Study/Objective: The aim of this presentation is to select key results learned from FP7 funded European projects on security research on the CBRNe field.

Background: International events remind us that Chemical, Biological, Radiologic, Nuclear, and Explosive (CBRNe) events can have multiple facets and can concern the civilian population. Our goal is to take care of victims and to keep the First Responders (FRs) safe while they perform their tasks at the scene and in hospitals. Recent events in Paris have impacted our way of understanding the suitability of our current countermeasures and demonstrated the accuracy of securing and increasing the FR's protection.

Methods: Several European projects, such as Extension Disaster Education Network (EDEN) and IFREACT, that we have been working on offered the opportunity to compare standard operational procedures (SOPs) in large field exercises and test FR's protection means. In this presentation, EU project's innovations are highlighted in a medical aspect, in particular, the medical response in a CBRNE environment, from decision making on the scene to the care of victims in the hospitals.

Results: In all CBRNE situations, anticipation, adaptability, flexibility, and interoperability are the key goals to achieve. They rely on a doctrine which firstly implies situational awareness and information sharing between all the stakeholders. Secondly, it also includes safety measures and security issues for FRs with the adapted equipment and PPE (personal protective equipment) enabling decontamination procedures in a contaminated area. And thirdly, it provides safe health procedures with fast medical triage and treatment on the scene and in hospitals.

Conclusion: Increasing technology efficiency with user-friendly communication and detection tools, increasing the FR's safety and training with non-bulky PPE, and educating the population are key factors to improve SOPs and human behavior.

Mass Exposure to Hydrofluoric Acid and Response:
The Green Island Fire, New York
David Kasse2, Gregory P. Wu1, Michael W. Dailey2, Kevin P. Collins3, Molly Boyd3
1. Department Of Emergency Medicine, Albany Medical Center, Albany/NY/United States of America
2. Division Of Emergency Medical Services, Albany Medical Center, Albany/NY/United States of America
3. Division Of Medical Toxicology, Albany Medical Center, Albany/NY/United States of America

Study/Objective: This case study will evaluate a mass casualty disaster caused by Hydrofluoric Acid (HFA), as well as the importance of interdisciplinary coordination in dealing with such an event.

Background: HFA is an extremely toxic and widely used solvent in industry. Upon exposure, profound hypocalcemia, arrhythmias and multisystem failure can occur. In high concentrations of HFA, as little as 2.5% BSA exposure can be lethal. On November 3, 2015 during an industrial fire in Green Island, New York, 33 firefighters and employees were accidentally exposed to high concentration HFA when it was accidentally aerosolized in the process of extinguishing the fire.

Methods: Not Applicable

Results: Upon identification of the HFA exposure disaster protocols were initiated. Local emergency departments were notified, and the on scene physicians established an on-site command center. Decontamination sites were established on scene and at a nearby fire headquarters. Local providers were in close communication with all local hospitals involved. Numerous measures were performed to ensure readiness. This included clearing the Emergency Department of existing patients, assistance from hospitalists and trauma surgery, and triaging in the ED. Ad hoc standardized treatment protocols and order sets, were written for rapid patient evaluation and treatment. Pharmacy staff compounded calcium compounds for topical and intravenous administration. Patients underwent various interventions in the ED for their exposure.
These interventions included additional eye decontamination; select patients had nebulized calcium for respiratory distress, topical calcium for skin exposure, and IV calcium, and magnesium for EKG abnormalities. All were discharged home the next day. **Conclusion:** This event exemplified how strong communication and planning helps control the impact of a mass casualty event. Having a strong interplay between an integrated incident command, EMS, Toxicology, Pharmacy, and EM physicians should all be built in to disaster planning to facilitate all-hazard preparedness and resilience.

Prehosp Disaster Med 2017;32(Suppl. 1):s8–s9

doi:10.1017/S1049023X17000504

Necessity of Information Sharing System of Air Dose Levels to Secure enough Medical Teams within the Evacuation Zone in Nuclear Disasters

Masaru Ogasa, Kazuma Morino, Hisayoshi Kondo
Department Of Emergency, Aomori Prefectural Central Hospital, Aomori-shi/Japan

Study/Objective: We investigate what becomes obstacles to ensure an adequate number of medical response teams, which are deployable to secure safe transport of patients to an alternative location in nuclear disaster.

Background: One hospital in Fukushima lost more than 10% of patients while transporting them in a traffic jam without medical attendance. Disaster Medical Assistance Teams (DMATs) don’t have any duties in nuclear disaster.

Methods: A questionnaire survey was carried out to investigate awareness for a radiation emergency medicine among DMATs in Japan.

Results: DMAT members think that the special-educated DMATs for radiation will be a better relief team than REMATs (Radiation Emergency Medical Assistance Team) for hospital evacuation. REMATs are the only specialists of radiation dose evaluation; REMATs have a little knowledge of emergency medical care, and their human resource is poor. But DMATs also think that a majority of them do not want to be on-duty for nuclear power plant disasters. Their hesitation is made by the lack of dosage information at their working place. It affects their decision to dispatch adversely; if only a few data public monitoring posts are offered. But if the first comer DMAT measured the dose rate already, the next team will participate in medical activities. We also evaluated the usefulness of a new ultra-compact portable dosimeter. Once connected to a smartphone, the device works in conjunction with an application software and continues to take and store measured results automatically as digital data. It is also possible to visualize the measurements by automatically importing them to a visualizable map for real-time information sharing. DMATs think this system will provide a sense of security to them.

Conclusion: Information dissemination on correct knowledge of radiation and timely sharing of data on radiation doses are required to ensure that enough medical response teams are deployable in the event of large-scale and complex disasters.

Prehosp Disaster Med 2017;32(Suppl. 1):s9

doi:10.1017/S1049023X17000516

Our Preparedness for Radiological Disaster as the City Suffered from the Atomic Bomb Attack, Japan

Yoshihiro Nozaki
Emergency Medical Center, Nagasaki University Hospital, Nagasaki/ Japan

Study/Objective: Nagasaki University Hospital was designated as a core hospital for nuclear disaster in the west part Japan. Our purpose is to show the process of organizing the team and getting connected with several facilities around our hospital.

Background: Nagasaki Medical College, a predecessor of Nagasaki University Hospital, is the only medical university hospital which suffered in the atomic bomb attack. We have continued medical campaigns and research activities since August 9, 1945. In Japan, medical facilities are chosen and

Prehosp Disaster Med 2017;32(Suppl. 1):s9

doi:10.1017/S1049023X17000528