Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T23:11:15.291Z Has data issue: false hasContentIssue false

Branching Brownian motion in a periodic environment and uniqueness of pulsating traveling waves

Published online by Cambridge University Press:  09 November 2022

Yan-Xia Ren*
Affiliation:
Peking University
Renming Song*
Affiliation:
University of Illinois at Urbana-Champaign
Fan Yang*
Affiliation:
Peking University
*
*Postal address: LMAM School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing, 100871, P. R. China.
***Postal address: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Email address: rsong@illinois.edu
*Postal address: LMAM School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing, 100871, P. R. China.

Abstract

Using one-dimensional branching Brownian motion in a periodic environment, we give probabilistic proofs of the asymptotics and uniqueness of pulsating traveling waves of the Fisher–Kolmogorov–Petrovskii–Piskounov (F-KPP) equation in a periodic environment. This paper is a sequel to ‘Branching Brownian motion in a periodic environment and existence of pulsating travelling waves’ (Ren et al., 2022), in which we proved the existence of the pulsating traveling waves in the supercritical and critical cases, using the limits of the additive and derivative martingales of branching Brownian motion in a periodic environment.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Bramson, M. (1978). Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31, 531581.CrossRefGoogle Scholar
Bramson, M. (1983). Convergence of Solutions to the Kolmogorov Equation to Travelling Waves. American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
Chauvin, B. (1991). Product martingales and stopping lines for branching Brownian motion. Ann. Prob. 30, 11951205.Google Scholar
Chauvin, B. and Rouault, A. (1990). Supercritical branching Brownain motion and K-P-P equation in the critical speed-area. Math. Nachr. 149, 4159.CrossRefGoogle Scholar
Fisher, R. A. (1937). The wave of advance of advantageous genes. Ann. Eugen. 7, 355369.CrossRefGoogle Scholar
Hamel, F. (2008). Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity. J. Math. Pures Appl. 89, 355399.CrossRefGoogle Scholar
Hamel, F., Nolen, J., Roquejoffre, J.-M. and Ryzhik, L. (2016). The logarithmic delay of KPP fronts in a periodic medium. J. Europ. Math. Soc. 18, 465505.CrossRefGoogle Scholar
Hamel, F. and Roques, L. (2011). Uniqueness and stability properties of monostable pulsating fronts. J. Europ. Math. Soc. 13, 345390.CrossRefGoogle Scholar
Harris, S. C. (1999). Travelling waves for the F-K-P-P equation via probabilistic arguments. Proc. R. Soc. Edinburgh A 129, 503517.CrossRefGoogle Scholar
Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York.Google Scholar
Kolmogorov, A., Petrovskii, I. and Piskounov, N. (1937). Étude de l’équation de la diffusion avec croissance de la quantité de la matière et son application a un problème biologique. Moscow Univ. Math. Bull. 1, 125.Google Scholar
Kyprianou, A. E. (2004). Travelling wave solution to the K-P-P equation: alternatives to Simon Harris’ probabilistic analysis. Ann. Inst. H. Poincaré Prob. Statist. 40, 5372.CrossRefGoogle Scholar
Lubetzky, E., Thornett, C. and Zeitouni, O. (2022). Maximum of branching Brownian motion in a periodic environment. Ann. Inst. H. Poincaré Prob. Statist. 58, 20652093.CrossRefGoogle Scholar
McKean, H. P. (1975). Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov. Commun. Pure Appl. Math. 28, 323331.CrossRefGoogle Scholar
Ren, Y.-X., Song, R. and Yang, F. (2022). Branching Brownian motion in a periodic environment and existence of pulsating travelling waves. Preprint. Available at https://arxiv.org/abs/2202.11253.Google Scholar
Shiga, T. and Watanabe, S. (1973). Bessel diffusions as a one-parameter family of diffusion processes. Z. Wahrscheinlichkeitsth. 27, 3746.CrossRefGoogle Scholar