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Abstract. Let D = 7mod 8 be a positive squarefree integer, and:jgtbe the ideal class number
of Ep = Q(+/—D). Letd = 1 mod 4 be a squarefree integer relatively primeDioThen for
any integerk > O there is a constam/ = M (k), independent of the paitD, d), such that if
(=D = sign(d), (2k+1, hp) =1, andv'D > (12/n)d2(log |d|+ M (k)), then the central.-value
Lk +1, Xlz)’f;rl) > 0. Furthermore, fok < 1, we can také (k) = 0. Finally, if D = p is a prime,
andd > 0, then the associated elliptic curv p)¢ has Mordell-Weil rank 0 (over its definition
field) wheny/D > (12/7)d? logd.
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0. Introduction

Let D = 3 mod 4 be a positive squarefree integer, anddlet 1 mod 4 be a
squarefree integer relatively prime Bo We consider Hecke charactersof Ep =

Q(«~/—D) of conductord+/— D0 satisfying

(1) x (@) = x(2A) for every ideal ofE, relatively prime to the conductor, and
(2) x(@0®) = L« for every principal ideal relatively prime to the conductor.

Here O is the ring of integers off,. There arek, such Hecke characters for
each pair(D, d), differing from each other by an ideal class charactelEgf
wherehp is the ideal class number di,. We denote such a Hecke character
by xp.s. These Hecke characters were studied by Rohrlich ([Roh2-3]), who also
allowedD or d to be even. In particular, he proved, that for almost all p@irsd)

such thatD > |d|®** and the root number ofp ; is one, the centralL-value

L(1, xp.a) # 0. Heree is any positive number. Rohrlich and Montgomery ([MR])
also proved a more definite result asserting thét, xp1) # O if and only if

the root number ofp 1 is one. Rodriguez Villegas further gave a nice formula in
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[RV1-2] for the centralL-value L(1, xp 1) for D = 7 mod 8. From this formula

the nonvanishing of the centralvalue becomes obvious. A formula for the central
L-value L(k + 1, x%') was obtained by similar technique in [RVZ]. Using a
different method de\}eloped in [Yal], Rodriguez Villegas and the author discovered
that similar formula is valid for Hecke characte(rgkfl, where every prime divisor

of d splitsinEp. In fact, such a formula exists for a whole class of Hecke characters
of a CM number field of any degree ([RVY]). In this paper, we use the same method
to derive a formula for (k + 1, 55 without any condition o/ (Theorem 2.1),

which enables us to prove the following nonvanishing result in Section 3.

MAIN THEOREM. Let D = 7 mod 8be a positive squarefree integer, and gf
be the ideal class number &fp = Q(+/—D). Letd = 1 mod 4be a squarefree
integer relatively prime toD. Then for any integek > O there is a constant
M = M(k), independent of the paifD, d), such that if(—1)* = sign(d), (2k +
1, hp) = 1, and/D > (12/m)d?(log|d| + M(k)), then the centralL-value
L(k+ 1, x5+ > 0. Furthermore, for0 < k < 1 we can takeV (k) = 0.

Refinements and comments will also be given in Section 3. The Hecke charac-
ters considered here are arithmetic in nature; each such character has an associated
CM motive (see, for example, [Sha]). In particular, whes= 0 andD = pis a
prime, the charactey,, ; is very closely related to the elliptic cun(p)? over a
number fieldF studied by Gross ([Gro]), using Shimura’s theory on CM Abelian
varieties ([Sh1-2]). He proved, in particular, by means of descent theorytipat
has Mordell-Weil rank 0 oveF. Combining a theorem of Rubin ([Ru, Corollary
2.2]) with the main theorem, one has

COROLLARY.Let p = 7 mod 8be a prime, and let! = 1 mod 4be a positive
squarefree integer not divisible by such that,/p > (12/7)d?logd. Then the
elliptic curve A(p)? has Modell-Weil rank overQ(j). Here j = j(1+ /—p/2)
is the j-invariant of A(p).

1. Eigenfunctions of Weil Representations

In this section, we will explicitly construct eigenfunctions of the local Weil repres-
entation of the unitary group of one variable in terms of a Schrédinger model. They
are needed in the next section to derive an explicit formula for the central Hecke
L-value L(k + 1, x34*) from the main formula in [Yal]. We consider general
local fields instead of jus®,, since it is not much harder. In the real case, the
eigenfunctions are essentially classical Hermite functions as we will see in Lemma
1.1. For thep-adic case § # 2), eigenfunctions were explicitly constructed in
[Ya2] by means of a lattice model. So we only need to transfer the results to the
Schrédinger model. We will state the results in this section and give the proof,

which is quite technical and lengthy in the appendix.
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Let F be alocal field and leE = F(§) be a quadratic extension #f. Assume
thats = —8 andA = 82 € F. Let ¢ be a fixed nontrivial character df and
let Y = ¥ otrg,p. Givena € F*, and a charactey of E* such thaty | = ¢
is the quadratic character @f* associated t@&/F, there is a well-defined Well
representatiom, , of G = U(1) = E* on the spaceS(F) of Schwartz functions
on F (also depending o and ) ([Ku], see also the appendix). By the epsilon
dichotomy ([HKS, Corollary 8.5]), one has

S(F) = &C ¢;, (1.2)
where the sum runs over all charactersf E* satisfying

e(3. X7, 3¥E) i (8) = e(a) (1.2)

andg, is an eigenfunction ofG, w, ., ) with eigencharactey. Herer(z) = 1(z/z).
The task is to give an explicit formula f@r,. First we consider the cage = R.
Recall that every character &f is of the formy,(z) = (z/|z])", and that every
character ofC! is of the formu; (z) = Z.

LEMMA 1.1 ([Yal, Thm. 2.18])Let F = R and ¥ (x) = €7*. Assumeij(z) =
(Iz]/2)?"*1 and§ € iR.o. Theni occurs inw,,, if and only ifk = m sign(a) —
1 —sign(@)/2 > 0. Whenk > 0, ¢, ,(x) = ¢*(1/|8%|x) is an eigenfunction of
wy,, With eigencharacter;. Here

1 1 d\f
°=e ™ and ¢f(x) = > (x - E&) ¢°(x).
Moreover
1 k!

T /215%| G

Notice that there is a unique polynomial, (x) of degreek (the kth Hermite
polynomial) such that

(51101 Pl e

¢* (x) = Hy (x)$°(x). (1.3)

It is easy to check thatly = 1 andH; = x. In general H, has the same parity as
k.

For the rest of this section, we assume thas a p-adic local field withp # 2
and thats is a uniformizer or a unit ot depending on whethdt / F is ramified or
not. Lety’ = (aé/4)y g, and letn (") be the conductor of’. Let

b4V if n(y') = 2n,
L={"t" _ v (1.4)
T'80r @ 7" 10p ifn) =2n -1
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Then the Weil representation 6f has a lattice model realizatian on
S(L,y)={p e SE):¢pGz+1)=v'(z)f(z) foralll e L). (1.5)

Decomposition ofS(L, v) is well-understood in [Ya2]. Define
PS> S PN = [ fxb 4y -brdy. (L)
F/FNL

Then there is a constant> 0 such that{p(f), p(f)) = ¢{f, f), forany f €
S(L, ). Throughp, o gives a Weil representation @ on S(F). So there is a
unique charactef of G such that such that

wo, () op=E(@)pow(g), gei. (1.7)

PROPOSITION 1.2Writeg = x +y§ € G. LetG' = {x +y8§ € G : y € 71O}
andG; = {g € G : g =1 modx*}, wherer is a uniformizer ofF.

(1) If E/F is ramified. Then

x(@(g—D)A, —y)r ifgeGy,
£(g) = 1 . (1.8)
x@a)e(5, epr, ) ifge G -Gy

In particular, when the conductor(y) of x is equal tol, one has

t' H I f 1-’ ’l 8 = )
§=[ rivial if e(5, x, 3¥E)x(8) = () (1.9)

sign  otherwise

wheresignis the nontrivial character oG/ G, = {£1}.
(2) If E/F is unramified andi(v') = n(y) — ordg () = 2n is even. Then

x(@(g—=D)A, =y ifgeGy,

5(8) = { x(6(g — 1) otherwise

(1.10)

In particular, if x is unramified, theg is trivial.
(3) If E/F is unramified andk(v/') = n(y) — ordg (@) = 2n — 1is odd. Then

x(©@(g—D)A, =yrF if g € Gy,

1) (=2 feeG —G
£g) = { X0~ 1) (T) fget =0 (1.11)
x((g—1) <w) ifgeG-G.

In particular, if x is unramified, the§ = no, whereno(z/z) = 10(z) = (7, 22) F.
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(4) If n(x) < 1, thené is trivial on G;.

COROLLARY 1.3.Letg, € S(L, ¥) be an eigenfunction @ with eigencharac-
ter n'. Thenp(¢,/) is an eigenfunction ab, , with eigencharacte€n’, wheres is
given in Propositior.2.

Applying this to [Ya2, Cor. 2.5], one gets

COROLLARY 1.4. (1) AssumeE/F is ramified and letn(y’) = 2n. Then
charz["/29) is an eigenfunction ofG, w,.,) with eigencharactet, where[x]
denotes the largest integer less than or equat.to

(2) Assume thatt/F is unramified and that:(vy') = 2n is even. Then
charr"Or) is an eigenfunction ofG, v, ,) with eigencharactet.

Given a charactey of G = E* satisfying (1.2), we denotg = n& L.

PROPOSITION 1.5Assume thak/F is unramified and that(y’) = 2n — 1is
odd. Assume further that(n") < 1. Thenn occurs inw, , if and only ify" # no.
Write " = (Aa/2)7%~2y and view it as a character of the residue figid=
(9F/7T.

(1) If ' (=1) = (=1/F), let

¢, (u) = chanrOr)(u) + G <

A+38\ (B A
D) (o
A2Z—B2=A mod

Theng, (u) = ¢>,’7(n1‘”u) is an eigenfunction ofG, ., ,) With eigencharacter.
Here G(y") is the Gauss sum of the characigf of F.
(2) If (=) = —(—1/F) andn’ # no, leta € O}, and

¢;’a(u) = charla + 7Or)(u) — chal—a + 7Or)(u) +

1 (A+5\ (B
G(W)Z”( B )(F>X

x " (Au? — 2Bau + Aa®) chaOr)(u).

_l’_

Here the sum runs ovei, B) € F2 with A2 — B> = A modr. Theng, ,(u) =
d),’m(nl_”u) # 0is an eigenfunction ofG, w, ,) with eigencharacter.

The following two propositions will not be needed in this paper. However, we
include them here without proof for completeness and for their own rights. For
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z € E,wewritez = R(z) + I(z)8 with R(z) andI(z) € F.

PROPOSITION 1.6Assume that(y') = 2n is even. Then occurs inw, , if and
only if there isw € n,;"*”(% such thaty'(g) = ¥'(—wwg) for everyg € Gy. In
such a case

A
Gw) = Y 0@y (%‘R(wg)l(wg)) ¥ (—AaR(wg)u) x

8€G/ Gy

charl(wg) + 7" Or)(u) if E/F is unramified
X
charl (wg) + A2 @) (u) if E/F is ramified

is an eigenfunction ofG, w,, ,) with eigencharacter. In particular, Suppg, C
n k@ if E/F is unramified, andSuppg, C w=*+"/2@. if E/F is ramified.
Here Suppy denotes the support of the functign

PROPOSITION 1.7Assume thak/F is unramifiedn(y') = 2n — 1is odd, and
thatn(n’) > 1. Thenn occurs inw, , if and only ifn(n’) = 2k — 1is odd. In such a
case, there iz € 7 X" 0% — ¥ (8O + 7 OF) such thaty'(g) = ¢'(—wwg)
for g € G,. Moreover

. ’ -1 ﬂl “LyR -1
Grw@) = > 0 (@re) Y ( 5[ (wg™)R(wg )) x

g€G’' /Gy
X (—AaR(wg™Hu) charl (wg™™) + 7" OF) (u) +

L Y (@M)W (—AaR W) (w)) x
ﬂ 8€(G—=G")/ Gy

XY <2—;(xl(w)2 — 21 (w)u + xu2)> X

xcharl (wg™) + 7" *0r) (u)

is an eigenfunction ofG, w,_ ,) with eigencharacter,.

2. The Central L-value

Let D = 7 mod 8 be a squarefree positive integer and let 1 mod 4 be a square-
free integer relatively prime t®. Then there is unique decompositign= did,
such that/; are fundamental discriminants and that every prime divisadi ¢f,) is
split (inert) inE = Q(+/—D). Itis allowedd or d; = 1. We viewE as a subfield of
C,and fix§ = /=D = iv/D € iR_. Let Xxp.q be a Hecke character &f defined
in the introduction. Then there is a decompositjon, = xp.1n7 wherexp is a
canonical character of and7j = (£) o Ng,g ([Roh2-3]). Sincerj|q; is trivial,

there is a character of EN\E? such thatij(z) = 7(z/2). Let x = xcarlly'>, then
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xlg; = & = Ig is the quadratic Hecke character(@fassociated to the Dirichlet
character=2). For every integek > 0, letn;, = nxklgé, thens, = x%7. We

assume that the global root numbernaf+17 is ONE, i.e.,(—1)* = sign(d). Then
there is unique decomposition (up to ordér= D, D, with D; > 0 and

. - 2d 2d
e (X0 3V E) (X)) = & <F§) =g <Fll) , (2.1)
for every primel < oo (see [RVY, Lem. 3.1]). Hergrg, = ¥ o trg, 0, andy; is a
‘canonical’ additive character @, given by
e2rix if 100,

20l if | f oo,

Vi (x) = {

wherero: Q — Q;/Z; — Q/Z. For a primel|d, with [ = 1mod 4, we define
¢ € S(Zy) C S(Q)) via

¢i(w) = charlZ)(u) + W X

B
x Z (7) ¥/ (Au?) char(Z;) (u). (2.2)

A2—B2=—D mod!

Herevy," = —(2D1/d2D>) ;. For a primel|d, with [ = —1 mod 4, we define
¢ € S(Zy) C S(Q) via

¢(w) = chanl+1Z;))(u) — cha—1+ 1Z;)(u) +

1
X
Gy

X Z <?) ¥/ (AU? — 2Bu + A) chanZ)(u).  (2.3)

A2—B2=—D mod!

For an integer: > 0, we also define a theta function

Oaka(z) = (IMmz)~*/2 Z (%) "

(x,dp=1
X .2
H, | ertrz, 2.4
xl];!@ (MlDla) L (x+/Im7z) (2.4)

Here H; is kth Hermite polynomial defined byl.3). Notice thaté, , , is very
simple and independent afwhend, = 1.

THEOREM 2.1.LetCL(E) be the ideal class group df, and lets = s(d) be the
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number of prime factors ef. For every ideal clasg€ € CL(FE), choose a primitive
ideal A € C~! relatively prime to2d, and write

—b++—-D
912=|:a2,+T:|, a >0,

withb = r mod &2, b = 0 modD:d,, wherer is a fixed square root of D mod 1672.
Then

2

d
1)
& Oa k,a(TA,D;)| - (2.5)

)2k+1(§[)

Lk+1, Xlz)]fjl) =K
cecur) (Xp.d

Here

. 2/ —s k+1 Hl|d2(1+l_l) < \/D_Z )2k+1/2
kKN'D [Ty, 1. 1) d?d>/Dy
and
b++—D
———— €
4dld2D1a2
Proof (sketch). The proof is similar to that of [RVY, Thm. 3.2] and is based on
the main formula in [Yal]. Applying [Yal, Thm. 2.15] to the datum, n, 8, ¥,
a = 4/d,D5), one has
Lk+1 x50 LG, xii)
L1, (72)) L(1, (=)

TA, Dy —

= |04 (m) (D)%

Herec is an explicit constantp = I1¢; € S(Q,) is a Schwartz function o4
given below, and, (,)(1) is an integral oveEl\E}% given by theta lifting from
unitary group of one variable to itself. Wheis split, ¢, is given by [Yal, (2.29)-
(2.30)]. When = oo, ¢, = ¢* is given by Lemma 1. Wher is finite and nonsplit
(sol # 2), ¢, is given by Corollary 14 and Proposition.b. More precisely, when
I|D, ¢, = (1//1) charl=1Z,;, and wheri|d,, ¢, is given by (2.2) or (2.3). Finally,
if I 1 dyooisinertinE, ¢, = charZ,). In [RVY, Sect. 1], we gave a method to
computed, (n,)(1) in terms of¢ ([RVY, Cor. 1.4 and Prop. 1.7]). Applying the
method to this situation, we obtain the desired formula (after some computation).
The casel, = 1 was computed in [RVY].

Combining this with a theorem of Shimura and a trick of Rohrlich (see [Roh2]
for detail), one has

THEOREM 2.2 (Notation as in Theorem 2. jssume that2k + 1, 4p) = 1. Then
the following are equivalent.

(1) The centralL-valueL (k + 1, (xp.s)**1) = 0.
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(2) For every ideal clas€ e CL(E), and a (and any) primitive ideall € C1,
relatively prime t02d, o 1 is a root of the theta functioé, x ,, a = N2L.

(3) The global theta liftingd, (n;) (with respect tola = 2/d>Do, x, ¥, 8)) van-
ishes.

We remark thaty ; does not depend on the decompositidor= D; D, associ-
ated to formula2.1). This is because if the centralvalue for one choice of the
canonical Hecke character vanishes, it will vanish for any choice of the canonical
Hecke character by a theorem of Rohrlich ([Roh2]).

3. The Proof of the Main Theorem

First we notice that the functiong defined via(2.2) and (2.3) can be viewed as
functions onlF;. Indeed, one has

_ _1 B\ rau?
i (u) —ao,u+2G(¢,,)AZZ (l>w(Au)

—B2—_D
=4 +;Z il lﬁ”(}(x—9>u2> (3.1)
— T 26y AN 2 x ’ '

for/ = 1 mod 4, and

1
= 01y — 6 1ut+ =
bi(u) 1 vt G ) >

2_RB2__p

B /" 2
<7> V" (Au? — 2Bu + A)

1 x+2
= 61,14 - 6—1,14 + — 2 X
GGY") 2 ( ! )

xelFy

2
< (% (x(u 12 w» , (3.2)

for/ = —1 mod 4. Here: € [, andg, , is the Kronecker symbol. Also the equality
A2—B?=—DisinF,. Recally” = —(2/d>D)v, (we takeD, = 1 by the remark
in the end of Section 2).

LEMMA 3.1. Assumé = 1 mod 4and writel = a? + b? with b being a positive
even integer. The@;(0) = 1+ b/+/1. Foru € F}, one hasp,(u) # 0.
Proof. By (3.1), one has

1 x + Dx
‘MO)ZHMZ( l )

xeF}
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Let Ap be the elliptic curve defined by? = x3 + Dx. Then

3
#ApE) =1+1+ Y (x +Dx>.

xely
On the other hand, it is well known ([Sil, page 185]) that

I+1+2a if (—D/I) =1,

#Ap () = { [ +142b if (=D/I) = —1.

Therefore¢;(0) = 14+ b/+/I in our case. Fou € F¥, ¥'((x — D/x)u?) =
1 mod(1-¢). So

14 X + 2
+2G (" )y (1) = Z ( 1 ) = +2b £ 0mod(1 — ).

£3
xel;

In particular,¢; (0) # 0.

LEMMA 3.2. Assuméd = —1 mod 4 Theng;(0) = 0 and ¢;(u) # O for every
u € F;. Moreover, there is a map: F;' — C* such that

jlab) = j(@j ), (3.3)
and
dutw) = j@ (2)" (3.4)

for everya, u € F;. Hereo, € GalQ(¢)/Q) is given viag™ = ¢/
Proof. Obviously

1 B
0 = — ) v"(A) =0,
¢1(0) GW’/)AZZ (l>w<)

_B2—_pD
since(—1/1) = —1. For everyu € F}, define

_ _ 1 E " 2 2
Do) = Sow = ba+ G AZBZZZD ( l ) ¥"(AU? — 2 Bau + Ad®), (3.5)

for u € IF;. One hasp; 1 = ¢,. One can viewp, , € S(Z;) C S(Q)) via ¢, ,(u) =

¢1..(u mod ) for u € Z;. By Proposition 17, ¢, , # 0 is also an eigenfunc-
tion of w,,,; With eigencharacte(n;);, wherea = 4/d>D5 is as in the proof of
Theorem 2.1. By the multiplicity one theorem, there is a unique nonzero complex
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number; (a) such thaw; (u) = j(a)¢:.(u), for everyu € F;. On the other hand,
one hasp, ,(u) = ¢;(u/a)’>. This proves (3.4). It follows easily from (3.4) that
¢i1(u) # Oforeveryu € ;. Applying (3.4) twice, one get$3.3) (sinceg; (1) # 0).

The following lemma can be checked by standard method in exponential sums
(see [Li, Chap. 6] for example) and is left to the reader.

LEMMA3.3. Leta; € F),,i = 1,2, 3, anda; € IF),. Lety be a nontrivial additive
character of F,. Then

Z (%) V(azx +az/x)| < by/p. (3.6)

xE]F}‘,
Here

4 if azds 75 O,
b= 2 if az = daz = 0,
3 otherwise.

Now we proceed to prove the main theorem in the introduction. We divide it
into two theorems.

THEOREM 3.4.Assume thaD = 7 mod 8andd = 1 mod 4are two positive
squarefree integers such that every positive factetisfinert in E, and is congru-
enttol modulo4. Letk > Obe an even integer, and lep, be the ideal class number
of Ep = Q(+/—D). Then there exists a constabt = M (k), independent of the
pair (D, d), such that if(hp, 2k + 1) = 1, and+/D > (12/7)d(logd + M(k)),
then the centraL-value L (k + 1, x54") > 0. One can take/ (0) = 0.

Proof. By Theorem 2 and the assumption, it suffices to show that b +
v —D/4d is not a root of the theta function

O x1(z) = (Im 2)~®/? Z ¢ (x) Hy (x+/Im z) erin?z

xeZ

Here we denoté (x) = ]_[”d ¢ (x/4). By Lemma 3.3, one has

bl <[]2<Va (3.7)

lld

By Lemma 3.1, one has

601> [ 5 > 2. (3.8)
I|d
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Setc = e~@VD/4) g3 and assume < 1. SinceH, is a polynomial of of degree
k, there is a constar@; = Cq(k) > O such that Hy(x)| > Cy|x|* for |x| > = L.
So

|Hy(nv/ Im 7)| > Cin*n~*/2(—logc + 3logd)*/?, (3.9)

whenc < 1/e andn is a positive integer. Sef, = |H(0)|] > 0 (k is even).
Combining (3.7)—(3.9), one has

(Im )% 210, 4 1(7)]

2

o
> Cod™¥? — 2C1~24Y%(— log e + 3logd)*/2 Y " nfd =¥’ "
n=1

>d"%P 1),
where
> 2
f () = Co — 201w~ ¥/2x(Cs — log )2 Y ka2,
n=1

andCs > 1is chosen such that 3lag< x%* for x > Cs. Here we have used the
inequality

—logc + 3logd

¥l < C3z—logc.

Notice that f(x) is independent oD or d. Since f(0) = C, > 0, there is a
constant O< C4 < 1/e such thatf(x) > 0 for 0 < x < C4. Therefore, when
¢ < Cyie,,~/D > (12/m)d(logd — %IogC4), one ha¥), ;1(r) # 0, and so

Lk + 1, x54h > 0. Taking M (k) = —2logCa, we have proved the general
statement of the theorem. Whén= 0, H, = 1, similar but simpler argument
gives

o
0a01(0) = d®? — 2dl/ZZCn2
n=1

> 4~ (1- 2425
1-c¢/)’

for ¢ = e~@VD/4) 1 (different from thec used above). So far < 1/d3 <
1/2d% + 1 (we may assumé > 1, the casel = 1 is trivial) or, equivalently,
VD > (12/7)d logd, one has

04,01(t) # 0.
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So we can také/(0) = 0. This proves the theorem

THEOREM 3.5.Let D = 7 mod 8be a positive squarefree integer, and det=
1 mod 4be a squarefree integer not satisfying the special condition in The8m
Letk > 0 be an integer. Then there is a constamt(k), independent of the
pair (D, d), such that ifsignd) = (-1*, (2 + L hp) = 1, and VD >
(4/7)d%(log|d| + M(k)), then the centralL-value L(k + 1, x5'5") > 0. One
can takeM (k) = Ofor k < 1.

Proof. Whend does not satisfy the special condition in Theorem 3.4, the theta
function6, ;1 does not have a constant term. As in Section 2, we write d;d;
such that every prime factor df is split in Ep and every prime factor af; is inert
in Ep. As before, it is sufficient to prove that= b + +/—D/4d?d, is not a root
of the theta functiom, x 1 given by (2.4) with D, = 1. Setgp (x) = I1;4¢ (x /4d1).
By Lemma 3.3, one hag,;(x)| < 4 and so

|p(x)| < 4lda| (3.10)

(4 < [ except forl = 3). Notice that/I¢;(x) is an algebraic integer in thi¢h
cyclotomic fieldQ(¢;). It is not difficult to see from this fact and Lemmas 3.2 and
3.3 that

Vigl =[] IVig)) 1Tt = @V,
1#0 e GalQ(5)/Q)

forx € Z;. So
¢ (x)| = 4|dy|~ /212l (3.11)

for x € Z. Setc = e~(VD/4d% 4| As in the proof of Theorem 3.4, there is a
constantC; = C1(k), independent of D, d), such that

|Hy(nvIm 7)| < Cin* = %/2|d,)*/2(— log ¢ + log |d|)*/?, (3.12)

whenn is a positive integer and & ¢ < 1. On the other hand, sindé, has only
finite many roots, there are positive constafifsandC3 < 1 such that

[ 1
|H;(x)| > C, for|x| >,/ ——logCs.
VA

|H (v Im1)| > Cy fore < Cs. (3.13)

So
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Combining (3.10)—(3.13), one has then

(Im 7)k/2

> 164.%,1(T)]

oo
x (—logc + log |d])*/? Z nk|d| =42l cldzln®

n=2
> 4do| "2y (¢, d)),
where
b2t —logc + log|d|\*/? & 2
_ . —(k/2) | 2 k nc—1
file,d)=Co—m C1|d|(5/2)|d2\—1 < VIEE X;n ©

ChooseC, > 1 so that logr < x%* for x > C,. Then

—logce + log|d|
|d|2/k

> Cyq —loge.

Notice that|d,|*/?+1/|d|/?!421-1 js bounded above as a functiondfSo there is
a constantCs = Cs(k), independent of the paiD, d), such thatfi(c,d) > f(c)
where

o
f(x) = Cy — Csx3(Cy — logx)*/? Z akyn® =4
n=2

Now the same argument as in the proof of Theore#ngdses the general statement
of this theorem. Similar argument to the last part in the proof of Theorem 3.4
(together with slightly better lower bound fo,(x)|) shows that one can take

M (k) = 0for k < 1. We leave the detail to the reader.

Remark3.6. Wherk = 0, the main theorem claims that for all the paitéD, d)
in the region above/D > (12/7)d?logd with D = 7 mod 8 and/ = 1 mod 4
squarefree, the centrdl-value L(1, xp,) > 0. This is strong considering the
general belief that whether dn-function vanishes at its center is tricky and hard
to tell.

When every prime factor af is split in E, one can drop log from the condi-
tion ([RVY, Thm. ]), and when every factor db is congruent to 1 modulo 4 and
is inert in E, one can replacé? by d (Theorem 3.4). A natural question is what,
if any, is the ultimate inequality to guarantee the nonvanishing(@f xp 4). Can
that bev/'D > M logd for some constan¥/?
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Remark3.7. Recall thatxp s = xp.11m4 Wheren,; = (4o NEg,/q, andxp 1 is
a canonical Hecke character Bf,. Although xp , can be viewed as a quadratic
twist of xp 1, it might be better to view it as a ‘quadratic’ twist ¢f) by the
imaginary quadratic fieldZ, (see [Lie] and [RVY] for similar ideas). The result
of Montgomery and Rohrlich ([MR]) mentioned in the introduction is then that
the centralL-value of a ‘quadratic’ twislp 1 of the trivial character by, does
not vanish unless it is forced to by its functional equation. Is the same true for
other ‘small’d? The following proposition gives a partial affirmative answer to the
guestion ford = 5 (we don't consider the case wheénis even).

PROPOSITION 3.8Let D = 7 mod 8be a squarefree positive integer relative
prime to5. Then the central-valueL(1, xps) # O.

Proof. First we assume thaiD/5) = 1, i.e.,D = +1 mod 5. By Theorem .2
it is sufficient to prove that = b + +/—D/200 is not a root of

Oa(x) = Y _ (g) Q2%

(x,5)=1

Hereb is some integer. Set= e "v2/100 SinceD = 7 mod 8 and) = +1 mod 5,
one hasD > 31. This impliesc < 0.84, which is enough to guarantee

o0
2
%l@(r)| >c— Zc" > c—c4—092c7” > 0.
n>1 n=0

SoL(1, xps) # 0in this case. Now we turn to the cas@/5) = —1,i.e.,D =
a mod 5 witha = £2. one can show bg3.1) that

a
1+ — if u=0mod 5
5
(1) = a*/_ - | (3.14)
——COS— | 0 5
\/gcos\/5 if u % 0mo

By Theorem 2.2, it is sufficient to prove that= b + +/—D/20 is not a root of
the theta functioms g 1(z) = ) .7 ¢s(x/4) ez Hereb is any integer satisfying
b =0mod5 and? = —D mod 16

Sete = e VD20 ¢ e=(V7/20 _ 066, andh’ = b/5 € Z. Write Imz for
the imaginary part of the complex numherBy (3.14), ¢5(x) depends only on
whetherx = 0 mod 5, and¢s(0)| < 3|¢s(1)]. So

Im(@s5,0,1(7))

=205() > ImE" 4 2950) Y Im(e 4,

(n,5=1,n>0 5|n,n>0
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Notice that Infe™"*?'/4) = 0 or ++/2/2 depending on whether 2 dividesor not.
Therefore(c > 0.66)

1 > >
———|IM(@501(t))| >c—3 ) " >c— 3% ¢ > 0.
V2|¢5(D)| nX:; nX:(;

In particular,fs1(7) # 0, and thus.(1, xps) # O.

Appendix. Proof of Propositions 1.2 and 1.5

Let the notation be as in Section 1. We first recall some basic facts on the Weil
representatiow, , of G = U(1) on S(F). First, there is an embedding

(x A?ay )

1o: G = SpP(1) = SLy(F), g=x+y5— y . (AL)
A_Ot X

Letrg be Rao’s standard section of @pon S(F) and letc be the corresponding
standard 2-cocycle ([Rao]). For

— (% ") esp)
gl - Ci dl' ’
with g1¢> = g3, one has ([Rao, Cor. 4.3])

if C1C2C3 = 0,

1
c(g1, &) = { (A2)

yp(%clczcyp) otherwise
Hereyr is the local Weil index ([Wei], [Rao, App.]). For = x + y§ € G, define
r(g) = x(6(g — V)yr(ay(l —x)yY)(A, —2y(1 — x))F. (A3)

Thenw,,, (g) = n(g)rs(i.(g)) defines a Weil representation Gf([Ku, Prop. 4.8]).
Finally, whenn(y') = 2n — 1is odd, let ([Ya2, Thm. 3.5])

<x> if g € G
2 8 )
A(g) = A (Ad)
o .

vr (Tyw) ife¢d.
Thenw(g) = A(g)1r.(g) is a Weil representation af on S(L, v), wherer; is
the action ofG on S(L, ) defined via [Ya2, (3.2)]. When(y/') = 2n is even, the
Weil representatiom of G on S(L, ¥) is just the right translation.

LEMMA Al.

(a) If E/F is ramified, therf (g) = u(g)c(,(g), w).
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(b) If E/F is unramified and:(y’) is even, then

n(@cla(g), w) ifged,

wn(g) ifg¢ G

(c) If E/F is unramified and: (") is odd, then

rMgn(g)c(y(g), w) ifge G,
rgn(g) ifg ¢ G

§(g) ={

§(g) ={

Proof. We only prove Claim (c). The proof of Claims (a) and (b) is similar
(simpler) and is left to the reader. First ndten F = 7" ~1Of. Let f, be the char-
acteristic function ofL. An easy calculation shows that fy) is the characteristic
function of 7" OF.

Assume firstthag = x + y6 € G'. Theny € 7Oy andx € O;. Let

(1 o)

and write

x~1 A?xy 1 - Y
(9w = w Aax | = AwB, (A5)
0 «x 0o 1

whereA and B have the obvious meanings. Set

Jiw) = rs(w)p(fo)(u) = ¥ (—uv) dv,

a"OF
where d is the self-dual Haar measure @hwith respect toy. Straightforward
calculation using [Rao, Thm. 3.6] gives(AwB) f1(u) = p(fo)(u). Therefore
@a, ()P (fo) ) = n(g)cta(g), wirs(a(gw) fi(u)

= n(g)ca(g), wyrs(AwB) f1(u)

= n(g)ca(g), w)p(fo)(u)

= 11(8)cta(g), wA(g) o (@() fo) (u).
Combining this with(1.7), one hag(g) = A(g)u(g)c(iy(g), w).

Next, assume that = x + y§ ¢ G’, soy € Oj. In this case

ﬂx lAax
y

1a(8) = w y . (A6)
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Direct calculation using [Rao, Thm. 3.6] and (A6) gives

A
Oy ()0 (fo) (0) = %vf (ziyxﬁ) chaitz"10,). (A7)

On the other hand, By [Ya2, Lem. 3.2 and Thm. 3.5], one has

0 if z ¢ L,_4,
w(g) fo(z) =1 A7 1(g)

NG

V' Suv)y’ SuPxy™) ifz=us+vel,.

So one has by (1.6)

Aax 5

1 w( u)char(rr”l@ ) (1) (A8)
Mg \ 2y S

Combining (1.7) with (A7) and (A8), one hagg) = A(g)u(g). Claim (c) is
proved.

p(w(g) fo)(u) =

Proof of Propositionl.2. First, we assumg € G1, sSox = 1 modr, y =
0 modrm, andx — 1 = Ay?/(x +1). So

§(8) = x(6(g — D)yr(—2axyAy)yr(axyAy) (A, Ay)
= x (g —D)H(A, —y).
In particular, ifn(x) < 1, theng — 1 =68y(1+3d8y/x +1). So
x@(g —1) = x(Ay) = (A, Ay) = (A, —y).
Thereforet(g) = 1. This proves (4) and the first part of the first three claims.

Next, we assumg € G’ — G, i.e.,g = —1 modng or, equivalentlyx =
—1 modsm, y = 0 modr. In such a case, one has

n(8)ca(g), w) = x(8(g = D)yrCayy)y (—2ayAY)(A, —y)r.  (A9)
WhenE/F is ramified, we may assume= A. One has by (A9) and Lemma Al
§(8) = x(6(g = D)yr(=A¥)yr(¥)(A, —20).
Given a charactey: of F of conductom, one defines a character

V: Op/mOp — C*, x modz O — (" 1x).

https://doi.org/10.1023/A:1000934108242 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000934108242

NONVANISHING OF CENTRAL HECKEL-VALUES 355

Write G () for the Gauss sum of. If n is odd, them(Av) is even. By [Rao,
All, A2] one has

GW) _
IG ()|
This proves (1.8). When(x) < 1, x(6(g — 1)) = x(—25), and so

V(=AY yr(Y) = (e(=1)F"

8(%,8E/F, v).

£(g) = x )3, egr, ¥).

Applying [Roh1, Props 3 and 8], one has (1.9). The unramified case is similar and
is left to the reader.

Finally, we assume that e G — G'. Sox £ 1 € O} andy € O}. Also E/F
must be unramified in this case by [Ya2, Lem. 1.1].

If n(v") = n(ay) is even, then one has by [Rao, App.]

§(g) =u(g) = x@(g—D)yr(A—x)ay)(A, =2y(1 —x))F
= x((g—D).

If n(¥") = n(ay) is odd, then one has by [Rao, App.]
§(8) = x©B(g —D)yr(yA—x)ay)yryAay)(A, =2y(1 —x)F

x(6(g — D)yi(y(L—x)ay)yi(2yAay))

2A(x — 1)
= S(g—1 —).
x(8(g ))( 7 )

This completes the proof of Proposition 1.2.
Proof of Propositionl.5. Forz € E, we writez = R(z) + 1(z)8 with R(z)

andI(z) € F. Givenw € E, let f,, be the unique function i§(L, ¥) such that
Supf fu») = w + L and f,,(w) = 1. Integrating (1.6) forf,,, one has

A
p(fu)) = v (%‘R(w)l(w)) ¥ (—AaR(w)u) x

[ char(l (w) + 7"OF) () if E/F is unramified
X 10)

charl (w) + A2 @) (u) if E/F is ramified
By [Ya2, Thm. 0.4] and Corollary 1.3

1
p(@) = p(fu) +n'(=1 (7) p(fow) +

-1
+ Z n(g)_lwa,x(g)p <fw + T},(—l) (?) f—w)

geG/G g#1
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is an eigenfunction ofG, w,,,) with eigencharactes if it is nonzero wherew e
L, 1. Wheng = x + y§ € G — G/, one has by (A6), (A11), and [Rao, Thm. 3.6]

Wq,x (&) (fuw) W)

_ 1@y (=5 Rw)I (w))
Vi

x charz" 0 ) (u).

W(—( I(w)? = 21 (w)u + xu ))

Putting things together, and applying Lemma A1, one has proved that
¢n,w(u)

=n'(— 1)( l) ¥ (AaRw)u)chal—1(w) + 7" O ) (u)+

Y(—AaRw)I(w))

NG

A
x> (@re)! {w (2—“<qu — 21 (w)u +x1<w>2>) -
geG/G,g#1 Y
+1'(— 1)( )wx

x <%(xu2 + 21 (w)u + xI(w)z))} x
y

+¢¥(—AaR(w)u) char(l (w) + 7" Or)(u) +

x chanm" 10 r)(u)

is an eigenfunction ofG, w,. ) with eigencharactey if it is nonzero.
Whenn'(—-1) = (—1/F), setw = 0, and applying [Ya2, Thm. 3.5] fox, one
gets

2fn00) = chaltw" O ) + 57

I AaR
e () (G )

§€G/Grg#+1

x charm"tOr) (u).
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Itis not difficult to see that — g(a) = & +a/$ — a gives a bijection between the
projective lineP1(F) andG/G1. SetA = R(g)/I(g), andB = 1/1(g). Then for
g =gla)

1 A 1 A
A=—=|a+ — and B=—-(—-a+—]).
2 a 2 a

It is easy to check that — (A, B) is a bijection betweerF* and (A4, B) € F?
with A2 — B2 = A. Therefore

Ip,0) = chanz"Op)(u) +

X
2G(y")
, A+3 B A
LZ () ()
A2—B2=A modn

x char" 1O r) (u)

= ¢/ (T "u) = ¢, (1)
is the function sought in Proposition 1.5(1). It remains to prove that it is nonzero.

But
1 (A+8\ (B
2607 , 2 ”( B )(F>#°’

—B2=A mod

¢n(0) - 1+

sinceG (¥") ¢ Q(e#7i/7+1) and the sum is iQ(e?*/9+1). This proves (1).

Wheny'(-1) = —(=1/F), andn’ # no, ¢,., = O for everyw € L. So
there isw = 7" 'a € L,_1 — L with a € O} such thatp, , # 0. A simple
manipulation shows tha, ,, (1) = qb:m(n"’lu) is the function sought in Propos-
ition 1.5(2). It remains to prove that , # O for everya € O}.. We can identify
Gal(Q(¢y, ¢4+1)/Q(L4+1)) With F*viab — oy,. Here¢» = ; for anth primitive
root ¢, of 1. It is easy to check that, , can be viewed as a function an with
values inQ(¢,, ¢,+1), and that

Do) = Py 1(ufa)’e. (A11)

Sooneg, , # 0 implies everyp, , # 0. This proves Claing2).
Proposition 1.6 follows easily from Corollary 1.3 and [Ya2, Thm. 1.1]. The
proof of Proposition 1.7 is similar to that of Proposition 1.5.
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