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Abstract

We characterize the (1, 1) knots in the 3-sphere and lens spaces that admit non-trivial
L-space surgeries. As a corollary, 1-bridge braids in these manifolds admit non-trivial
L-space surgeries. We also recover a characterization of the Berge manifold among
1-bridge braid exteriors.

1. Introduction

An L-space is a rational homology sphere Y with the ‘simplest’ Heegaard Floer invariant:
ĤF (Y ) is a free abelian group of rank |H1(Y ;Z)|. Examples abound and include lens spaces
and, more generally, connected sums of manifolds with elliptic geometry [OS05]. One of the
most prominent problems in relating Heegaard Floer homology to low-dimensional topology is
to give a topological characterization of L-spaces. Work by many researchers has synthesized a
bold and intriguing proposal that seeks to do so in terms of taut foliations and orderability of
the fundamental group [Juh15, Conjecture 5].

A prominent source of L-spaces arises from surgeries along knots. Suppose that K is a knot
in a closed 3-manifold Y . If K admits a non-trivial surgery to an L-space, then K is an L-space
knot. Examples include torus knots and, more generally, Berge knots in S3 [Ber18]; two more
constructions especially pertinent to our work appear in [HLV14, Vaf15]. If an L-space knot K
admits more than one L-space surgery – for instance, if Y itself is an L-space – then it admits
an interval of L-space surgery slopes, so it generates abundant examples of L-spaces [RR17].
With the lack of a compelling guiding conjecture as to which knots are L-space knots, and as a
probe of the L-space conjecture mentioned above, it is valuable to catalog which knots in various
special families are L-space knots. This is the theme of the present work.

The manifolds in which we operate are the rational homology spheres that admit a genus-one
Heegaard splitting, namely the 3-sphere and lens spaces. The knots we consider are the (1, 1)
knots in these spaces: these are the knots that can be isotoped to meet each Heegaard solid
torus in a properly embedded, boundary-parallel arc. Our main result, Theorem 1.2 below,
characterizes (1, 1) L-space knots in simple, diagrammatic terms.

A (1, 1) diagram is a doubly pointed Heegaard diagram (Σ, α, β, z, w), where (Σ, α, β) is
a genus-one Heegaard diagram of a 3-manifold Y . The (1, 1) knots in Y are precisely those
that admit a doubly pointed Heegaard diagram [GMM05, Hed11, Ras05]. A (1, 1) diagram is
reduced if every bigon contains a basepoint. We can transform a given (1, 1) diagram of K into a
reduced (1, 1) diagram of K by isotoping the curves into minimal position in the complement of
the basepoints: we accomplish this by successively isotoping away bigons in the complement of
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(1, 1) L-space knots

Figure 1. At the top, two reduced diagrams of the twist knot 52, and at the bottom, two
reduced diagrams of the torus knot T (2, 7). The α curve is represented by the bottom side of
the square. The top two diagrams are incoherent: with the β curve oriented, the ‘rainbow’ arcs
over the w basepoint do not all orient the same way. The bottom two are positive coherent, as
all of the rainbow arcs do orient the same way, and α · β > 0.

the basepoints and the curves in Σ. Our characterization of (1, 1) L-space knots in S3 and lens
spaces is expressed in terms of the following property of (1, 1) diagrams.

Definition 1.1. A reduced (1, 1) diagram (Σ, α, β, z, w) is coherent if there exist orientations
on α and β that induce coherent orientations on the boundary of every embedded bigon (D,
∂D) ⊂ (Σ, α ∪ β). Its sign, positive or negative, is the sign of α · β, with these curves coherently
oriented.

Coherence is easy to spot in a diagram: see Figures 1 and 2 and the second paragraph of
§ 2.3.

We may now state the main result of the paper.

Theorem 1.2. A reduced (1, 1) diagram presents an L-space knot if and only if it is coherent.
The knot is a positive or negative L-space knot according to the sign of the coherent diagram.

The sign of an L-space knot is the sign of an L-space surgery slope along it, which we review
in § 2.1. Note that a given knot may admit non-homeomorphic coherent (1, 1) diagrams. However,
Theorem 1.2 implies that its reduced (1, 1) diagrams are either all incoherent or else all coherent
and of the same sign. Again, see Figure 1.

We apply Theorem 1.2 to show that a broad family of (1, 1) knots are L-space knots. We
recall the following construction, first studied by Berge [Ber91] and Gabai [Gab90], and state a
natural generalization of it.
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Figure 2. Standard form for a reduced (1, 1) diagram (compare to [Ras05, Figure 2]). The left
and right sides of the square are identified in the standard way and the top and bottom sides
(which represent α) by a twist.

Definition 1.3. A knot in the solid torus S1×D2 is a 1-bridge braid if it is isotopic to a union

of two arcs γ ∪ δ such that:

– γ ⊂ ∂(S1 ×D2) is braided, i.e. transverse to each meridian pt.× ∂D2; and

– δ is a bridge, i.e. properly embedded in some meridional disk pt.×D2.

It is positive if γ is a positive braid in the usual sense. A knot in a closed 3-manifold Y with

a genus-one Heegaard splitting is a 1-bridge braid if it is isotopic to a 1-bridge braid supported

within one of the Heegaard solid tori.

Rasmussen and Rasmussen conjectured at the end of [RR17] that a positive 1-bridge braid

in S3 is a positive L-space knot. We prove a generalization of their conjecture in Theorem 3.2.

Without the sign refinement, the result reads as follows.

Theorem 1.4. 1-bridge braids in S3 and lens spaces are L-space knots.

Krcatovich (Private communication, 2016) has found many examples of (1, 1) L-space knots

in S3 that are not 1-bridge braids by a computer search. A small representative is the knot

K(21, 4, 4, 11) in the notation of [Ras05]. He showed that it is an L-space knot by an application

of Theorem 1.2, and that its Alexander polynomial distinguishes it from 1-bridge braids by

comparing with a list tabulated by Rasmussen.

We collect the necessary background on Heegaard Floer homology and prove Theorem 1.2

in § 2. We prove Theorem 1.4 and its sign-refined version, Theorem 3.2, in § 3. We also use

Theorem 3.2 to characterize the Berge manifold in Proposition 3.4.

We leave open two natural problems: the isotopy classification of (1, 1) L-space knots, and

the determination of whether surgeries along these knots conform to [Juh15, Conjecture 5].

920

https://doi.org/10.1112/S0010437X17007989 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007989


(1, 1) L-space knots

2. Proof of the characterization

We assume familiarity with (knot) Floer homology and review the essential input for our work
in §§ 2.1 and 2.2. In particular, we follow the treatment of [RR17, § 2.2], with slight differences
in notation. We prove Theorem 1.2 in § 2.3.

2.1 Knot Floer homology and L-space knots
Let K denote a (doubly pointed) knot in a rational homology sphere Y . Let N(K) denote an
open tubular neighborhood of K, X = Y rN(K) the knot exterior, and µ ⊂ ∂X a meridian of K.
Let Spinc(Y ) denote the set of spinc structures on Y and Spinc(X, ∂X) the set of relative spinc

structures on (X, ∂X). They are torsors over the groups H1(Y ;Z) and H1(X;Z), respectively.
Let Spinc(K) denote the set of orbits in Spinc(X, ∂X) under the action by [µ]. It forms a torsor
over H1(X;Z)/[µ] ≈H1(Y ;Z), and there exists a pair of torsor isomorphisms iv, ih : Spinc(K) →

Spinc(Y ).
We work with the hat-version of knot Floer homology with Z coefficients, graded by s ∈

Spinc(K):

ĤFK(K) =
⊕
s

ĤFK(K, s).

There exists a further pair of gradings

a,m : ĤFK(K, s) → Z

on each summand, the Alexander and Maslov gradings. An element is homogeneous if it

is homogeneous with respect to both gradings. The group ĤFK(K) comes equipped with

differentials d̃v, d̃h that preserve the Spinc(K)-grading, respectively lower m and m − 2a by
one, and respectively raise and lower a. They are invariants of K, and their homology calculates
ĤF (Y, iv(s)) and ĤF (Y, ih(s)), respectively. The manifold Y is an L-space if ĤF (Y, t) ≈ Z for
all t ∈ Spinc(Y ).

Definition 2.1. For a knot K in an L-space Y and s ∈ Spinc(K), the group ĤFK(K, s) is a
positive chain if it admits a homogeneous basis x1, . . . , x2n+1 such that, for all k,

d̃v(x2k) = ±x2k−1, d̃h(x2k) = ±x2k+1, d̃v(x2k−1) = d̃h(x2k−1) = 0.

The group ĤFK(K) consists of positive chains if ĤFK(K, s) is a positive chain for all s.

For example, a positive chain with 2n+ 1 = 7 generators takes the form shown here:

〈x2〉
d̃v

||

d̃h

""

〈x4〉
d̃v

||

d̃h

""

〈x6〉
d̃v

||

d̃h

""
〈x1〉 〈x3〉 〈x5〉 〈x7〉

Each arrow represents a component of the differential and is an isomorphism between the groups
it connects. Similarly, a negative chain is the dual complex to a positive chain with respect to
the defining basis. Reversing the arrows above gives an example of a negative chain.

Note that the requirement that the positive chain basis elements are homogeneous does not
appear in [RR17, Definition 3.1]. For example, we could alter the positive chain basis displayed
above to an inhomogeneous one by replacing x2 by x2+x1. However, homogeneity is an intended
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property of a positive chain basis in the literature. Moreover, an inhomogeneous positive chain
basis gives rise to a homogeneous one by replacing each basis element by its homogeneous part
of highest bigrading. Therefore, our definition is no more restrictive, and its precision is more
convenient when we invoke it in the proofs of Lemmas 2.3 and 2.4.

Let λ ⊂ ∂X denote the rational longitude of K, the unique slope that is rationally null-
homologous in X. Note that µ 6= λ, since Y is a rational homology sphere. Another slope α ⊂ ∂X
is positive or negative according to the sign of (µ · λ)(λ · α)(α · µ), for any orientations on these
curves. The knot K is a positive or a negative L-space knot if it has an L-space surgery slope
of that sign. The following theorem characterizes positive L-space knots in L-spaces in terms
of their knot Floer homology. Ozsváth and Szabó originally proved it for the case of knots in
S3 [OS05, Theorem 1.2]. Boileau, Boyer, Cebanu, and Walsh promoted a significant component
of their result to knots in rational homology spheres [BBCW12]. Building on it, Rasmussen
and Rasmussen established the definitive form of the result that we record here: see [RR17,
Lemmas 3.2, 3.3, and 3.5], including the proofs of these results.

Theorem 2.2. A knot K in an L-space Y is a positive L-space knot if and only if ĤFK(K)
consists of positive chains. 2

Similarly, K is a negative L-space knot if and only if ĤFK(K) consists of negative chains.
The reason amounts to the behavior of Dehn surgery and knot Floer homology under mirroring.

2.2 Calculating the invariants from a Heegaard diagram
The invariants can be calculated from any doubly pointed Heegaard diagram D = (Σ, α, β, z, w)
of K after making some additional analytic choices. Here, as usual, Σ denotes a closed, oriented
surface of some genus g; α and β are g-tuples of homologically linearly independent, disjoint,
simple closed curves in Σ; and the two basepoints w and z lie in the complement of the α
and β curves on Σ. The curve collections induce tori Tα,Tβ in the g-fold symmetric product

Symg(Σ). The underlying group of the Floer chain complex ĈFK(D) is freely generated by
T(D) = Tα∩Tβ. The elements of T(D) fall into equivalence classes in one-to-one correspondence
with Spinc(K): two elements x, y lie in the same equivalence class if and only if the set π2(x, y) of
homotopy classes of Whitney disks from x to y is non-empty. Write T(D, s) for the equivalence

class corresponding to s ∈ Spinc(K) and ĈFK(D, s) for the subgroup of ĈFK(D) generated by
the elements in T(D, s). Each Whitney disk φ ∈ π2(x, y) has a pair of multiplicities nz(φ), nw(φ)

and a Maslov index µ(φ). The Alexander and Maslov gradings on ĈFK(D, s) are characterized
up to an overall shift by the relations

a(x)− a(y) = nz(φ)− nw(φ), m(x)−m(y) = µ(φ)− 2nw(φ)

for all x, y ∈ T(D, s) and φ ∈ π2(x, y). There exist endomorphisms d0, dv, dh of ĈFK(D, s)
defined on generators x ∈ T(D, s) by the same general prescription:

d(x) =
∑
y,φ

#M̂(φ) · y.

Here y ranges over T(D, s); φ ranges over the elements of π2(x, y) with Maslov index µ(φ) = 1 and

a constraint on the multiplicities nw(φ), nz(φ); and #M̂(φ) is the count of pseudo-holomorphic
representatives of φ. The specific constraints on the multiplicities are nw(φ) = nz(φ) = 0 for
d = d0; nw(φ) = 0, nz(φ) > 0 for d = dv; and nw(φ) > 0, nz(φ) = 0 for d = dh. The maps
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d0, d0 + dv, d0 + dh are all differentials. The differential d0 + dv lowers m by one and is filtered
with respect to a. The differential d0 + dh lowers m − 2a by one and is filtered with respect to

−a. The differential d0 is the a-filtration-preserving component of each. The groups ĤFK(K, s),

ĤF (Y, iv(s)), and ĤF (Y, ih(s)) are the homology groups of ĈFK(D, s) with respect to d0,

d0+dv, and d0+dh, respectively, and the Alexander and Maslov gradings on ĈFK(D, s) descend

to the respective gradings on ĤFK(K, s). The maps d0 + dv and d0 + dh induce the differentials

d̃v and d̃h on ĤFK(K, s), respectively.
The Alexander and Maslov gradings enable us to constrain the existence of pseudo-

holomorphic disks for L-space knots.

Lemma 2.3. Suppose that D is a doubly pointed Heegaard diagram for K, d0 vanishes on

ĈFK(D, s), and ĤFK(K, s) is a positive chain with basis x1, . . . , x2n+1. If there exist generators
x, y ∈ T(D, s) and a disk φ ∈ π2(x, y) with µ(φ) = 1 and #M(φ) 6= 0, then x = x2k and y = x2k±1
for some k. Furthermore, nz(φ) = 0 if j = 2k + 1 and nw(φ) = 0 if j = 2k − 1.

Proof. Definition 2.1 and the paragraph preceding it show that the positive chain basis satisfies

a(x2k)− a(x2k−1) = bk, m(x2k)−m(x2k−1) = 1

and

a(x2k)− a(x2k+1) = −ck, m(x2k)−m(x2k+1) = 1− 2ck,

for some positive integers bk, ck, k = 1, . . . , n. In particular, the Maslov and Alexander gradings
of the xl both decrease with the index l. The generators x, y ∈ T(D, s) are homogeneous with
respect to both gradings, as are the positive chain basis elements, so it follows that x = ±xi and
y = ±xj for some i, j, and choices of sign.

The assumption that #M(φ) 6= 0 implies that nw(φ), nz(φ) > 0, and at least one inequality
is strict, since d0 = 0. Thus,

a(xi)− a(xj) = nz(φ)− nw(φ) and m(xi)−m(xj) = 1− 2nw(φ) 6 1. (1)

In the case of equality m(xi)−m(xj) = 1, then j = i−1, and either i = 2k, which gives the desired
conclusion, or else j = 2k, which we must rule out. In this case, nw(φ) = 0 and nz(φ) > 0. Since
Y is a rational homology sphere, it follows that φ ∈ π2(x, y) is the unique disk with µ(φ) = 1,

so the coefficient on y in d̃v(x) is #M(φ) 6= 0. However, this implies that d̃v(x2k+1) 6= 0, which
violates the form of the positive chain.

Otherwise, m(xi)−m(xj) 6 −1, so i < j. We have

a(xi)− a(xj) =

j−1∑
l=i

a(xl)− a(xl+1), m(xi)−m(xj) =

j−1∑
l=i

m(xl)−m(xl+1). (2)

Each term in the second sum is odd, and their total sum is odd, so it contains an odd number
of terms. The terms of the first sum alternately take the form −bk and −ck, while the terms of
the second sum alternately take the form −1 and 1− 2ck. Let b denote the sum of the values bk
that appear and c the sum of the ck that appear. All values bk are positive, so b > 0, and b = 0
only if i is even and j = i + 1, and b = 1 only if i is odd and j = i + 1. The first sum in (2)
equals −b− c, while the second sum equals 1− 2c or −1− 2c, according to whether i is even or
odd. Comparing with the second sum in (1) gives nw(φ) = c or c+ 1, according to whether i is
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even or odd. Comparing with the first sum in (1) then gives nz(φ) = −b or −b+ 1, according to
whether i is even or odd. If i is even, then 0 6 nz(φ) = −b gives nz(φ) = 0 and j = i+ 1, which
gives the desired conclusion. If i is odd, then 0 6 nz(φ) = −b + 1 again gives nz(φ) = 0 and
j = i+ 1. However, in this case it follows as before that y appears with coefficient #M(φ) 6= 0

in d̃h(x), which once again violates the form of the positive chain. 2

2.3 (1, 1) knots
Now assume that D is a (1, 1) diagram, so Σ has genus one. In this case, the differentials on

ĈFK(D) admit an explicit description that requires no analytic input, owing to the Riemann
mapping theorem and the correspondence between holomorphic disks in the Riemann surface
Σ = Sym1(Σ) and its universal cover C. Specifically, the conditions that φ ∈ π2(x, y) and µ(φ) = 1

imply that #M̂(φ) = ±1 for any choice of analytic data. Furthermore, these conditions are met
if and only if the image of φ lifts under the universal covering map π : R2

→ Σ to a bigon
cobounded by lifts of α and β. See [GMM05] and [OS04, pp. 89–96] for more details.

Assuming now that D is reduced, we have d0 = 0 and ĤFK(K, s) ≈ ĈFK(D, s). We proceed

to analyze the differentials d̃h and d̃v. Without loss of generality, we henceforth fix Σ = R2/Z2,
z = π(Z2), a horizontal line α̃ ⊂ R2 r Z2, and α = π(α̃). After a further homeomorphism, we
may assume that D takes the form shown in Figure 2. Observe that the embedded bigons in D
are the obvious ones cobounded by the α with the ‘rainbow’ arcs of β above w and below z.
Coherence is the condition that when the β curve is oriented, all of the rainbow arcs around a
fixed basepoint orient the same way. This makes it easy to check coherence from a diagram in
standard form.

Let H± denote the upper and lower half-planes bounded by α̃. Choose a lift to α̃ of any
point in T(D, s). There exists a unique lift β̃s ⊂ R2 that passes through it. The points of α̃ ∩ β̃s
are in one-to-one correspondence with T(D, s) under π, and there are an odd number 2n+ 1 of

them, since α̃ · β̃s = χ(ĈFK(D, s)) = 1 with appropriate orientations on the curves. The curve

β̃s meets each half-plane in one closed ray and n compact arcs. These compact arcs cobound
positive bigons D+

k ⊂ H+ and negative bigons D−k ⊂ H− with α̃ for k = 1, . . . , n. A positive
bigon attains a local maximum, and its image under π is the top of one of the rainbow arcs
above w. Consequently, it contains a lift of the bigon in D cobounded by that rainbow arc with
α. Thus, nw(D+

k ) > 0, and similarly nz(D
−
k ) > 0, for all k. Lastly, the positive bigons go from

their leftmost corner to their rightmost corner, and vice versa for the negative bigons.

Lemma 2.4. If D is a reduced (1, 1) diagram of K and ĤFK(K, s) is a positive chain, then:

(i) nz(D
+
k ) = 0 and nw(D−k ) = 0 for all k;

(ii) the positive bigons are exactly the ones that contribute to d̃v, the negative bigons are exactly

the ones that contribute to d̃h, and there are no other bigons; and

(iii) if α and β are oriented so that α · β > 0, then α̃ and β̃s induce coherent orientations on the
boundaries of all of the bigons they cobound.

Proof. (i) The conditions of Lemma 2.3 are met by each positive and negative bigon and its
corners, since D is a reduced (1, 1) diagram and each positive and negative bigon is an embedded
bigon in R2. The conclusion now follows from the last conclusion of Lemma 2.3 and the remark
about multiplicities just before this lemma.

(ii) The positive chain basis elements are homogeneous and in different bigradings, while
generators are homogeneous. It follows that the positive chain basis is comprised of generators
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(up to sign). Suppose that there exists an embedded bigon with nw = 0 that goes from a lift

of a generator x to a lift of a generator y in α̃ ∩ β̃s. Then it is the unique such bigon, and the
coefficient of y in d̃v(x) is non-zero. Moreover, d̃v(x) = ±y, because x and y are (signed) positive

chain basis elements. By part (1), each of the n positive bigons contributes to d̃v and connects

a different pair of generators. Since rk ĤFK(K, s) = 2n+ 1, positive bigons are precisely those

that contribute to d̃v. The same remarks apply to the negative bigons and d̃h. Lemma 2.3 shows
that there are no other bigons.

(iii) By part (2) and the remark just before the lemma, it follows that the points of intersection

between α̃ and β̃s occur in the same order along these curves, up to reversal. Suppose that α·β > 0,
so α̃·β̃s = +1. Without loss of generality, α̃ orients from left to right. It suffices to check coherence
on the boundary of the bigon with a corner at the leftmost point of intersection x ∈ α̃∩ β̃s. Note
that x is a positive point of intersection, as the signs of the intersections alternate along α̃ and

sum to +1. If there is no such bigon, then the conclusion is automatic (and rk ĤFK(K, s) = 1

in this case). If there is a bigon, label its other corner y. If it is a positive bigon, then d̃h(x) = y,

while d̃v(x) = 0, in violation of the form of ĤFK(K, s). Therefore, it is a negative bigon, and

its boundary is coherently oriented by α̃ and β̃s. 2

Drawing on the proof of Lemma 2.4, we make a definition and prove a converse.

Definition 2.5. A curve β̃ ⊂ R2 is graphic if its intersection points with α̃ occur in the same
or opposite orders along α̃ and β̃. It is positive if they occur in opposite orders and negative if
they occur in the same order.

The bottom right picture in Figure 3 displays a positive graphic curve. The reason for the
terminology is that a curve β̃ ⊂ R2 is graphic if and only if there exists a homeomorphism of
R2 taking (α̃, β̃) to the pair consisting of the x-axis and the graph of an odd-degree polynomial
with all roots real and distinct. Its sign, positive or negative, is minus the sign of the leading
coefficient of the polynomial.

Proposition 2.6. If D is a reduced (1, 1) diagram of K, then ĤFK(K, s) is a positive or a

negative chain if and only if β̃s is positive or negative graphic, respectively.

Proof. If ĤFK(K, s) is a positive chain, then Lemma 2.4 parts (2) and (3) show that β̃s is

positive graphic. Conversely, suppose that β̃s is positive graphic. Label the points of intersection
in α̃ ∩ β̃s by x1, . . . , x2n+1 in the order they occur along α̃. The only bigons cobounded by α̃
and β̃s are the positive and negative bigons. This latter fact can be verified using the equivalent
definition of a graphic curve mentioned after Definition 2.5. Therefore,

d̃v(x2k) = δk · x2k−1, d̃h(x2k) = εk · x2k+1, d̃v(x2k−1) = d̃h(x2k−1) = 0,

for all k and some δk, εk ∈ {−1, 0,+1}. A value δk or εk is 0 if and only if the corresponding
bigon contains both z and w basepoints. Since

H∗(ĤFK(K, s), d̃v) ≈ ĤF (Y, iv(s)) ≈ Z and H∗(ĤFK(K, s), d̃h) ≈ ĤF (Y, ih(s)) ≈ Z,

it follows that δk, εk 6= 0 for all k, and ĤFK(K, s) is a positive chain. The corresponding
statements for a negative chain and negative coherent diagram follow as well. 2
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Figure 3. Constructing a positive coherent diagram of P (−2, 3, 7), the inclusion of K(7, 4, 2)
into S3. The α curve is represented by a horizontal arc and the β curve by a vertical arc in the
top left. Moving from left to right illustrates the procedure described in the proof of Theorem 1.2.
At the top are diagrams on Σ and at the bottom their lifts to R2. The bigons at the bottom
right are shaded for emphasis.

Proof of Theorem 1.2. Let D denote a reduced (1, 1) diagram of K.

Suppose first that K is a positive L-space knot. Orient α and β so that α ·β > 0, and suppose

that B is an embedded bigon in D. We must show that α and β coherently orient ∂B. Suppose

that the corners of B belong to T(s), and let B̃ denote the lift of B to R2 with corners in α̃∩ β̃s.
We have α̃ · β̃s = +1. Since K is a positive L-space knot, Theorem 2.2 implies that ĤFK(K, s)

is a positive chain, and by Lemma 2.4(3), the orientations on α̃ and β̃s coherently orient the

boundaries of all of the bigons they cobound. In particular, they coherently orient ∂B̃, so α and

β coherently orient ∂B. Therefore, D is positive coherent.
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Conversely, suppose that D is positive coherent. Orient α and β so that α · β > 0 and α̃

orients from left to right. Fix s ∈ Spinc(K) and select any x ∈ α̃ ∩ β̃s. It is the endpoint of a

closed ray of β̃s oriented out of it. If this ray meets α̃ in another point, then let y denote the

first such point. The arc of β̃s from x to y cobounds a bigon B̃ with α̃. If y lies to the left of x,

then ∂B̃ is incoherently oriented by α̃ and β̃s. The arc of β̃s has an extremal (highest or lowest)

point which lifts the extremal point of a rainbow arc. Projecting B̃ to D by π, it follows that this

rainbow arc cobounds an embedded bigon with α that is incoherently oriented by α and β, a

contradiction. Therefore, y lies to the right of x. It follows by induction that the points of α̃ ∩ β̃s
occur in the opposite orders along α̃ and β̃s with respect to these curves’ orientations. It follows

that β̃s is graphic, and since α · β > 0, it is positive graphic. By Proposition 2.6, ĤFK(K, s)

is a positive chain. Therefore, ĤFK(K) consists of positive chains, and K is a positive L-space

knot by Theorem 2.2.

The corresponding statements for negative coherent diagrams and negative L-space knots

follow by a similar argument. 2

3. 1-bridge braids

This section consists of two parts. The first is devoted to the proof of Theorem 1.4 and its

sign-refined version, Theorem 3.2. The second is a vignette on how Theorem 3.2 pertains to solid

torus fillings on 1-bridge braid exteriors. Specifically, we give a novel argument in Proposition 3.4

to characterize the Berge manifold among 1-bridge braid exteriors.

3.1 1-bridge braids are L-space knots

We prepare by describing a reduced (1, 1)-diagram of a 1-bridge braid in a rational homology

sphere.

Let γ ∪ δ ⊂ S1 ×D2 denote a 1-bridge braid. Identify ∂(S1 ×D2) with the flat torus Σ in

such a way that meridians θ × ∂D2 lift to horizontal lines and longitudes S1 × x lift to vertical

lines under π : R2
→ Σ. Isotope γ rel endpoints into a geodesic on Σ, so that π−1(γ) consists of

parallel line segments in R2 of some common slope s(γ) ∈ P 1(R). Orient γ and write ∂γ = z−w
so that in each lift of γ to R2, the lift of z lies below that of w.

Form a genus-one rational homology sphere Y by gluing a solid torus V to S1×D2 along their

boundaries, and let K denote the image of γ ∪ δ in Y . Let α denote a meridian of S1 ×D2 and

let β0 denote the curve to which the meridian of V attaches, which we take to be a geodesic. In

meridian-longitude coordinates, β0 has some slope p/q 6= 0/1, and Y is homeomorphic to L(p, q)

if p 6= 1 and S3 otherwise. Assume that α and β0 are disjoint from ∂γ. Isotope β0 by a finger-move

along γ into a curve β1 disjoint from γ. Observe that (Σ, α, β1, z, w) is a doubly pointed Heegaard

diagram for K ⊂ Y . Put it into reduced form by further isotoping β1 so as to eliminate all bigons

that do not contain basepoints, one by one, resulting in a curve β2. Let D = (Σ, α, β2, z, w) denote

the resulting reduced diagram of K ⊂ Y . Figure 3 exhibits this procedure for the inclusion of

the 1-bridge braid K(7, 4, 2) into S3, the pretzel knot P (−2, 3, 7). The notation derives from the

braid presentation of 1-bridge braids; see [Ber91, Gab90, Wu04]. The 1-bridge braid K(ω, b,m)

denotes the closure of the braid word (σbσb−1 · · ·σ1)(σω−1σω−2 · · ·σ1)m in S1×D2, where the σi
are the generators of the braid group Bw. Note that K(ω, b,m) and K(ω, b,m + ω) differ by a

full twist, so there is a diffeomorphism of the solid torus that carries one to the other. Therefore,

we may assume that 0 6 m < w.
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A pair of distinct slopes s1, s2 ∈ P 1(Q) determines an interval [s1, s2] ⊂ P 1(Q) oriented from
s1 to s2 in the counterclockwise sense; thus, [s1, s2] ∪ [s2, s1] = P 1(Q) and [s1, s2] ∩ [s2, s1] =
{s1, s2}.

Proposition 3.1. The diagram D is coherent. Furthermore, it is positive if s(γ) ∈ [0, p/q] and
negative if s(γ) ∈ [p/q, 0].

Note that Proposition 3.1 does not characterize the sign of the coherence in terms of s(γ).
Theorem 3.2 does so in terms of the slope interval, and its proof relies on Proposition 3.1.

Proof. Choose lifts of α and β0 to R2. They meet in a single point of intersection x1. Consider
the lifts of γ that meet both α̃ and β̃0 and in that order relative to their lifted orientations.
Observe that these lifts meet the same component of α̃ − x1. Label the points of intersection
between these lifts and α̃ by y2, . . . , yn in the order that they appear along this component,
moving away from x1. The isotopy from β0 to β1 lifts to one from β̃0 to β̃1. Nearby each yi is a
pair of intersection points x2i, x2i+1 between α̃ and β̃1. The points x1, . . . , x2n+1 occur in that
order along both α̃ and β̃1. Thus, β̃1 is graphic. The isotopy from β1 to β2 lifts to one from β̃1
to β̃2. Each elimination of a bigon eliminates a pair of intersection points that are consecutive
along both α̃ and β̃1. Therefore, the intersection points between α̃ and β̃2 are a subset of those
between α̃ and β̃1, and they occur in the same order along α̃ and β̃2. It follows that β̃2 is graphic
as well. Furthermore, β̃2 is positive graphic if the x-coordinates of x1, . . . , x2n+1 decrease with
index and negative graphic if they increase with index. This is the case if s(γ) belongs to [0, p/q]
or to [p/q, 0], respectively. In particular, it is independent of the choice of lift of β2. Thus, all
lifts of β2 are ε-graphic for the same choice of sign ε. It follows that D is coherent, and the
sign-refined statement follows as well. 2

Proof of Theorem 1.4. Immediate from Proposition 3.1 and Theorem 1.2. 2

We proceed to sharpen the statement of Theorem 1.4. To do so, we introduce the notion of
a strict 1-bridge braid and its basic invariants: the winding number and slope interval. Choose
the lift of γ with one endpoint at (0, 0). Its other endpoint takes the form (t, ω) ∈ R × Z. We
have ω > 0 by our convention on the basepoints, and t is not a proper divisor of ω. Moreover, ω
is an invariant of the isotopy type of K, since [K] = ω · [S1 × x] ∈ H1(S

1 ×D2;Z). This is the
winding number ω(K).

Consider the sweep-out of line segments with one endpoint at (0, 0) and the other endpoint
varying along line y = ω. There exists a maximal slope interval I(γ) ⊂ P 1(Q) containing s(γ)
and so that the sweep-out of line segments through slopes in I(γ) contains no lattice point
in its interior. If ω = 1, then I(γ) = P 1(Q) r {0}, and otherwise I(γ) = [s−(γ), s+(γ)] with
s−(γ) 6 s+(γ). The sweep-out descends to an isotopy through 1-bridge braids with slopes
in the interior of I(γ). If a line segment of slope s±(γ) has endpoint (q, ω) ∈ Z2, then write
(q, ω) = (dq′, dω′), where d = gcd(q, ω). Let µ denote the meridian of the torus knot T (q′, ω′)
and λ the surface framing, oriented so that µ · λ = +1. If d = 1, then K is isotopic to the torus
knot T (q, ω), and if d > 1, then K is isotopic to the (dλ±µ) cable of T (q′, ω′), where the sign is
positive or negative if the slope of the line segment is s+(γ) or s−(γ), respectively. We call such a
cable an exceptional cable of a torus knot. Otherwise, if no line segment has endpoint (q, ω) ∈ Z2,
then we call K a strict 1-bridge braid (and justify the terminology in Corollary 3.3). In this case,
there exists a unique m ∈ Z so that m < t < m+ 1, and s−(γ) and s+(γ) are consecutive terms
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in the Farey sequence of fractions from ω/(m+ 1) to ω/m whose denominators are bounded by
|m| when expressed in lowest terms.

For the following result, assume p > q > 0 are coprime integers, and let L(1, 0) denote S3.
A simple knot in L(p, q) is a (1, 1) knot whose defining arcs are contained in meridian disks in
the respective Heegaard solid tori, where the disks’ boundaries meet in p transverse points of
intersection. We permit the degenerate case that the the cable arc γ is a simple closed curve and
the bridge δ is a point, in which case the simple knot is an unknot. Equivalently, a simple knot
is a knot admitting a (1, 1) diagram in which all points of intersection between α and β have the
same sign. Note that every simple knot is a 1-bridge braid: to see this, push one of the defining
arcs onto the Heegaard torus.

Theorem 3.2. The inclusion of a strict 1-bridge braid γ ∪ δ ⊂ S1 ×D2 into L(p, q) is:

(i) a positive L-space knot if and only if s−(γ) ∈ [0, p/q];

(ii) a negative L-space knot if and only if s+(γ) ∈ [p/q, 0]; and

(iii) a simple knot if and only if p/q ∈ I(γ).

For example, the inclusion ofK(7, 4, 2) into L(p, q) is a simple knot if and only if p/q ∈ [5/2, 3].

Proof of Theorem 3.2. The reverse directions of (1) and (2) follow from Proposition 3.1 and
Theorem 1.2.

For the forward directions, suppose first that s+(γ) ∈ (0, p/q). Write s+(γ) = r/s in lowest
terms, s > 0. As before, let γ̃ denote the lift of γ with one endpoint at (0, 0) and the other at
(t, ω) ∈ R× Z. Note that ω > |r|. Let α̃ ⊂ R2 rZ2 denote a horizontal line that separates (s, r)

from (t, ω), and let β̃0 ⊂ R2rZ2 denote a line of slope p/q that separates (s, r) from (0, 0). Then

α̃, β̃0, and γ̃ intersect in pairs, and since r/s ∈ (0, p/q), they cobound a triangle containing (s, r)
in its interior. See Figure 5(a).

Follow the procedure for producing a coherent diagram D for K ⊂ Y using the curves
α = π(α̃), β0 = π(β̃0) ⊂ Σ. The isotopy from β̃0 to β̃1 captures (s, r) in a negative bigon and

(t, ω) in a positive bigon in (R2, α̃ ∪ β̃1). See Figure 5(b). These points remain in bigons of the

respective types following the isotopy from β̃1 to β̃2. It follows that ĤFK(K, s) is a positive

chain of rank greater than one for the spinc structure s corresponding to the pair of lifts α̃, β̃2.
Thus, K is not a negative L-space knot, which gives the forward direction of (2). The forward
direction of (1) follows the same line of reasoning.

Since a simple knot is both a positive and a negative L-space knot, the forward direction of
(3) follows. Finally, taking a 1-bridge presentation of K in which γ has slope p/q results in a
diagram D of a simple knot, and the reverse direction of (3) follows. 2

The following result recovers the isotopy classification of 1-bridge braids from Theorem 3.2.
Compare [Gab90, Proposition 2.3], which does so in terms of braid parameters.

Corollary 3.3. If K = γ ∪ δ ⊂ S1 ×D2 is a strict 1-bridge braid, then the slope interval I(γ)
is an invariant of the isotopy type of K. Its isotopy type is determined by its slope interval and
winding number, and K is not isotopic to a torus knot or an exceptional cable thereof.

Proof. The slope interval is characterized by Theorem 3.2 as the set of surgery slopes for which
K includes as a simple knot, so it is an isotopy invariant. It and the winding number together
determine a sweep-out of arcs which in turn specify the isotopy type of K. If K is a strict
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Figure 4. On the left, a braid with closure the 1-bridge braid K(7, 4, 2) ⊂ S1 ×D2. The bold
points suggest its decomposition into the form γ ∪ δ. On the right, a sweep-out of arcs in R2

indicating that I(γ) = [5/2, 3]. The bold points arise in the proof of Proposition 3.4.

Figure 5. Capturing a lattice point.

1-bridge braid, then it does not include as a simple knot in any lens space of order |ω(K)| or

less. However, every torus knot T (q, ω) ⊂ S1 ×D2 and exceptional cable thereof includes as an

unknot in the lens space obtained by (ω/q)-filling on the outer torus. 2

3.2 Solid torus fillings

Gabai proved in [Gab90] that a knot in the solid torus with a non-trivial solid torus surgery is a

1-bridge braid, and Berge classified them in [Ber91]. Berge found that, up to mirroring, K(7, 4, 2)

930

https://doi.org/10.1112/S0010437X17007989 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007989


(1, 1) L-space knots

is the unique strict 1-bridge braid that admits more than one such surgery. Its exterior is known
as the Berge manifold. Menasco and Zhang studied 1-bridge braids whose exteriors admit a solid
torus filling on the outer torus in [MZ01], and Wu classified them in [Wu04].

We indicate a line of approach towards Wu’s result using Theorem 3.2. Suppose that K is a
1-bridge braid in S1 × D2 and (p/q)-filling on its outer torus is a solid torus; equivalently, the
inclusion of K into L(p, q) is a knot with solid torus exterior. A knot in L(p, q) has a solid torus
exterior if and only if it is simple and homologous to the oriented core of a Heegaard solid torus.
Since [K] equals ω times a generator of H1(S

1 ×D2;Z), the uniqueness of genus-one Heegaard
splittings of L(p, q) implies that either

(a) ω ≡ ±1 (mod p) or (b) ω · q ≡ ±1 (mod p); (3)

the 2 × 2 possibilities correspond to the two Heegaard solid tori and the two orientations.
Therefore, Theorem 3.2 reduces the problem Wu solved to one about lattice points. However, it
appears to require considerable effort to extract Wu’s result from it. Nevertheless, we can quickly
derive the following characterization of the Berge manifold.

Proposition 3.4. Up to mirroring, the knot K(7, 4, 2) is the unique strict 1-bridge braid whose
exterior admits three distinct solid torus fillings on the outer torus.

Wu points out that this result follows from the work of Berge and Gabai, which is an
amusing exercise [Wu04, § 4(1)]. By contrast, we deduce Proposition 3.4 from Theorem 3.2 and
the uniqueness of genus-one Heegaard splittings of lens spaces.

Given linearly independent v, w ∈ Z2, let ∆(v, w) denote the triangle with vertices 0, v, w.
It is empty if it contains no lattice points besides its vertices, that is, {v, w} is a basis of Z2.

Proof. Suppose that K ⊂ S1 ×D2 is a strict 1-bridge braid with winding number ω and slope
interval [b/d, a/c] ⊂ (ω/(m + 1), ω/m), m ∈ Z. Let X denote the exterior of K. Suppose that
(p/q)-Dehn filling on the outer torus of X is a solid torus. Thus, p/q ∈ [b/d, a/c], and one of the
congruences in (3) holds.

If (3)(b) holds, then there must exist s ∈ Z so that ∆((s, ω), (p, q)) is empty. If p/q ∈ (b/d,
a/c), then this triangle contains (c, a) if s 6 m and (d, b) if s > m+ 1. Therefore, we must have
p/q ∈ {a/c, b/d}. Furthermore, s = m if p/q = a/c and s = m+ 1 if p/q = b/d.

If instead p > ω, then it follows that (3)(a) holds, and we obtain ω = p − 1. Furthermore,
(q, ω + 1) = (q, p) is in the cone bounded by the rays from (0, 0) through (d, b) and (c, a). Since
m+ 1 6 ω, it follows that (q, ω + 1) = (m+ 1, ω + 1). Moreover, (m+ 1)/(ω + 1) is the mediant
of d/b and c/a, meaning that a+ b = ω + 1 and c+ d = m+ 1.

Hence, if X has three distinct solid torus fillings, then they have slopes a/c, b/d, and (a +
b)/(c + d) (in conformity with the cyclic surgery theorem [CGLS87]). We assume this going
forward.

Suppose that (3)(b) holds for both b/d and a/c. It follows that all lattice points interior to
∆((m,ω), (m + 1, ω)) fall on the rays generated by (d, b) and (c, a). In particular, (m,ω − 1) is
a multiple of exactly one of these two points, meaning that ω ≡ 1 (mod e) for a unique value
e ∈ {a, b}. Thus, (3)(a) holds for whichever of b/d and a/c has numerator different from e.

On the other hand, if (3)(a) holds for some p/q ∈ {a/c, b/d}, then it must hold with the
sign +1, since otherwise one of a or b divides the other, a contradiction. Since (m,ω − 1) is the
unique lattice point in ∆((m,ω), (m+ 1, ω)) with its y-coordinate, it follows that it is a multiple
of (q, p). Thus, (3)(a) holds for at most one of a/c, b/d.
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In total, (3)(a) holds for one of a/c, b/d and (3)(b) holds for the other. Applying the linear
map (x, y) 7→ (y − x, y) exchanges K with its mirror (see [Wu04, § 4]). Thus, we may assume
that (3)(a) holds for a/c and (3)(b) for b/d. We have k · (c, a) = (m,ω − 1) for some k ∈ Z,
k > 0. Since (m+ 1, ω + 1) = (c, a) + (d, b), we obtain (m+ 1, ω + 1) = k · (c, a) + (1, 2), and so
(k − 1) · (c, a) + (1, 2) = (d, b). Hence

1 =

∣∣∣∣d b
c a

∣∣∣∣ =

∣∣∣∣1 2
c a

∣∣∣∣ = a− 2c and 1 =

∣∣∣∣m+ 1 ω
d b

∣∣∣∣ =

∣∣∣∣m+ 1 ω + 1
d b

∣∣∣∣+ d = −1 + d.

We deduce in turn that d = 2, k = 2, c = 1, a = 3, b = 5, ω = 7, and m = 2. Since (7/3, 5/2, 3/1,
7/2) is the Farey sequence of fractions between ω/(m + 1) and ω/m, the slope interval of K is
[5/2, 3/1], and it has winding number 7. See Figure 4. These invariants specify K 'K(7, 4, 2). 2
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(1, 1) L-space knots, and both Zoltán and Liam Watson for their interest and encouragement.

References

Ber18 J. Berge, Some knots with surgeries yielding lens spaces, Preprint (2018), arXiv:1802.09722.

Ber91 J. Berge, The knots in D2 × S1 which have nontrivial Dehn surgeries that yield D2 × S1,
Topology Appl. 38 (1991), 1–19.

BBCW12 M. Boileau, S. Boyer, R. Cebanu and G. S. Walsh, Knot commensurability and the Berge
conjecture, Geom. Topol. 16 (2012), 625–664.

CGLS87 M. Culler, C. McA. Gordon, J. Luecke and P. B. Shalen, Dehn surgery on knots, Ann. of
Math. (2) 125 (1987), 237–300.

Gab90 D. Gabai, 1-bridge braids in solid tori, Topology Appl. 37 (1990), 221–235.

GMM05 H. Goda, H. Matsuda and T. Morifuji, Knot Floer homology of (1, 1)-knots, Geom. Dedicata
112 (2005), 197–214.

Hed11 M. Hedden, On Floer homology and the Berge conjecture on knots admitting lens space
surgeries, Trans. Amer. Math. Soc. 363 (2011), 949–968.

HLV14 J. Hom, T. Lidman and F. Vafaee, Berge–Gabai knots and L-space satellite operations, Algebr.
Geom. Topol. 14 (2014), 3745–3763.

Juh15 A. Juhász, A survey of Heegaard Floer homology, New Ideas in Low Dimensional Topology,
vol. 56 (World Scientific, Hackensack, NJ, 2015), 237–296.

MZ01 W. Menasco and X. Zhang, Notes on tangles, 2-handle additions and exceptional Dehn fillings,
Pacific J. Math. 198 (2001), 149–174.
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