STABLE ALGORITHMS FOR SOLVING SYMMETRIC AND SKEW-SYMMETRIC SYSTEMS*

James R, Bunch
Communicated by James M. Hill

Abstract

Algorithms for decomposing symmetric and skew-symmetric matrices in order to solve systems of linear equations will be discussed. The algorithms are numerically stable, yet take advantage of the symmetry or skew-symmetry to halve the work and storage.

1. Introduction

We shall consider solving $n \times n$ systems of linear equations when A is symmetric $\left(A=A^{T}\right)$ or skew-symmetric $\left(A=-A^{T}\right)$ - or Hermitian ($A=\bar{A}^{T}$) or skew-Hermitian $\left(A=-\bar{A}^{T}\right)$. We shall, in general, only discuss the case when A is real, pointing out any differences when A is complex.

In practice, most symmetric systems are also positive definite, that is, $x^{T} A x>0$ for all $x \neq 0$. This is the easiest of the three cases to solve and will be discussed in §3. If A is symmetric indefinite, that is, there exist $x, y \neq 0$ such that $x^{T} A x>0$ and $y^{T} A y<0$, then this is the hardest of the three cases and will be discussed in \$4. Skew-

Received 8 March 1982. Support for this research was provided under NSF grant MCS 79-20491.

* This paper is based on an invited lecture given at the Australian Mathematical Society Applied Mathematics Conference held in Bundanoon, February 7-11, 1982. Other papers delivered at this Conference appear in Volumes 25 and 26.
symmetric systems lie intermediate in difficulty between definite and indefinite systems and will be discussed in §5.

If A is (real) symmetric, then all its eigenvalues are real. We define the inertia of A to be the triple (π, ν, ζ), where π, ν, ζ are the number of positive, negative, and zero eigenvalues of A. If A is nonsingular then $\zeta=0$; if A is positive definite then $\pi=n$, $\nu=0$, and $\zeta=0$. By Sylvester's Inertia Theorem [9], the inertia of a symmetric matrix is preserved under (nonsingular) congruence transformations, that is, A and $B=C A C^{T}$ have the same inertia where C is nonsingular.

If A is (real) skew-symmetric, then all its eigenvalues are purely imaginary. Hence, here we define the inertia of A to be the triple (π, ν, ζ), where π, ν, ζ are the number of positive, negative, and zero imaginary parts of the eigenvalues. But, since A is real, its nonzero eigenvalues occur in complex conjugate pairs, that is, $\pm i \mu_{j}$ where μ_{j} are positive. Hence the inertia of any real skew-symmetric matrix is $((n-\zeta) / 2,(n-\zeta) / 2, \zeta)$. If A is also nonsingular, its inertia is ($n / 2, n / 2,0$) . This fixed inertia property makes skew-symmetric matrices easier to decompose stably than symmetric indefinite matrices. If A is skew-symmetric then $B=C A C^{T}$ is skew-symmetric and has the same inertia as A, where C is nonsingular.

2. Lagrange's method

The classical method [9] for calculating the inertia of a symmetric matrix is Lagrange's method (1759): a (real) quadratic form

$$
\varphi(x)=x^{T} A x=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}=\varphi\left(x_{1}, \ldots, x_{n}\right),
$$

where $A=A^{T}$, is reduced to a diagonal form

$$
\sum_{k=1}^{n} d_{k} z_{k}^{2}
$$

by linear congruence transformations. Hence the inertia of A is the same as the number of positive, negative, and zero d_{k} 's.

Let us look more closely at Lagrange's method. If $a_{11} \neq 0$, then

$$
\begin{aligned}
\varphi(x) & =a_{11} x_{1}^{2}+2 a_{12} x_{1} x_{2}+\ldots+2 a_{1 n^{\prime}} x_{n}+\sum_{i=2}^{n} \sum_{j=2}^{n} a_{i j} x_{i} x_{j} \\
& =a_{11}\left(x_{1}^{2}+2 \frac{a_{12}}{a_{11}} x_{1} x_{2}+\ldots+2 \frac{a_{1 n}}{a_{11}} x_{1} x_{n}\right)+\sum_{i=2}^{n} \sum_{j=2}^{n} a_{i j} x_{i} x_{j} \\
& =a_{11}\left(x_{1}+\frac{a_{12}}{a_{11}} x_{2}+\ldots+\frac{a_{1 n}}{a_{11}} x_{n}\right)^{2}+\sum_{i=2}^{n} \sum_{j=2}^{n}\left(a_{i j}-\frac{a_{1 i} a_{1 j}}{a_{11}} x_{i} x_{j}\right. \\
& =d_{1} z_{1}^{2}+\varphi\left(x_{2}, \ldots, x_{n}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
d_{1} & \equiv a_{11} \\
z_{1} & \equiv x_{1}+\frac{a_{12}}{a_{11}} x_{2}+\ldots \frac{a_{1 n}}{a_{11}} x_{n}
\end{aligned}
$$

and

$$
\varphi\left(x_{2}, \ldots, x_{n}\right) \equiv \sum_{i=2}^{n} \sum_{j=2}^{n}\left(a_{i j}-\frac{a_{1 i} a_{1 j}}{a_{11}}\right) x_{i} x_{j}
$$

is a quadratic form in the $n-1$ variables x_{2}, \ldots, x_{n}. If $a_{22}-a_{12}^{2} / a_{11} \neq 0$, we can continue as above to eliminate x_{2}.

Let us write this first part of Lagrange's method in matrix form. If $a_{11} \neq 0$, let

$$
L_{1}=\left[\begin{array}{cccc}
1 & & & \\
l_{21} & 1 & 0 & \\
\vdots & 0 & \ddots & \\
l_{n 1} & & & 1
\end{array}\right]
$$

where $\tau_{j 1}=a_{j 1} / a_{11} ;$ let $z_{1} \equiv L_{1} x ;$ let

$$
D_{1}=\left[\begin{array}{c|c}
d_{1} & 0 \\
\hline 0 & A^{(n-1)}
\end{array}\right]
$$

where $d_{1}=a_{11}$ and

$$
\left(D_{1}\right)_{i j}=A_{i-1, j-1}^{(n-1)}=a_{i j}-a_{1 i} a_{1 j} / a_{11}
$$

for $2 \leq i, j \leq n$. Then

$$
A=L_{1} D_{1} L_{1}^{T}
$$

and

$$
\varphi(x)=x^{T} A x=d_{1} z_{1}^{2}+\varphi\left(x_{2}, \ldots, x_{n}\right)
$$

where

$$
\varphi\left(x_{2}, \ldots, x_{n}\right)=\left[x_{2}, \ldots, x_{n}\right] A^{(n-1)}\left[\begin{array}{c}
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

But $A=L_{1} D_{1} L_{1}^{T}$ is exactly the matrix form of the first step of symmetric Gaussian elimination performed on A, where the $Z_{j l}$ are the multipliers and $A^{(n-1)}$ is the reduced matrix. Thus the first part of Lagrange's method is just symmetric Gaussian elimination.

If $a_{11}=0$ but $a_{k k} \neq 0$ for some $k>1$, then let P be the permutation matrix obtained by interchanging the k th and first row and column of the identity matrix. Then $P=P^{T}=P^{-1}$ and

$$
\varphi(x)=x^{T} A x=\tilde{x}^{T}\left(P^{T} A P\right) \tilde{x}
$$

where $\tilde{x}=P x$. Now $\left(P^{T} A P\right)_{11}=a_{k k} \neq 0$, so we may eliminate $\tilde{x}_{1}=x_{k}$. In matrix form, we obtain, as before,

$$
P^{T} A P=L_{1} D_{1} L_{1}^{T}
$$

However, if the diagonal of A was null (or if at some stage during the process the diagonal was null), we could not do this. If $A \equiv 0$, we would be finished. Otherwise, there exists $a_{r s} \neq 0$ with $r \neq s$. For simplicity, assume $a_{12} \neq 0$ (otherwise, interchange the rth and first
variables and sth and second variables). In this case, Lagrange suggested applying the transformation:

$$
x_{1}=y_{1}+y_{2}, x_{2}=y_{1}-y_{2}, x_{3}=y_{3}, \ldots, x_{n}=y_{n}
$$

This maps $2 a_{12} x_{1} x_{2}$ into $2 a_{12}\left(y_{1}^{2}-y_{2}^{2}\right)$ and the coefficient of the $y_{1} y_{2}$ term is zero. Let

$$
\begin{gathered}
R=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \oplus I_{n-2}, \\
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right], \text { and } y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] .
\end{gathered}
$$

Then

$$
x=R y
$$

and

$$
\varphi(x)=x^{T} A x=y^{T}\left(R^{T} A R\right) y \equiv \psi(y)
$$

is a quadratic form in y with

$$
\begin{aligned}
& \left(R^{T} A R\right)_{11}=2 a_{12} \\
& \left(R^{T} A R\right)_{22}=-2 a_{12}
\end{aligned}
$$

and

$$
\left(R^{T} A R\right)_{12}=0
$$

We may now eliminate y_{1}. But, since $\left(R^{T} A R\right)_{12}=0$, the coefficient of y_{2}^{2} in the new quadratic form in y_{2}, \ldots, y_{n} is still $-2 a_{12}$, and is, hence, nonzero. So, we may also eliminate y_{2}. Thus the change of variables above guarantees the elimination of two variables. Later in $\S 4$ we shall relate this process to symmetric Gaussian elimination.

3. Symmetric positive definite systems

If A is symmetric and positive definite $\left(x^{T} A x>0\right.$ for all $x \neq 0$), then $a_{11}>0$ and the first part of Lagrange's method can be done: $A=L_{1} D_{1} L_{1}^{T}$ as in §2. Then the reduced matrix $A^{(n-1)}$ is once again symmetric positive definite; hence the first part of Lagrange's method is applicable at each step. So $A=L D L^{T}$, where L is unit lower triangular and D is diagonal with positive diagonal elements; this is exactly symmetric Gaussian elimination. In order to solve $A x=b$, we solve $L y=b$ for y and then $L^{T} x=D^{-1} y$ for x.

Another well-known method for solving symmetric positive definite systems is the Cholesky decomposition. Here A is decomposed as $A=\tilde{L} \tilde{L}^{T}$ where \tilde{L} is lower triangular. The two methods are related mathematically by $\tilde{L}=L D^{\frac{1}{2}}$. The Cholesky decomposition is used in LINPACK [8] for solving symmetric positive definite systems.

Each method requires $\frac{1}{6} n^{3}$ multiplications, $\frac{1}{6} n^{3}$ additions, and no comparisons. Let $B(n)$ be the largest element (in modulus) that occurs in any reduced matrix during the decomposition process divided by the largest element (in modulus) in the original matrix A. Then $B(n)=1$ for symmetric Gaussian elimination and $B(n)=\frac{1}{\sqrt{\max a_{j j}}}$ for Cholesky's method [11] $\left(B(n)=1\right.$ if $\left.\max _{i, j}\left|a_{i j}\right|=1\right)$. Since $B(n)$ measures the stability of an algorithm [11], both symmetric Gaussian elimination and Cholesky's method are very stable for symmetric positive definite systems.

4. Symmetric indefinite systems

The two well-known algorithms for decomposing symmetric indefinite matrices are the tridiagonal method [1], [10] and the diagonal pivoting method [2, 3], [5], [6], [7], [8].

The tridiagonal method uses stabilized elementary congruence transformations to reduce a symmetric matrix A to a symmetric tridiagonal matrix T :

$$
A=P_{2} L_{2} \ldots P_{n} L_{n} T L_{n}^{T} P_{n} \ldots L_{2}^{T} P_{2}
$$

where the P_{j} are elementary permutation matrices and the L_{j} are unit lower triangular. At each step the largest element in the pivot column is interchanged to the (2, I) position by symmetric permutation.

This requires $\frac{1}{6} n^{3}$ multiplications, $\frac{1}{6} n^{3}$ additions, $\frac{1}{2} n^{2}$ comparisons, and $B(n) \leq 4^{n-2} \quad[3$, p. 525].
(Then Gaussian elimination with partial pivoting is used to decompose T further.)

The diagonal pivoting method reduces a symmetric matrix A by stabilized congruence transformations to a symmetric block diagonal matrix D with blocks of order 1 or 2 :

$$
A=P_{1} M_{1} P_{2} M_{2} \ldots P_{n-1} M_{n-1} D M_{n-1}^{T} P_{n-1} \ldots M_{2}^{T} P_{2} M_{1}^{T} P_{1}
$$

where the P_{j} are elementary permutation matrices and the M_{j} are unit lower triangular matrices.

One step of the decomposition process looks as follows:
where S is $k \times k$, nonsingular, B is $(n-k) \times(n-k), C$ is $(n-k) \times k$, and $A^{(n-k)} \equiv B-C S^{-1} C^{T}, k=1$ or 2 .

Let us now look at Lagrange's method when the diagonal of A is null. If

$$
R=U \oplus I_{n-2}
$$

where U is of order 2 , then

$$
R^{T} A R=\left[\begin{array}{c|c}
U^{T} S U & U^{T} C^{T} \\
\hline C U & B
\end{array}\right] .
$$

If U is chosen so that $U^{T} S U \equiv D$ is diagonal $\quad\left(U=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right] \quad\right.$ is only one such choice) and the associated variables (that is, the first two variables) are eliminated, then the resulting reduced matrix is

$$
B-C U D^{-1} U^{T} C^{T}
$$

But if we use S as a 2×2 pivot and performed block symmetric Gaussian elimination, the reduced matrix is

$$
A^{(n-2)}=B-C S^{-1} C^{T}
$$

Since

$$
C U D^{-1} U^{T} C^{T}=C S^{-1} C^{T}
$$

the reduced matrices are identical.
Thus there is no need to find (as Lagrange did) a matrix U which diagonalizes S; rather, we may reduce A by congruences to a symmetric block diagonal form with blocks of order 1 or 2 . Any block of order 2 is of the form

$$
\left[\begin{array}{cc}
0 & a_{12} \\
a_{12} & 0
\end{array}\right]
$$

Since its determinant is negative, it has one positive and one negative eigenvalue.

In order to maintain stability, we must also employ 2×2 pivots whenever the diagonal of A is small. This can be done while preserving the property that the determinant of any 2×2 pivot block is negative [5], [7], [8] (it is nonzero in the complex symmetric case).

The method requires $\frac{1}{6} n^{3}$ multiplications, $\frac{1}{6} n^{3}$ additions, with more than or the same number of $\frac{1}{2} n^{2}$ but less than or the same number of n^{2} comparisons and $B(n)<(2.57)^{n-1}$ for a partial pivoting strategy or with more than or the same number of $\frac{1}{12} n^{3}$ but less than or the same number of $\frac{1}{6} n^{3}$ comparisons and $B(n)<3 n f(n)$ for a complete pivoting strategy where

$$
f(n)=\left(\prod_{k=2} k^{1 /(k-1)}\right)^{\frac{1}{2}}<1.8 n^{\frac{1}{4} \ln n}
$$

(Recall that Gaussian elimination requires $\frac{1}{3} n^{3}$ multiplications, $\frac{1}{3} n^{3}$ additions, with $\frac{1}{2} n^{2}$ comparisons and $B(n) \leq 2^{n-1}$ for partial pivoting or with $\frac{1}{3} n^{3}$ comparisons and $B(n)<\sqrt{n} f(n)$ for complete pivoting.)

There are actually three cases here: real symmetric, complex symmetric, and complex Hermitian. Both algorithms cover all three cases. The diagonal pivoting algorithm with partial pivoting is used in LINPACK [8, Chapter 5].

5. Skew systems

If A is a skew-symmetric $\left(A=-A^{T}\right)$, then the diagonal of A is null, and if n is odd then $\operatorname{det} A=0$. Thus, if A is skew-symmetric and nonsingular then n is even. The diagonal of A being null may seem to pose a difficulty at first glance, but we shall see that this property makes the skew-symmetric case easier than the symmetric indefinite case.

If A is skew-Hermitian $\left(A=-\bar{A}^{T}\right)$, then the diagonal of A is purely imaginary but not necessarily null, for example,

$$
A=\left[\begin{array}{cc}
i & -1+2 i \\
1+2 i & 4 i
\end{array}\right]
$$

If n is odd then $\operatorname{Re}(\operatorname{det} A)=0$, and if n is even then $\operatorname{Im}(\operatorname{det} A)=0$. If A is skew-Hermitian, then $B=i A$ is Hermitian, and we can apply any of the algorithms in $\$ 4$ to B. (In order to solve $A x=b$, we solve $B x=i b$.)

Similarly, if A is (real or complex) skew-symmetric, then $B=i A$ is Hermitian, and we could apply the algorithms in §4. However, if A is real skew-symmetric, we would prefer to stay in real arithmetic. Is there a stable decomposition of real skew-symmetric matrices which would allow us to stay in real airthmetic? Such a decomposition should be based on congruence transformations, since they preserve the inertia and guarantee that each reduced matrix during the process remains skew-symmetric.

Let us find such congruence transformations. Let

$$
A=\left[\begin{array}{cc}
S & -C^{T} \\
C & B
\end{array}\right]
$$

where S is $k \times k, C$ is $(n-k) \times k, B$ is $(n-k) \times(n-k) ; S$ and B are skew-symmetric.

If S is nonsingular then
where $A^{(n-k)} \equiv B+C S^{-1} C^{T}$ is skew-symmetric, and $\tilde{M}=M^{T}$ since $S^{-T}=-S^{-1}$.

Thus we have performed a congruence transformation, and A and $\left[\begin{array}{cc}S & 0 \\ 0 & A^{(n-k)}\end{array}\right]$ are congruent (and have the same inertia).

Note that S being $k \times k$, skew-symmetric, and nonsingular implies that k is even. Since the diagonal of A is null, $k \neq 1$ unless $C \equiv 0$. Let $k=2$ and

$$
S=\left[\begin{array}{cc}
0 & -a_{21} \\
a_{21} & 0
\end{array}\right]
$$

If $a_{21}=0$ but $a_{j 1} \neq 0$, interchange the j th and second row and column. (If A is nonsingular, then n is even and $k=2$ suffices at each step.) On conclusion,

$$
A=\left(P_{1} M_{1} P_{2} M_{2} \ldots P_{n-1} M_{n-1}\right) D\left(\begin{array}{lll}
M_{n-1}^{T} P_{n-1} & \ldots & M_{2}^{T} P_{2} M_{1}^{T} P_{1}
\end{array}\right)
$$

where the P_{j} are elementary permutation matrices (possibly $P_{j}=I$), the M_{j} are unit lower triangular matrices (possibly $M_{j}=I$), and D is a skew-symmetric block diagonal matrix with blocks of order 1 (zero blocks) or of order 2 (nonsingular blocks).

This gives existence of the decomposition and requires $\frac{1}{6} n^{3}$ multiplications, $\frac{-}{6} n^{3}$ additions, and $\frac{1}{2} n^{2}$ comparisons; the decomposition can be stored in the strictly upper (or lower) triangular part of A, plus one n-vector to store the permutation information.

Stability of the decomposition can be obtained by either a partial or complete pivoting strategy.

If $\left|a_{21}\right|=\max _{2 \leq i \leq n}\left\{\left|a_{i 1}\right|,\left|a_{i 2}\right|\right\}$, then

$$
\max _{i, j}\left|\left(A^{(n-2)}\right)_{i j}\right| \leq 3 \max _{r, s}\left|a_{r s}\right|
$$

If $\left|a_{m 1}\right|=\max _{2 \leq i \leq n}\left\{\left|a_{i 1}\right|,\left|a_{i 2}\right|\right\}$, then interchange the m th and second row and column. If $\left|a_{m 2}\right|=\max _{2 \leq i \leq n}\left\{\left|a_{i l}\right|,\left|a_{i 2}\right|\right\}$, then interchange the first and second row and column and then the m th and second row and column. This provides a partial pivoting strategy with $B(n) \leq(\sqrt{3})^{n-2}<(1.7321)^{n-2}$ at a cost of $\frac{1}{2} n^{2}$ comparisons.

A complete pivoting strategy brings the largest element in the reduced matrix to the $(2,1)$ position at each step. This yields $B(n)<\sqrt{n} f(n)$ at a cost of $\frac{1}{12} n^{3}$ comparisons.

One can similarly modify the tridiagonal method [1], [10] yielding

$$
A=\left(\begin{array}{lll}
P_{2} L_{2} & \ldots & P_{n} L_{n}
\end{array}\right) T\left(\begin{array}{lll}
L_{n}^{T} P_{n} & \ldots & L_{2}^{T} P_{2}
\end{array}\right)
$$

where the P_{j} are elementary permutation matrices, the L_{j} are unit lower triangular matrices, and T is skew-symmetric and tridiagonal. Here $B(n) \leq 3^{n-2}$ and $\frac{1}{6} n^{3}$ multiplications. $\frac{1}{6} n^{3}$ additions, and $\frac{1}{2} n^{2}$ comparisons are required.

In conclusion, we see that skew-symmetric systems may be solved stably using congruence transformations; they are intermediate in difficulty between symmetric positive definite systems and symmetric indefinite systems. The situation can be summarized in the table below.

Matrix		Sym. Pos. Def.	Skew-Sym. (n even)	Sym. Indef.	General
Method		$L D L^{T}$	Diagonal Pivoting		Gaussian Elimination
Pivot size		1	2	1 or 2	1
Number of multiplications or additions		$\frac{1}{6} n^{3}$	$\frac{1}{6} n^{3}$	$\frac{1}{6} n^{3}$	$\frac{1}{3} n^{3}$
Number of comparisons	partial \qquad complete	0	$\frac{\frac{1}{2} n^{2}}{\frac{1}{12} n^{3}}$	$\frac{\frac{1}{2} n^{2} \text { to } n^{2}}{\frac{1}{12} n^{3} \text { to } \frac{1}{6} n^{3}}$	$\begin{aligned} & \hline \frac{1}{2} n^{2} \\ & \hdashline \frac{1}{3} n^{3} \end{aligned}$
$B(n)$	partial -------complete	1	$\mid<(1.74)^{n-2}$	$\frac{<(2.57)^{n-1}}{<3 n f(n)}$	$\begin{gathered} =2^{n-1} \\ <\sqrt{n} f(n) \end{gathered}$

Method		Tridiagonal method	
Pivot size		1	1
Number of multiplications or additions	$\frac{1}{6} n^{3}$	$\frac{1}{6} n^{3}$	
Number of comparisons	$\frac{1}{2} n^{2}$	$\frac{1}{2} n^{2}$	
$B(n)$	$\leq 3^{n-2}$	$\leq 4^{n-2}$	

$$
f(n)=\left(\prod_{k=2}^{n} k^{1 /(k-1)}\right)^{\frac{1}{2}}<1.8 n^{\frac{1}{4} \ln n} .
$$

References

[1] Jan Ole Aasen, "On the reduction of a symmetric matrix to tridiagonal form", BIT 11 (1971), 233-242.
[2] J.R. Bunch, "Analysis of the diagonal pivoting method", SIAM J. Numer. Anal. 8 (1971), 656-680.
[3] James R. Bunch, "Partial pivoting strategies for symmetric matrices", SIAM J. Numer. Anal. 11 (1974), 521-528.
[4] James R. Bunch, "Stable decomposition of skew-symmetric matrices", Math. Comp. (to appear).
[5] James R. Bunch and Linda Kaufman, "Stome stable methods for calculating inertia and solving symmetric linear systems", Math. Comp. 31 (1977), 163-179.
[6] James R. Bunch, Linda Kaufman and Beresford N. Parlett, "'Decomposition of a symmetric matrix", Numer. Math. 27 (1976), 95-109.
[7] J.R. Bunch and B.N. Parlett, "Direct methods for solving symmetric indefinite systems of linear equations", SIAM J. Numer. Anal, 8 (1971), 639-655.
[8] J.J. Dongarra, J.R. Bunch, C.B. Moler and G.W. Stewart, LINPACK users' guide (Society for Industrial and Applied Mathematics, Philadelphia, 1979).
[9] L. Mirsky, An introduction to Zinear algebra (Clarendon, Oxford, 1955).
[10] B.N. Parlett and J.K. Reid, "On the solution of a system of linear equations whose matrix is symmetric but not definite", BIT 10 (1970), 386-397.
[11] J.H. Wilkinson, The algebraic eigenvalue problem (Clarendon, oxford, 1965).

Department of Mathematics,
University of California, San Diego,
La Jolla,
California 92093,
USA.

