Γ-modules upon which Γ acts continuously. Then $H^{k}\left(\Gamma, \lim Q_{i}\right) \simeq \lim H^{k}\left(\Gamma, Q_{i}\right)$ for all $k \geq 1$.

Proof. Since the inverse limit of compact groups is exact and the induced module $M_{\Gamma}(-)$ preserve compactness and continuity, one may apply dimension shifting. So it suffices to give the proof for $k=1$.

Consider the exact sequence of inverse systems of compact groups

$$
0 \rightarrow Q_{i} \rightarrow M_{\Gamma}\left(Q_{i}\right) \rightarrow C_{i} \rightarrow 0
$$

and put $Q=\lim Q_{i}, C=\lim C_{i}$. Then

$$
0 \rightarrow Q \rightarrow M_{\Gamma}(Q) \rightarrow C \rightarrow 0
$$

is exact. Application of the long exact cohomology sequence yields the following commutative diagram

where the bottom row is exact by compactness (Q_{i}^{Γ} and C_{i}^{Γ} are closed subgroups, $H^{1}\left(\Gamma, Q_{i}\right)$ gets the quotient topology). The middle vertical map is an isomorphism. The lefthand vertical map is surjective because it comes from the exact sequence of systems of compact groups

$$
0 \rightarrow Q_{i}^{\Gamma} \rightarrow Q_{i} \rightarrow Q_{i} / Q_{i}^{\Gamma} \rightarrow 0
$$

So the snake lemma establishes the desired isomorphism.
LEmmA. Let $M=\oplus_{n \geq 1} M_{n}$ be a finitely generated free metabelian \mathbb{Z}_{p}-Lie algebra upon which the finite p-group Γ acts (diagonally) such that M_{1} is a free $\mathbb{Z}_{p}[\Gamma]$-module. Then each homogenous component M_{n} is a direct sum of a free $\mathbb{Z}_{p}[\Gamma]$-module and of ideals of the form $\mathbb{Z}_{p}[\Gamma] I \Delta$ where $\Delta \leq \Gamma$ and $I \Delta$ is the augmentation ideal of $\mathbb{Z}_{p}[\Delta]$. (If $(n, p)=1$, then $\Delta=1$.) Hence $H^{2}\left(\Gamma, M_{n}\right)=0$.

Proof. We refer to [5], Sections 2, 3 and use the strategy of the proof of Theorem 3.11, loc. cit.. Let $R=\mathbb{Z}_{p}[\Gamma]$. The \mathbb{Z}_{p}-module M_{n} is generated by the left-normed commutators $\left[x_{1}, \ldots, x_{n}\right]\left(x_{i} \in M_{1}\right)$ and these satisfy the following relations:

$$
\begin{gather*}
{\left[x_{1}, x_{2}, \ldots\right]=-\left[x_{2}, x_{1}, \ldots\right]} \\
{\left[x_{1}, x_{2}, x_{3}, \ldots\right]+\left[x_{3}, x_{2}, x_{1}, \ldots\right]+\left[x_{1}, x_{3}, x_{2}, \ldots\right]=0} \tag{6}\\
{\left[x_{1}, \ldots, x_{j}, x_{j+1}, \ldots\right]=\left[x_{1}, \ldots, x_{j+1}, x_{j}, \ldots\right] \text { where } j \geq 3}
\end{gather*}
$$

Let e_{1}, \ldots, e_{d} be an R-basis of M_{1}, put $E=\Gamma e_{1} \cup \cdots \cup \Gamma e_{d}$, and choose a total ordering on E. The basic commutators $\left[x_{1}, \ldots, x_{n}\right]$ with $x_{i} \in E$ and $x_{1}>x_{2} \leq \cdots \leq x_{n}$ then form a \mathbb{Z}_{p}-basis of M_{n}.

Let $E^{(n)}$ denote the nth symmetric power of E, the general element of which is denoted by $\underline{x}=x_{1} \circ \cdots \circ x_{n}$. Γ acts on $E^{(n)}$ by left multiplication and the stabilizer Δ of $\underline{x} \in E^{(n)}$ is characterized as follows: $(\delta \in \Gamma)$

$$
\delta \underline{x}=\underline{x} \Leftrightarrow\left\{\begin{array}{l}
\left\{\delta x_{1}, \ldots, \delta x_{n}\right\}=\left\{x_{1}, \ldots, x_{n}\right\} \\
\delta x_{i} \text { and } x_{i} \text { occur with the same multiplicity in } \underline{x}(i=1, \ldots, n)
\end{array}\right.
$$

Therefore, the order of Δ divides n.
For $\underline{x} \in E^{(n)}$ let $M_{n}^{\underline{x}}$ denote the \mathbb{Z}_{p}-submodule generated by all left-normed commutators $\left[x_{\pi(1)}, \ldots, x_{\pi(n)}\right]$ (π a permutation). By (6), the basic ones among these commutators form a \mathbb{Z}_{p}-basis of $M_{\bar{n}}^{\underline{x}}$. If $\gamma \in \Gamma$ and $\gamma \underline{x} \neq \underline{x}$, then basic commutators coming from $\gamma \underline{x}$ or \underline{x}, respectively, are different. Therefore, we have

$$
\sum_{\gamma \in \Gamma} M_{n}^{\gamma \underline{x}}=\bigoplus_{\tilde{\gamma} \in \Gamma / \Delta} M_{n}^{\gamma} \underline{x} \text { where } \Delta \leq \Gamma \text { is the stabilizer of } \underline{x} .
$$

Moreover, since multiplication by γ induces a \mathbb{Z}_{p}-isomorphism $M_{n}^{\underline{x}} \rightarrow M_{n}^{\gamma \underline{x}}$, we have

$$
R \bigotimes_{R^{\prime}} M_{\bar{n}}^{\underline{x}} \simeq \bigoplus_{\tilde{\gamma} \in \Gamma / \Delta} M_{n}^{\gamma \underline{x}} \text { where } R^{\prime}=\mathbb{Z}_{p}[\Delta] .
$$

We now show that $M_{n}^{\underline{x}} \simeq R^{\prime k-1} \oplus i \Delta$ as R^{\prime}-modules where $\left\{x_{1}, \ldots, x_{n}\right\}$ is the disjoint union $\Delta x_{1} \cup \cdots \cup \Delta x_{k}$. For this choose the ordering on E so that $\Delta x_{1}<\cdots<\Delta x_{k}$ and that each Δx_{i} is ordered according to an ordering of Δ with 1 as the smallest element. The following basic commutators then form a \mathbb{Z}_{p}-basis of M_{n}^{x} :

$$
b_{\alpha, i}=\left[\alpha x_{i}, x_{1}, *\right] \text { with } 1 \leq i \leq k, \alpha \in \Delta, \alpha \neq 1 \text { if } i=1,
$$

and where $*$ stands for the remaining $n-2$ entries of \underline{x}. Using (6) one easily verifies that the action of $\delta \in \Delta$ on $b_{\alpha, i}$ is given by

$$
\begin{equation*}
\delta b_{\alpha, i}=b_{\delta \alpha, i}-b_{\delta, 1}\left(\text { where } b_{1,1}=0\right) \tag{7}
\end{equation*}
$$

The \mathbb{Z}_{p}-isomorphism $I \Delta \rightarrow \oplus_{1 \neq \alpha \in \Delta} \mathbb{Z}_{p} b_{\alpha, 1}$ given by $\alpha-1 \mapsto b_{\alpha, 1}$ is therefore R^{\prime}-linear. Let F be a free R^{\prime}-module with basis u_{2}, \ldots, u_{k} and define an R^{\prime}-linear map $F \oplus I \Delta \rightarrow M_{n}^{\underline{x}}$ by $u_{i} \mapsto b_{1, i}$ and $\alpha-1 \mapsto b_{\alpha, 1}$. This map is then surjective by (7) and hence is an isomorphism because the \mathbb{Z}_{p}-rank of M_{n}^{x} is $|\Delta|(k-1)+|\Delta|-1$.

We have thus shown that $\sum_{\gamma \in \Gamma} M_{n}^{\gamma \underline{x}} \simeq R^{k-1} \oplus\left(R \otimes_{R^{\prime}} I \Delta\right)$ where $R \otimes_{R^{\prime}} I \Delta \simeq R I \Delta$. Therefore, $H^{2}\left(\Gamma, \Sigma_{\gamma} M_{n}^{\gamma} \underline{\underline{x}}\right) \simeq H^{2}(\Delta, I \Delta) \simeq H^{1}\left(\Delta, \mathbb{Z}_{p}\right)=0$. Decomposing $E^{(n)}$ into Γ-orbits yields that M_{n} is a direct sum of R-submodules of the form $\sum_{\gamma} M_{n}^{\gamma \underline{x}}$ and this completes the proof.

References

1. A. Brumer, Pseudocompact algebras, profinite groups, and class formations, J. Algebra 4(1966), 442-470.
2. H. Koch, Galoissche Theorie der p-Erweiterungen. VEB Deutscher Verlag der Wissenschaften, Berlin, 1970.
3. J.-P. Serre, Cohomolgie Galoisienne, Springer LNM 5 (4th ed.), Berlin, 1973.
4. ——, Sur la dimension des groupes profinis, Topology 3(1965), 413-420.
5. R. Stöhr, On torsion in free central extensions of some torsion-free groups, J. Pure Appl. Algebra 46(1987), 249-289.
6. T. Würfel, Extensions of pro-p-groups of cohomological dimension two, Math. Proc. Camb. Phil. Soc. 99 (1986), 209-211.

Pennsylvania State University
Delaware Co. Campus
Media, PA 19063
USA

Current address:
Universität der Bundeswehr München
Fakultät für Informatik
D-8014 Neubiberg
West Germany

