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Abstract

Shape queries based on shape embedding under a given Euclidean, affine, or linear transfor-
mation are absent from current CAD systems. The only systems that have attempted to imple-
ment shape embedding are the shape grammar interpreters albeit with promising but
inconclusive results. The work here identifies all possible 14 cases of shape embedding with
respect to the number of available registration points, four for determinate cases and ten for
indeterminate ones, and an approach is sketched to take on the complexities underlying the
indeterminate cases. All visual calculations are done with shapes consisting of straight lines
in the Euclidean plane within the algebra Uij for i = 1 the dimension of lines and j = 2 the
dimension of space in which the lines are defined, transformed and combined. Aspects of inter-
face design and integration to current work design workflows are deliberately left aside.

Introduction

A shape query in computer-aided design (CAD) systems is enabled by a database query
requesting the retrieval of instances of shapes from a CAD database. The list of the commands
available to a designer to perform a query for a particular shape is impressive and involves
multiple ways of interfacing with the CAD software including typing, pointing, and pictorially
interacting with the model in a variety of ways including clockwise and counterclockwise
window-selecting, cross-selecting shapes, drop-down menus, listboxes, checkboxes, toggles,
steppers, and so on, all with ready-made or ad hoc lists of shapes, combinations of shapes,
and properties of shapes; and yet, regrettably, all are ultimately useless when it comes to enabling
the designers retrieve shapes that cannot be derived from the ones inserted in the database.

Surprisingly, shape query under a given Euclidean, affine, or linear transformation (shape
embedding) is entirely absent from current CAD systems: This might come at a surprise when
CAD geometry is intimately related to computational geometry – an ever-growing field of
algorithms dealing with geometric problems involving operations on points, lines, planes,
and solids (see, e.g., Preparata and Shamos, 1990; Goodman and O’Rourke, 1997). An
impressive list of formal approaches on comparison of shapes (shape matching) in computa-
tional geometry include diverse matching techniques such as tree pruning, pose clustering,
geometric hashing, deformable templates, Fourier descriptors, wavelet transforms, and neural
networks (Besl and Jain, 1985; Foley et al., 1997; Loncaric, 1998; Campbell and Flynn, 2001;
Cardone et al., 2003); and an expanding universe of classes of shapes to be compared including
sketch-based shapes, non-rigid shapes, relief surface patches, multi-domain protein shapes,
gesture sequence shapes, watertight models, and so forth (Tangelder and Vetlkamp, 2008).
And yet, the single most important characteristic in all these approaches, the measurement
of how similar or dissimilar a shape is with another shape, using some appropriately con-
structed similarity or dissimilarity measure (Veltkamp and Hagedoorn, 2001), is an indifferent
measure when it comes to the notion of shape embedding under a given Euclidean, affine, or
linear transformation (Stiny, 2006).

The only systems that have attempted to implement shape embedding are the shape gram-
mar interpreters – computer applications that process shape rules encoded in shape grammars
(Krishnamurti, 1981, 1982, 1992; Krishnamurti and Giraud, 1986; Stouffs, 1994; Tapia, 1999;
Trescak et al., 2009; Jowers et al., 2010; Jowers and Earl, 2011; Grasl and Economou, 2013;
Ruiz-Montiel et al., 2014; Stouffs and Li, 2020). A shape grammar consists of shape-rewriting
rules cast in the form u→ v, for a shape u is rewritten as a shape v (Stiny, 1975). A shape rule
u→ v is applied to a shapeW, when there is a geometric transformation f that makes the shape
f(u) part of the shape W – or alternatively, when there is a transformation f that embeds the
shape f(u) in W. The resulting computation identifies the instance of the shape f (u) in the
shape W and replaces it with the corresponding instance of the shape f(v) to generate a
new shape W′ =W− f(u)− f(v). Clearly, any application of a shape rule requires that the
shape u can be embedded in a design. And if there is no need for the specification of a design
action (shape v), these the shape rewrite rules are modeled after the identity shape rule u→ u
(Stiny, 1996; Economou et al., 2021). Shape grammars do offer a generous formalism for
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design supporting ambiguity, redescription, and variability – and
since their introduction in the mid-seventies have always offered a
radical counterpart to mainstream research in CAD (McCullough,
2006; Knight, 2015).

All shape grammar interpreters approach the problem of
implementing shape embedding in two ways, namely, by (a) the
database query of the maximal elements that the shapes are
made of, see for example, GRAPE (Grasl and Economou, 2013,
2018) and Sortal (Stouffs, 2018; Stouffs and Li, 2020) and (b)
the derivation of the transformation matrix that embeds one
shape into another, see for example, SGI (Krishnamurti, 1982;
Krishnamurti and Giraud, 1986); SGS (Chase, 1989); GRAIL
(Krishnamurti, 1992); and GEdit (Tapia, 1999). Both approaches
rely on the formal descriptions of the maximal representation of
shape and its registration marks or points (Stiny, 1975, 2006;
Krishnamurti, 1981). The implementation of shape embedding
through database query, despite its success in well-structured
cases and design workflows, fails to provide a general solution
to the subshape problem (McKay et al., 2012). The implementa-
tion of shape embedding through the derivation of the transfor-
mation matrices is still the most promising method, but it is
plagued by a series of problems across several fronts (Stouffs,
2019; Hong and Economou, 2021).

The work here focuses on the systematic exposition of the
challenges underlying the implementation of the derivation of
the transformation matrices for shape embedding, and the oppor-
tunities residing in the reworking of the problem. More specifi-
cally, 14 cases of shape embedding are identified with respect to
the number of available registration points, four for determinate
cases and ten for indeterminate ones, and an approach is sketched
to take on the complexities underlying the indeterminate cases.
All shape calculations are done with shapes consisting of straight
lines in the Euclidean plane, that is, the algebra Uij for i = 1 the
dimension of lines, and j = 2 the dimension of space in which
the lines are defined, transformed, and combined (Stiny, 1991,
2006; Krstic, 2014). Aspects of interface design and integration
to current work design workflows are deliberately left aside.

Calculating embedding

Shape embedding is the process of embedding a shape u into a
shape W under a transformation f. The two main parts of the
visual match to consider are (a) the relation between the shape
u and its instance f(u) and (b) the relation between the shape f
(u) and W. In the first case, we are interested in the transforma-
tion f that relates the shapes u and f(u): Do we want to search for
congruent shapes with the exact size and shape with the shape u?
Or similar shapes differing in size? Or affine congruent ones? Or
projective congruent ones? The invariance of particular character-
istics between the shapes u and f(u) for Euclidean, affine, and lin-
ear transformations f require radically different geometrical
constructions (Veblen and Young, 2007). In the second case, we
are interested in the part relation between the shapes f(u) and
W, that is, the case that f (u)≤W holds true. Does a particular
transformation f make the shape f(u) part of W? Are there
more instances f(u) of the shape u that can be embedded in W
under a particular group of transformations? Are there none? It
might be that a visual search or embedding for a congruent
instance f (u) of a shape u gives null results but a more relaxed
search for an affine congruent shape f(u) does; or it might be
that the visual match is indeterminate, that is, additional instruc-
tions and calculations have to be performed. A brief account of

both steps of the visual match is given below confined for shapes
made of lines in the algebra U12.

The first step for a visual embedding of a shape u into a shape
W is the appropriate specification of the geometric relation
between the shape u and the shape f(u) to be matched in W:
More broadly, for a shape u, the shape f (u) can be modeled by
four types of transformations: (a) isometric transformations (or
isometries) including translations, reflections, and rotations; (b)
similarity transformations (or similarities) including isometric
transformations, scale transformations and their combinations;
(c) affine transformations (or affinities) including similarities,
stretch, compress, and shear transformations and their combina-
tions; and (d) linear transformations (or linearities) including
affine transformations, one-point and two-point perspective
transformations and their combinations. Each of these types of
transformations vary some aspects of the shape and leave other
aspects invariant: The isometric transformations preserve lengths
and angles and vary position; the similarity transformations pre-
serve angles and vary length and position; the affine transforma-
tions preserve parallelism and vary angles, lengths, and position;
and the linear transformations preserve cross ratio and vary par-
allelism, angles, lengths, and position (March and Steadman,
1974). Any finite sequence of the above transformations specify
the type of geometric congruence between the two shapes u
and f(u): two shapes are congruent if there is a finite sequence
of isometric transformations mapping one shape to another;
two shapes are similar if there is a finite sequence of similarity
transformations mapping one shape to another; two shapes are
affine congruent if there is a finite sequence of affine transforma-
tions mapping one shape to another; and two shapes are projective
congruent if there is a finite sequence of linear transformations
mapping one shape to another. The rising hierarchy of the trans-
formations f is given in Figure 1 for a shape u in the form of a low-
ercase k. The initial instance of the shape u is taken here as the
identity transformation f(u).

The second step for a visual embedding of a shape u into a
shape W is the specification of the appropriate registration
mechanism to capture the geometric congruence of the shape f
(u) with parts of the shape W including the complete shape W.
The selection of these registration points has been somewhat of
a moving target in the literature and various approaches have
been proposed (see, e.g., Stiny, 1975, 2006; Krishnamurti, 1981;
Krishnamurti and Giraud, 1986; Krishnamurti and Earl, 1992;
Stouffs, 1994; Earl, 1997; Tapia, 1999). Here, the registration
points are solely defined as the intersections of the hyperplanes
(see, e.g., Alexanderson and Wetzel, 1978) that the maximal
lines are embedded in Stouffs and Krishnamurti (2019). More
specifically, a registration point can be incident with (a) two max-
imal lines; (b) a maximal line and a boundary of maximal line; (c)
two boundaries of maximal lines; (d) a maximal line and a hyper-
plane upon which a maximal line is embedded; (e) a boundary of
a maximal line and a hyperplane upon which a maximal line is
embedded; and (f) two hyperplanes upon which two maximal
lines are embedded. A visual illustration of the six types of regis-
tration points and an instance of a shape u featuring all types of
registration points are both given in Figure 2.

The selection of the particular type of geometric congruence
between the shape u and f(u) – namely, the choice whether the
shape f(u) is a congruent, similar, affine congruent or projective
congruent instance of u – and the available registration points
Ru of the shape u and the points Rw of the shape W determine
(a) whether there is indeed an embedding of the shape f (u) in
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W, and if there is one, (b) whether this embedding can be done in
a determinate or indeterminate way. A comprehensive overview
for all possible cases of determinate and indeterminate embed-
dings under Euclidean and affine transformations for all algebras
Uij, 0≤ i≤ j≤ 3 has been given by Krishnamurti and Stouffs
(1997). Interestingly, shapes made up of lines can be embedded
in a determinate way under a particular kind of transformation
and in an indeterminate way under some other. Most of the cur-
rent shape grammar implementations use algorithms that can cal-
culate determinate embeddings under isometric and similarity
transformations (Euclidean transformations), and there is no gen-
eral way to treat indeterminate embeddings. The goal of this work
is to trace these cases and identify the conditions that need to be
resolved for a general implementation of embedding. The work
focuses on the outstanding issues associated with this method
and illustrates them through a series of iterative visual calculations
against a single shape W to make them as manifest as possible.
The shape W pays homage to the familiar shape of the two nested
squares (or four triangles, four pentagons, two hexagons, and so
forth) that has characterized the field of the shape grammars
since its first appearance in Stiny (1975) and Gips (1975) and
afterwards (see, e.g., Stiny, 1980; Knight and Stiny, 2001;
Mitchell, 2001; Stouffs and Krishnamurti, 2019).

Implementation of determinate embedding using
transformation matrices

The general algorithm to the derivation of the transformation f for
shape embedding by calculating transformation matrices has been
given in Krishnamurti (1981, 1982) and Krishnamurti and Giraud
(1986): A 3 × 3 matrix is used to represent all linear transforma-
tions, including isometries, similarities, affinities, and linearities.
The calculation of the transformation between two shapes in
2D space is done by the derivation of the 3 × 3 matrix by plugging
in the coordinates of the required number of registration points
between the two shapes. This method is based on the fact that
any point on the Cartesian plane is assigned with a coordinate
with three real numbers x, y, and z to represent an absolute loca-
tion in the space. For the four types of linear transformations and
Num(Ru) the number of registration points of the shape u, there
are four cases of determinate embedding to consider: (a) Num
(Ru) = 1 under isometric transformations; (b) Num(Ru) = 2
under similarity transformations; (c) Num(Ru) = 3 under affine
transformations; and (d) Num(Ru) = 4 under linear transforma-
tions. Clearly, any embedding with a larger set of available regis-
tration points should be determined, calculable, and otherwise
straightforward – but see some further notes on this topic in
the end of this work.

Fig. 1. Types of linear transformations. (a) Identity; (b) reflection; (c) direct transformations (from left to right): translation; rotation; scale; shear; stretch; one-point
perspective; two-point perspective; (d) indirect or handed versions of the transformations in (c).

Fig. 2. Congruence of shapes and registration points. (a–-(f) Six types of registration points; (g) a shape exhibiting all six types of registration points; (h) four con-
struction lines (hyperplanes) of shape u; (i) seven endpoints of shape u; and ( j) six registration points of shape u.
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Determinate embedding under isometric transformations

An embedding of a congruent instance of a shape u in a shape W
is determinate when the shape u has one or more registration
points. An example of a determinate congruent embedding of a
shape u having one registration point is shown in Figure 3.
Note that the limiting case that the shape u has only one registra-
tion point – that is, one point coincident with the intersection of
its hyperplanes cannot be calculated by the current algorithm of
the derivation of the isometry matrix because the algorithm
requires two points from each shape to resolve the three unknown
variables of the isometric matrix, namely, the rotation angle θ, the
translation in the x-direction tx, and the translation in the
y-direction ty. In this sense, the embedding is visually possible
but operationally impossible in terms of the given algorithm.
The manual addition of “distinguishable” points in the set of
registration points of the shape u is not readily deployable in auto-
mated applications of the algorithm, and the automated sampling
of endpoints of maximal lines, regrettably, brings more problems
than actual solutions – a pictorial example is offered in the final
part of this work along with a series of cases that need to be con-
sidered for the automated implementation of visual matching.

The eight possible congruent embeddings of the shape fi(u) are
all determined by the interactions of the symmetry elements of
the symmetry groups of the shapes u and W (Stiny, 1991) –
here, the cyclic group C1 of order 1 and the dihedral group D4

of order 8, respectively (Armstrong, 1997).

Determinate embedding under similarity transformations

An embedding of a similar instance of a shape u in a shape W is
determinate when the shape u has two or more registration
points. An example of a determinate embedding under similarity
transformations of a shape u having two registration points that is
successfully implemented by the derivation of the similarity
matrix is shown in Figure 4. The automated derivation of the
similarity matrix is successful because all possible pairs of points
sampled from the sets of registration points of the shapes u andW
can be used to resolve the four unknown variables of the similar-
ity matrix, that is, translation in the x-direction tx, translation in
the y-direction ty, rotation angle θ, and scaling factor s. More spe-
cifically, the shape u has two registration points, both coincident
with the intersections of two pairs of hyperplanes, and the shape

Fig. 4. An example of determinate similar embedding with two registration points that is successfully implemented by the automated derivation of the similarity
matrix. (a) Shape u; (b) registration points Ru; (c) shape W; (d) registration points RW; and (e) eight results of unrestricted embedding under similarity
transformations.

Fig. 3. An example of determinate congruent embedding with one registration point that cannot be implemented by the derivation of the isometry matrix. (a)
Shape u; (b) registration points Ru; (c) shape W; (d) registration points RW; and (e) eight results of determinate embedding under isometric transformations.
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W has 16 registration points, all coincident with the intersections
of the hyperplanes of its maximal lines. The automated sampling
of two points out of the set of two registration points in the shape
u and the set of 16 registration points in the shape W yields
C16
2 = 120 pairs. The algorithm of the derivation of the similarity

matrix checks whether any of the 120 pairs of pairs of points
resolves the four unknown variables and the calculation yields
eight pairs that lead to eight pictorially nonequivalent matches.
Note that the derivation of the similarity matrix for a shape u hav-
ing two or more registration points is the only one that currently
works well among all possible cases of embedding, see, for exam-
ple, SGI (Krishnamurti, 1982; Krishnamurti and Giraud, 1986);
SGS (Chase, 1989); GRAIL (Krishnamurti, 1992); GEdit (Tapia,
1999); and SGI-RF (Trescak et al., 2009).

Determinate embedding under affine transformations

An embedding of an affine instance of a shape u in a shape W is
determinate when the shape u has three or more registration
points – provided that at least three registration points in the
shapes u and W are not collinear. The three noncollinear registra-
tion points provide sufficient information to resolve six unknown
variables of affine matrix including translation in the x-direction
tx, translation in the y-direction ty, rotation angle θ, and stretching
factor in the x-direction αx, stretching factor in the y-direction αx,
and a shearing angle w. An example of a determinate embedding
under affinity transformations of a shape u having three registra-
tion points that is successfully – albeit partially – implemented by
the derivation of the affine matrix is shown in Figure 5. The shape
u has three registration points, all coincident with the intersec-
tions of three pairs of hyperplanes, and the shape W has 16 regis-
tration points arranged as discussed above. The automated
derivation of the affine matrix is partially successful here because
some triples sampled from the set of registration points of the
shapes W are collinear and in these cases the computation fails
to resolve the six unknown variables. The automated sampling of
three points out of the set of 16 registration points in the shape
W should limit itself in the set comprised by the complete set of
registration points minus the triples of points incident in the four
pairs of hyperplanes above, that is, C16

3 − (4× C5
3 + 4× C4

3) =
560− 54 = 504 triples of registration points. The algorithm of
the automated derivation of the affine matrix should check whether
any of the 504 pairs of triples of points resolves the six unknown

variables and the calculation should yield eight pairs of triples
that lead to eight pictorially nonequivalent matches.

Determinate embedding under linear transformations

An embedding of a projective instance of a shape u in a shape W
is determinate when the shape u has four or more registration
points – provided that at least three registration points in the
shapes u and W are not collinear. An example of a determinate
embedding under linearity transformations of a shape u having
four registration points that is successfully – albeit partially –
implemented by the derivation of the homography matrix
(Hartley and Zisserman, 2004) is shown in Figure 6. The four
noncollinear registration points provide sufficient information
to resolve the nine unknown variables of a homography matrix
h0 to h8, including the combinations of the rotation angles θx,
θy, and θz; translation in the x-direction tx, translation in the
y-direction ty, translation in the z-direction tz, and a projection
parameter p. Note that the rotation and the translation parameters
represent the transformation of the camera (viewer), that is, the
transformation of the world coordinates. With the projection
parameter p, the two-dimensional perspective transformation
can be represented as a homography matrix with nine variables.
The shape u has six registration points, two coincident with the
intersections of two pairs of maximal lines and four more coinci-
dent with the intersections of four pairs of hyperplanes; and the
shape W has 16 registration points arranged as discussed above.
The automated derivation of the homography matrix is partially
successful because some quadruples and triples of points sampled
from the set of registration points of the shape W are collinear,
and thusly, the computation fails to resolve the nine unknown
variables for these particular subsets. The problem here is that
the computation of the derivation of the homography matrix
needs to exclude: (a) the four sets of collinear triples of registra-
tion points in the shape u and (b) the eight sets of collinear triples
in the shape W. The automated sampling of four points out of
the set of six registration points in the shape u should limit itself
to a pair of registration points for each hyperplane, that is,
C6
4 − 4× C3

3 × 3 = 3 quadruples (as opposed to C6
4 = 15), and

the corresponding automated sampling of four points out of the
set of 16 registration points in the shape W should limit itself
to a pair of registration points for each hyperplane too, that is,
C16
4 − 4× C5

3 × 13− 4× C4
3 × 13 = 1092 quadruples as opposed

Fig. 5. An example of determinate affine embedding using three registration points that is partially implemented by the automated derivation of the affine matrix.
(a) Shape u; (b) registration points Ru; (c) shape W; (d) registration points RW; and (e) eight results of determinate embedding under affinity transformations.
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to C16
4 = 1820. The algorithm of the automated derivation of the

homography matrix should check whether any of the 1092 pairs
of quadruples of points resolves the nine unknown variables
and the calculation should yield 32 pairs of quadruples that
lead to 32 pictorially nonequivalent matches.

Implementation of indeterminate embedding using
transformation matrices

The review of the implementation of the derivation of the trans-
formation matrices for determinate embeddings foregrounded
several problems with the implementation of the current algo-
rithm and its ability to provide robust calculations for visual
embeddings. Intuitively, the review of the implementation of the
derivation of the transformation matrices for indeterminate
embeddings will foreground even more challenges that will need
to be properly addressed. In general, the embedding is indetermi-
nate when the shape u has less registration points than required to
derive the transformation matrices. For the four types of linear
transformations and Num(Ru) the number of registration points
of the shape u, there are ten cases of indeterminate embedding
to consider: (a) Num(Ru) = 0 under isometric transformations;
(b) Num(Ru) = 1 or 0 under similarity transformations; (c)
Num(Ru) = 2, 1, or 0 under affine transformations; and (d)
Num(Ru) = 3, 2, 1, or 0 under linear transformations. Clearly,
none of these cases can be resolved by current implementations
of automated derivations of transformation matrices, and yet,
the fundamental problem remains the same as the one already

encountered in the problems discussed on determinate embed-
dings: the selection of the right kind of families of registration
points for the automated sampling to derive the transformation
matrices. A possible way to address this issue is to identify ways
to pick up “distinguishable” points (Krishnamurti, 1981) in the
shape u, test their spatial relations to other points in the shape
u as well as to corresponding pairs of points in the shape W,
and then determine gradually the transformation and the deriva-
tion of the matrix. Put differently, a possible way to address the
issue is to view the shape u as an instance of a parameterized
shape U comprised by variables x – typically, the lines and the
angles between the lines of the shape u and their associated mid-
points and endpoints (intersections are already collected in the set
of registration points) – assign real values determined by a func-
tion g to satisfy explicit conditions and constraints to produce the
shape g(U) (Stiny, 1989) and check whether there is a transforma-
tion f of the shape g(U), such that the shape f(g(U)) is part of the
design W. For every match of one of the variables of the shape f(g
(U)) in W, there is an emergent set of distinguishable registration
points that may be selected to determine the visual match. This
multi-stepped process can indeed address all possible cases of inde-
terminate embedding and it always involves a number of steps equal
to Num(required registration points)−Num(Rg(U )) + 1. Even more,
the spatial relation between the shape f(g(U)) and the shapeW par-
titions the symmetry group of the shape f(g(U)) into q classes in
terms of W, and in congruence with the determinate matchings,
it specifies how the shape rule can be used in q distinct ways
(Stiny, 1991).

Fig. 6. An example of a determinate projective embedding using four registration points that is partially implemented by the automated derivation of the homo-
graphy matrix. (a) Shape u; (b) registration points Ru; (c) shape W; (d) registration points RW; and (e) 32 results of determinate embedding under linearity
transformations.
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Significantly, the sequence of transformations for the resolu-
tion of the indeterminate does matter and may involve loops
too. For example, the sequence for a shape embedding under iso-
metric transformations consists of a translation, rotation, and a
reflection, if required. Any transformation f derived in this man-
ner is the product (multiplication) of the sequence of the applic-
able transformations, that is, t1t2…tn. Note that not every
transformation ti is effective. A trivial example is when the
shape g(U) is equal to shape W where shape embedding is pro-
cessed without applying any transformation, regardless shape
embedding is processed under isometric, similar, affine or linear
transformation. More importantly though, not all transformations
t1, t2,…, tn, within the sequence of transformations can be deter-
mined. In the same example of, say, a shape embedding under
isometric transformations, if the translation cannot be deter-
mined, then the next transformation in the sequence, rotation,
is determined by calculating the angle between the hyperplanes
of g(U) and W – even at the absence of a registration point
found in g(U) – and the translation is determined afterwards
based on some value selected through a user response from an
admissible range or some predefined criterion. The section
below provides an overview of the ten possible cases of indetermi-
nate embedding that feature less registration points than the ones

required for the derivation of the transformation matrices and fills
with some detail the sketch outlined above.

Indeterminate embedding under isometric transformations

An example of an indeterminate embedding under isometric
transformations of a shape u having no registration points is
shown in Figure 7. The shape u does not have the required regis-
tration points for the derivation of the isometric matrix and the
computation fails. To resolve the three unknown variables of
the isometric matrix including the translation in the x-direction
tx, the translation in the y-direction ty, and the rotation angle θ,
a multi-stepped process can be adopted to address this problem.
In this case, a two-stepped process is used to determine the
embedding results. The first step is processed automatically by
taking two endpoints of the shape g(U) to determine the rotation
θ and confine the translation range to a one-dimensional space,
that is, any maximal line of W that has a larger length than g
(U). After the first step, the indeterminacy of embedding occurs
in translation within any maximal line which is longer than g
(U). The second step requires an additional input (manual visual
inspection or an automated optimization calculation) for a trans-
lational parameter t with a range lower bound ≤ t≤ upper bound,

Fig. 7. An example of indeterminate congruent embedding using no registration points. (a) An instance of a parameterized shape g(U ); (b) registration points Rg(U );
(c) shape W; (d) registration points RW; (e) two embedding schemas, one per set of lines of equal lengths; (f) three instances of one of the two embedding schemas
with assignments t: 0, 0.25, and 0.5, one per row, and their equivalent embeddings by the actions of the symmetry group of the shape W.
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here, the lower bound = 0 and upper bound = (li− a)/2, where li is
the lengths of the sides of the two squares and a is the length of
the line of g(U) – the two parametric values are different for each
square. Once the value of t is provided, in some absolute or rela-
tive sense, the system can determine the final embedding results.
Note that the calculation of the range of translations for each
embedding uses the midpoint of the shape f (g(U)) as a distin-
guishable point so that it can calculate specifically the nonequiva-
lent matchings that will be then permuted by the actions of the
symmetry group of each line in the shape W. In this particular
case, the translation of the shape g(U) in any of the two types
of embedding schemas in the shape W produces eight matchings
but when the midpoint of the shape f(g(U)) coincides with the
midpoint of any of the edges of the shape W, one symmetry ele-
ment of the shape g(U) coincides with one of the symmetry ele-
ments of the shape W and the shape matches reduce to four per
square.

Indeterminate embedding under similarity transformation

An example of an indeterminate embedding under similarity
transformations of a shape u having one registration point is
given in Figure 8. In this example, two registration points are
required to resolve the four unknown variables of a similarity

matrix including the rotation angle θ, the translation in the
x-direction tx, the translation in the y-direction ty, and the scaling
factor s. The shape u does not have the required registration
points for the derivation of the similarity matrix and the compu-
tation fails. To address this problem, a two-stepped process is used
to determine the embedding results. The first step is processed
automatically by taking one registration point and one endpoint
of g(U) to derive θ, tx, and ty. The second step requires an addi-
tional input for the scaling factor s because the indeterminacy
occurs in scaling. The process of dealing with indeterminate
embedding in scaling is similar to the indeterminate embedding
in translation and it can be similarly resolved by manual visual
inspection or an automated optimization calculation. The shape
embedding can be parameterized with a scaling parameter s
that has a scaling range lower bound ≤ s≤ upper bound, in this
example, the lower bound = 0 and the upper bound = 1. The cal-
culation of the lower bound and upper bound is context-sensitive,
and the indeterminacy might show up as multiple parameters. In
this example, there is a single embedding schema of the shape
f(g(U)) in the shape W, eight matches under the symmetry
group of the shape W, and for each one of them there is an assign-
ment g parameterized with a scaling factor s with a range 0≤ s≤ 1.

An example of an indeterminate embedding under similarity
transformations of a shape u having no registration points is

Fig. 8. An example of indeterminate similar embedding using one registration point. An instance of a parameterized shape g(U ); (b) registration points Rg(U ); (c)
shape W; (d) registration points RW; (e) the single embedding schema; (d) three instances of the single embedding schema with assignments s: 1, 0.5, and 0.25, one
per row, and their equivalent embeddings by the actions of the symmetry group of the shape W.
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given in Figure 9. In this example, two registration points are
required to resolve the four unknown variables of the similarity
matrix including the rotation angle θ, the translation in the
x-direction tx, the translation in the y-direction ty, and the scaling
factor s. The shape u does not have the required registration
points for the derivation of the similarity matrix and the compu-
tation fails. To address this problem, a three-stepped process is
used to determine the embedding results. The first step is pro-
cessed automatically by taking two endpoints of g(U) to derive
θ, and confine the translation range in one-dimensional space,
that is, any maximal line of W. The second step requires an addi-
tional input for the scaling parameter s as the indeterminacy
occurs in both scaling and translation. The third step requires
an input for the translation parameter t. In this case, the scaling
parameter s has a range lower bounds≤ s ≤ upper bounds, here,
the lower bounds = 0 and upper bounds = li/a, where li is the
lengths of the sides of the two squares and a is the length of
the line of g(U). The translational parameter t has a range
lower bound ≤ t≤ upper bound, here, the lower bond = 0 and
upper bound = (li− s × a)/2, where li the lengths of the sides of
the two squares and a is the length of the line of g(U). To simplify
the notation, the translation parameter can be normalized as a
parameter t′ with a normalized range 0≤ t′ ≤ 1. In this example,

there are two embedding schemas of the shape f(g(U)) in the
shape W, eight matches for each shape under the symmetry
group of the shape W, four matches when the midpoint of the
shape f(g(U)) coincides with the midpoint of any of the edges
of the shape W, and for each one of them, there is an assignment
g parameterized with a translation factor t with a range 0≤ t′ ≤ 1.

Indeterminate embedding under affine transformations

An example of an indeterminate embedding under affine trans-
formations of a shape u having two registration points is given
in Figure 10. In this example, three registration points are required
to resolve the six unknown variables of an affine matrix including
a rotation angle θ, translation in the x-direction tx, translation in
the y-direction ty, stretching in the x-direction αx, stretching in the
y-direction αy, and a shearing angle w. The shape u does not have
the required registration points for the derivation of the affine
matrix and the computation fails. To determine the embeddings,
a two-stepped process is used to determine the embedding results.
The first step is processed automatically by taking two registration
points and two endpoints of g(U) to derive θ, tx, ty, αy, and w. The
second step requires an input for the stretching parameter in the
x-direction αx as the indeterminacy occurs in stretching in the

Fig. 9. An example of indeterminate similar embedding using no registration points. (a) An instance of a parameterized shape g(U ); (b) registration points Rg(U ); (c)
shape W; (d) registration points RW; (e) two embedding schemas, one per set of lines of equal lengths; (f) three instances of one of the two embedding schemas
with assignments s, t: (2, 0), (1, 0.5), and (0.5, 1), one per row, and their equivalent embeddings by the actions of the symmetry group of the shape W.
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x-direction in this particular instance (see Fig. 10f, first column).
Note that the stretching direction varies from instance to instance,
and the system should automatically detect the stretching direc-
tion and provide a valid range of stretching. Furthermore, the
stretching parameters αx and αy are one-dimensional scaling
parameters, that is, the uniform scaling is presented when αx =
αy. In this case, in total, there are C16

2 = 120 pairs of registration
points, and among these 120 pairs, there are eight pairs in the
configuration where two lines are in parallel and one line is inter-
secting with the other two, in which the shape u can be embedded
under an affine transformation. These eight pairs of embeddings
represent two families and each family is parameterized by a
stretching parameter αi with two ranges lower bond≤ αi≤
upper bond, for αi representing the stretching factor li/a of two
squares, where li is the length of the side of the two squares
and a is the length of the open-ended line of g(U). One of the
embedding schemas has a range 0≤ α1≤ 4, and the other a
range 0 ≤ a2 ≤ 2

��
2

√
. To simplify the notation of parameters,

the parameter αi can be normalized with a range 0 ≤ a′
i ≤ 1 for

each family.
An example of an indeterminate embedding under affine

transformations of a shape u having one registration point is
given in Figure 11. In this example, three registration points are

required to resolve the six unknown variables of an affine matrix
including a rotation angle θ, translation in the x-direction tx,
translation in the y-direction ty, stretching in the x-direction αx,
stretching in the y-direction αy, and a shearing angle w. The
shape u does not have the required registration points for the deri-
vation of the affine matrix and the computation fails. To deter-
mine the embeddings, a three-stepped process is used to
determine the embedding results. The first step is processed auto-
matically by taking one registration point and two endpoints of
g(U) to derive θ, tx, ty, and w. Since the indeterminacy occurs
in stretching both in the x-direction and y-direction, the second
step requires an input for the stretching parameter in the
x-direction αx and the third step requires an input for the stretch-
ing parameter in the y-direction αy for this particular instance (see
Fig. 11f, first column). In this example, two ranges of stretching
are provided: 0≤ αx≤ 2 in the x-direction and 0≤ αy≤ 2 in the
y-direction. Among these 16 registration points in the shape W,
there are four registration points where two maximal lines meet,
four registration points where three maximal lines meet, and
eight registration points where no maximal lines meet. Among
those, the first two sets represent registration points in which
the shape f(g(U) can be embedded, and therefore, there are 24
pairs of embedding classified into four schemas. Each schema is

Fig. 10. An example of indeterminate affine embedding using no registration points. (a) An instance of a parameterized shape g(U ); (b) registration points Rg(U ); (c)
shape W; (d) registration points RW; (e) two embedding schemas, one per two pairs of parallel lines; (f) three instances of one of the two embedding schemas with
assignments α′: 0.25, 0.75, and 1.0, one per row, and their equivalent embeddings by the actions of the symmetry group of the shape W.
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parameterized with two parameters αx and αy representing the
stretching factors in the x-direction and y-direction, with ranges
0≤ αx≤ li/ax and 0≤ αy≤ li/ay, and li representing the length of
the sides for each square, ax is the length of the horizontal line
of g(u), and ay is the length of the other line of g(u). To avoid dou-
ble counting the results of embedding, a constraint of αx and αy is
applied: ax≤ ay.

An example of an indeterminate embedding under affine
transformations of a shape u having no registration point is
given in Figure 12. In this example, three registration points are
required to resolve the six unknown variables of an affine matrix
including a rotation angle θ, translation in the x-direction tx,
translation in the y-direction ty, stretching in the x-direction αx,
stretching in the y-direction αy, and a shearing angle w. The
shape u does not have the required registration points for the deri-
vation of the affine matrix and the computation fails. To deter-
mine the embeddings, a four-stepped process is used to
determine the embedding results. The first step is processed auto-
matically by taking four endpoints of g(U) to derive θ. Since the
indeterminacy occurs in shear, stretch, and translation, the four
endpoints can be used to confine the shear range, stretch range,
and translation range to one-dimensional space in the y-direction
for this particular instance (see Fig. 12f, first column). Here, the

indeterminacy of the embedding occurs in three parameters so
their ranges are correlated in a complex parametric function.
More specifically, the shear transformation is parameterized
with an angle parameter w with a range − cos−1 (2

��
5

√
/5) ≤

w ≤ cos−1 (4/5)− cos−1 2
��
5

√
/5

( )
, which can be normalized as

0≤ w′ ≤ 1; the stretch transformation, where li is the length of
sides of the two squares and a is the length of the lines of g(U),
is parameterized with a range

0 ≤ a ≤ li
a
·

tan (cos−1

��
5

√

5

( )
− w)− 1

tan (cos−1

��
5

√

5

( )
− w)

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠− 1

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠,

which can be normalized as 0≤ α′ ≤ 1; and the translation
parameter has a range

0 ≤ t ≤ li
2
·

tan (cos−1

��
5

√

5

( )
− w)− 1

tan (cos−1

��
5

√

5

( )
− w)

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠− a · a,

Fig. 11. An example of indeterminate affine embedding using one registration points. (a) An instance of a parameterized shape g(U ); (b) registration points Rg(U ); (c)
shape W; (d) registration points RW; (e) four embedding schemas, one per two pairs of converging lines; (f) three instances of one of the four embedding schemas
with assignments αx, αy: 1, 1, (1, 2), and (0.5, 3), one per row, and their equivalent embeddings by the actions of the symmetry group of the shape W.
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which can be normalized as 0≤ t′ ≤ 1. Note that the range of
translation is constrained to avoid double counting. In this case,
there are two embedding schemas and each schema is parameter-
ized with three normalized parameters w′, α′, and t′.

Indeterminate embedding under linear transformation

An example of an indeterminate embedding under linear trans-
formations of a shape u having three registration points is
shown in Figure 13. For linear transformation, four registration
points are required to resolve the nine unknown variables of a
homography matrix. The shape u does not have the required
registration points for the derivation of the homography matrix
and the computation fails. To determine the embeddings, a
two-stepped process is used. The first step is processed automat-
ically by taking three registration points which can be viewed as
the process that the shape g(U) is translated and rotated so that
the three registration points are aligned with any three registration
points of W. Once the three registration points are embedded into
W, the second step requires an input for the fourth point to deter-
mine the final embeddings. In this case, the valid range of the
additional point lies in a convex quadrilateral bounding box
added on the shape g(U). In this case, there are eight registration
points of W, where two or more lines meet, in which the shape g

(U) can possibly be embedded. The single embedding schema is
parameterized by the additional registration point represented
with a pair of normalized parameters ( px, py) with two normal-
ized ranges 0 < px <∞ and 0 < py <∞. Note that px and py is con-
strained by a relation px + py > li/2 to keep the bounding box as a
convex quadrilateral and constrained by a relation px≥ py to avoid
double counting.

An example of an indeterminate embedding under linearity
transformations of a shape u having two registration points is
shown in Figure 14. Similar to the previous case, four registration
points are required to resolve the nine unknown variables of a
homography matrix h0 to h8. The shape u does not have the
required registration points for the derivation of the homography
matrix and the computation fails. To determine the embeddings,
a three-stepped process is used. The first step is processed auto-
matically by taking two registration points of the shape g(U),
map them with any two registration points of W, and have the
two short lines of g(U) rotated to align with two maximal lines
of W. Once the two registration points are embedded into W
and the two short lines are embedded in the two maximal lines
ofW, the second step requires an input for the third point. In gen-
eral, the third point can be any point on the world plane, however,
the selection of the third point can be confined in a certain range,
in this example, as the translation of the endpoint of the upper

Fig. 12. An example of indeterminate affine embedding using no registration points. (a) An instance of a parameterized shape g(U ); (b) registration points Rg(U ); (c)
shape W; (d) registration points RW; (e) two embedding schemas, one per two pairs of parallel lines; (f) three instances with assignments w′, α′, t′: (0.75, 0.3, 0), (1,
0.75, 0), and 0, 0.5, 1, one per row, and their equivalent embeddings by the actions of the symmetry group of the shape W.
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short line of the shape g(U) within the maximal line of W.
Similarly, the third step requires an input for the fourth point,
and the endpoint of the lower short line of g(U) as the fourth
point. In total, there are C8

3 = 56 triplets of lines in triangular
configurations and the configurations where two lines are in par-
allel and the other line is nonparallel to another two. Among
these 56 triplets, there are 40 triplets where f(g(U)) can be
embedded for the bonding boxes of the triplets are convex quad-
rilaterals. There 40 triplets are classified into seven embedding
schemas, and each schema is parameterized by two additional
registration points represented as two normalized parameters p′1
and p′2 with the normalized ranges 0 , p′1 , 1 and 0 , p′2 , 1.
Note that a constraint p′1 , p′2 is applied to avoid double count-
ing. This case shows a strategy of inputting additional points to
avoid infinite possibilities. Note that the indeterminacy theoreti-
cally occurs in one-point perspective transformation, but the
indeterminacy can be mapped to the translation of the two end-
points because the bounding box of g(U) is a parallelogram which
is defined by the two registration points and two endpoints.
Hence, the perspective transformation can be viewed as the trans-
formation from a parallelogram to a trapezoid and the two end-
points must occur on the two maximal lines of W. In the cases
later in this section, the selection of the additional points follows
this strategy demonstrated in this example.

An example of an indeterminate embedding under linearity
transformations of a shape u having one registration point is
shown in Figure 15. Similar to the previous cases, four registration
points are required to resolve the nine unknown variables of a
homography matrix h0 to h8. The shape u does not have the
required registration points for the derivation of the homography
matrix and the computation fails. To determine the embeddings,
a four-stepped process is used. The first step is processed auto-
matically by taking one registration point and two endpoints of
g(U), and this step can be viewed as the process that the shape
g(U) is translated and rotated so that the registration point is
aligned with a registration point of W, and the two lines of g
(U) are rotated to align with the two maximal lines of W. Once
the registration point is embedded into W and the two lines are
embedded in the two maximal lines of W, the second step
requires an input for the second point. In this case, the second
point is suggested by the system as the endpoint of the longer
line because this endpoint must be embedded in the maximal
line of W (in this particular instance, the upper line of the large
square of W) and can only translate along the maximal line if f
(g(U)) ≤W holds true. Thusly, the required input for this step
is the position of this endpoint along the maximal line in
which this endpoint is embedded. Similarly to the previous
step, the third step requires an input for the third point which

Fig. 13. An example of indeterminate projective embedding using three registration points. An instance of a parameterized shape g(U ); (b) registration points Rg(U );
(c) shape W; (d) registration points RW; (e) one embedding schema; (f) three instances of the single embedding schema with assignments of p′x , p

′
y : 0.5li, 0.5li, (li,

0.75li), and li, 0.25li one per row, and their equivalent embeddings by the actions of the symmetry group of the shape W.
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is suggested by the system as the farther endpoint (from the regis-
tration point) of the shorter line for the same reason. Thusly, the
required input for this step is the position of this endpoint along
the maximal line (in this particular instance, the left line of the
large square of W) in which this endpoint is embedded. The
fourth step requires an input for the fourth point, in this case,
any point on the world plane with the constraint, that is, its selec-
tion should keep the bonding box of the shape g(U) as a convex
quadrilateral. The valid ranges of the three registration points are
all open-ended and can be calculated by manual visual inspection
or some automated optimization. Among the 16 registration
points in W, there are four registration points where two maximal
lines meet and four registration points where three maximal lines
meet and therefore, there are six embedding schemas for the
shape g(U). Each schema is parameterized with three additional
registration points represented as two normalized parameters p′1
and p′2 with normalized ranges 0 , p′1 , 1 and 0 , p′2 , 1,
and one pair of normalized parameters p′3x and p′3y with a nor-
malized range 0 , p′3x , 1 and 0 , p′3y , 1. Note that the
parameters p′3x and p′3y are constrained by a relation
p′3x + (p′2/p

′
1)p

′
3y − p′2 . 0.

An example of an indeterminate embedding under linear
transformations of a shape u having no registration points is

shown in Figure 16. Similarly to the previous cases, four registra-
tion points are required to resolve the nine unknown variables of
a homography matrix h0 to h8. The shape u does not have the
required registration points for the derivation of the homography
matrix and the computation fails. To determine the embeddings,
a five-stepped process is used. The first step is processed automat-
ically by taking all the four endpoints of g(U), and this step can be
viewed as the process that the two lines of g(U) are translated and
rotated so that the two lines are embedded in any two maximal
lines of W. Once the two lines are embedded into W, the second
step requires an input for the first point. Similar to the previous
cases the selection of the first point is the left endpoint of the
upper line of g(U) and it can be translated within the maximal
line of W on which it occurs. The third step requires an input
for the second point, which is the right endpoint of the upper
line of g(U) and it can be translated within the maximal line of
W on which it occurs. The fourth step requires an input for the
third point, which is the left endpoint of the lower line of g(U)
and it can be translated within the maximal line of W on which
it occurs. The last step requires an input for the fourth point
which is the right endpoint of the lower line of g(U) and it can
be translated within the maximal line of W on which it occurs.
Theoretically, any four points on the world plane can be used

Fig. 14. An example of indeterminate projective embedding using two registration points. (a) An instance of a parameterized shape g(U ); (b) registration points Rg
(U ); (c) shape W; (d) registration points RW; (e) seven embedding schemas, one per a U-shape configuration of lines; (f) three instances of one of the seven embed-
ding schemas with assignments p′1, p

′
2: (0.125, 0.875), (0.25, 0.75), and 0.75, 0.75, one per row, and their equivalent embeddings by the actions of the symmetry

group of the shape W.
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to calculate the linear transformation, nevertheless, the selection
of endpoint helps system to reduce the sampling space. Note
that the four points form the bonding box of g(U) so that the
input coordinates of the four points should keep the bonding
box a convex quadrilateral. In total, there are C8

2 = 28 parallel
and convergent pairs of lines in the shape W, in which the
shape f(g((U)) can be embedded and seven embedding schemas,
each parameterized with four registration points p′1, p

′
2, p

′
3, and p′4

with normalized ranges 0 , p′1 , p′2, p
′
1 , p′2 , 1, 0 , p′3 , p′4,

and p′3 , p′4 , 1. To avoid double counting, a constraint
p′2 − p′1 ≤ p′4 − p′3 is applied. Note that the indeterminacy is
also involved with translation when the four registration points
are all determined. The range of t is

0 ≤ t ≤ li(1−max (p′2, p
′
4))

2
,

which can be normalized as 0≤ t′ ≤ 1.

Discussion

Shape embedding continues to be one of the most difficult tasks
for a shape grammar interpreter and a tabula incognita for CAD

systems. The title of the paper playfully underscores this state by
using a pan on George Stiny’s “What Designers Do That
Computers Should” a paper written in the late 1980s foreground-
ing the need for computation to support ambiguity and variability
in design (Stiny, 1990). In the years that have passed since, work
on variability has produced an impressive array of tools and pro-
cesses all in support of design, parametric representations, optimi-
zations, building information modeling, and so forth (see, e.g.,
Eastman et al., 2018; Woodbury, 2010; Woodbury et al., 2017).
Work on ambiguity (embedding) not so much. The opening
lines in this work reaffirmed just that shape embedding under a
given Euclidean, affine, or linear transformation is entirely absent
from current CAD systems. Be it as it may, the problem is tract-
able and it is strongly suggested that the work here provides a firm
step toward the solution.

The review of the implementation of the derivation of the trans-
formation matrices algorithm for determinate and indeterminate
embeddings revealed a complex problem in shape embedding that
does not lend itself easily to a unified solution. A series of the spe-
cific challenges that the algorithm faces for the successful derivation
of particular transformation matrices includes the calculation of the
numbers of registration points incident in each hyperplane per
shape, for each shape u andW separately, and one against the other.

Fig. 15. An example of indeterminate projective embedding using one registration points. (a) An instance of a parameterized shape g(U ); (b) registration points
Rg(U ); (c) shape W; (d) registration points RW; (e) six embedding schemas one per pair of converging lines; (f) three instances of one of the six embedding schemas
with assignments p′1, p

′
2, p

′
3x , p

′
3y : (0.75, 0.75, 0.75, 0.75), (0.25, 0.75, 0.5, 0.75), and (0.75, 0.25, 0.5, 1.0), one per row, and their equivalent embeddings by the actions

of the symmetry group of the shape W.
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Clearly, the greatest challenge in the automated implementation
of the derivation of the transformation matrix is the appropriate
selection of the required registration points to resolve the variables.
The automated sampling of missing registration points to include
the endpoints of maximal lines of the two shapes (Stiny, 1975;
Krishnamurti, 1981) produces several failed computations. An
example of a failed sampling of endpoints to derive the isometric
matrix for an isometry embedding of a shape u with one registration
point is given in Figure 17. The algorithm requires two points to
resolve all three unknown variables and the endpoint sampling
leads to an incorrect derivation of the isometry matrix.

A second challenge in the automated implementation of the
derivation of the affine and homography matrices is the appropri-
ate exclusion of the all triples of collinear registration points to
resolve the variables. An example of a problematic automated
selection of collinear triples of registration points from the
shape W has already been given earlier in this work. An example
of a failed sampling of registration points from the shape u to
derive the affine matrix is briefly discussed here and illustrated
in Figure 18. In this case, the shape u has seven registration points
and five hyperplanes, and there are C7

3 = 35 ways to sample three
registration points from it, however, five of them are collinear and
provide failed calculations when they are fed in the derivation

algorithm, that is, there is a chance of 5/35≈ 14.28% to have an
invalid triplet if the system blindly processes the sampling.
Hence, the collinear triples should be filtered out before process-
ing the embedding. It has already been discussed above that there
are 504 applicable triples of registration points in the shape W to
be compared to derive the affine matrix with an extra computa-
tional load filtering out the collinear triples.

A third challenge in the automated implementation of the
derivation of the transformation matrices appears in special
cases of geometrical constraints of the shape W that condition
whether an embedding will be determinate or indeterminate, irre-
levant of the number of required registration points in the shape
u. This problem is significant to the extent that current imple-
mentations of the derivation of the transformation matrices
miss determinate embeddings that an experienced designer can
see. A case of determinate embedding under a similarity transfor-
mation where the shape u has no registration point is shown in
Figure 19. Typically, the embedding of a shape u under similarity
and no registration point is indeterminate, and yet, in this particu-
lar example, one of the four pairs of the endpoints of the two
maximal lines of the shape u is incident with eight pairs of regis-
tration points in the shape W under similarity, and thusly, the
shape u can be embedded in W in eight determinate ways.

Fig. 16. An example of indeterminate projective embedding using no registration points. (a) An instance of a parameterized shape g(U ); (b) registration points Rg(U );
(c) shape W; (d) registration points RW; (e) seven embedding schemas one per pair of parallel or converging lines; (f) three instances of one of the seven embedding
schemas with assignments p′1, p

′
2, p

′
3, p

′
4, t

′: 0.25, 0.75, 0.25, 0.75, 1 (0.375, 0.625, 0.25, 0.75, 1), and (0.625, 0.875, 0, 0.75, 1), one per row, and their equivalent
embeddings by the actions of the symmetry group of the shape W.
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A fourth challenge in the automated implementation of the
derivation of the transformation matrices is the seamless integra-
tion of determinate and indeterminate embeddings in one unified
modeling workflow. In determinate cases of embedding, the regis-
tration points are appropriately selected from a given set of points;
in indeterminate cases, the registration points have to be defined
in some other alternative way. It is suggested here that transfor-
mation f that maps a shape onto another shape can be decom-
posed into a finite sequence of applicable transformations, that
is, f1f2…fn. Among these applicable transformations, some of
them can be first derived with the given registration points. For
the rest of the transformations, they are indeterminate. As the fol-
lowing step, the ranges of the indeterminate transformations are

calculated (as shown in previous sections) one by one, and the
requests are sent to users to input the values of the transformation
factors step by step to determine the transformations so that the
embedding can be processed.

Lastly, and certainly not least, a major challenge in the auto-
mated implementation of the derivation of the transformation
matrices is related with aspects of performance in shape recogni-
tion and with the calculations involved in the various procedures
of embedding outlined in this work: The complexity of embed-
ding follows the number of the registration points available in
the current design W. The method of the 3 × 3 matrix allows
the system to use two registration points to achieve a Euclidean
transformation, thus, the complexity of the embedding under

Fig. 17. Automated point sampling for the derivation of an isometric matrix. (a) failed and (b–-(d) correct.

Fig. 18. An example of determinate embedding under affine transformation that cannot be completely determined by the affine matrix. (a) Shape u and the regis-
tration points Ru; (b) shape W and the registration points RW; (c) five failed intersection samplings from the shape u; and (e) four results of determinate embedding
under affinity transformation.
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Euclidean transformations is O(n2) for n the number of the regis-
tration points of W. For affine transformations, the complexity
increases to O(n3), and for linear transformations, the complexity
increases to O(n4). For more on algorithmic complexity and the
Big-O notation, see, for example, Cormen et al. (2009).

The results of all possible 14 cases of shape embedding, includ-
ing four determinate ones and ten indeterminate ones, are tabu-
lated in Table 1 according to the number of intersection of
hyperplanes and illustrated by the corresponding hyperplane
arrangements upon which maximal lines are embedded: solid
lines denote the hyperplanes and a dashed circle denotes the
Euclidean plane that the hyperplanes are embedded in. There is
an infinite number of hyperplane arrangements that have zero
or one intersection point, namely, those consisting of parallel
hyperplanes or hyperplanes that pass through a point, respec-
tively. There is only one hyperplane arrangement with two

registration points produced by three hyperplanes; two hyper-
plane arrangements with three registration points produced by
the intersection of three and four hyperplanes, respectively; two
hyperplane arrangements of four registration points produced
by the intersection of three and four hyperplanes, respectively;
and an infinite number of hyperplane arrangements with more
than four registration points produced by the intersection of
four or more hyperplanes (Economou et al., 2019).

The goal of this study is to rework the problem of shape
embedding in the algebra U12 and explore a general solution for
a shape grammar interpreter implementation for any number of
registration points and for all linear transformations, including
isometries, similarities, affinities, and projectivities. An initial
effort to put some of the 14 calculations outlined above in practice
is evidenced in the making of the Shape Machine, a new shape
grammar interpreter designed from scratch (Hong and

Fig. 19. An example of determinate similar embedding using no registration points. (a) Shape u and the registration points Ru; (b) shape W and the registration
points RW; and (c) eight results of determinate embedding under similarity transformations.

Table 1. 14 cases of shape embedding

Number of Registration Points of u

Transformation 0 1 2 3 4 >4

Isometry Indeterminate Determinate

Similarity Indeterminate Indeterminate Determinate

Affinity Indeterminate Indeterminate Indeterminate Determinate

Linearity Indeterminate Indeterminate Indeterminate Indeterminate Determinate

Hyperplane Configurations
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Economou, 2019). An initial set of shape calculations in Shape
Machine pertaining to shapes consisting of lines, arcs and their
combinations in the plane, has successfully met the requirements
for all determinate cases as well as for two cases of indeterminate
embedding under isometric and similarity transformations of
shapes having one registration point (Economou et al., 2021).
Interestingly, the structured sequence of the steps required to
resolve the indeterminate cases reported in the work, and the
guided choices made by the designer through the process – sug-
gest a different way to tackle ambiguity in shape embedding. This
process requires additional information typically given in the
form of written instructions or numerical values to generate the
candidate shape to be embedded. These decisions along the
steps generate different instances of shapes, different embeddings
into the design, and ultimately a different understanding of the
design in terms of the shapes that become parts of it. It is
hoped that the extension of these findings for all indeterminate
cases for shapes made up of lines in the plane will make a coher-
ent and unified framework for queries based on shape embedding,
and a visual tool to provide insight in highly unstructured visual
searches and design actions (shape replacements).

Clearly, there is lots of ground that needs to be covered includ-
ing the expansion of the range of geometry descriptors for various
types of shapes in different dimensions, implementation of corre-
sponding maximal representations of shapes embedded in these
descriptors, Boolean operations for these kinds of geometries,
resolution of indeterminant visual embeddings for all such
types, and of course, extensions to parametric definitions and
rule schemata. Additional directions pertaining to the design of
the interfaces of these systems and their seamless integration
with current modes of practice provide indeed a bright future
for their development.
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