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Abstract

The steady state bifurcations near a double zero eigenvalue of the reaction diffusion
equation associated with a tri-molecular chemical reaction (the Brusselator) are analysed.
Special emphasis is put on three degeneracies where previous results of Schaeffer and
Golubitsky do not apply. For these degeneracies it is shown by means of a Liapunov-
Schmidt reduction that the steady state bifurcations are determined by codimension-three
normal forms. They are of types (9)31, (8)22i and (6a)p, in a recent classification of
Z(2)-equivariant imperfect bifurcations with corank two. Each normal form couples an
ordinary corank-1 bifurcation in the sense of Golubitsky and Schaeffer to a degenerate
Z(2)-equivariant corank-1 bifurcation of Golubitsky and Langford in a specific way.

Introduction

The reaction-diffusion equations for the tri-molecular chemical model of Levefer
and Prigogine [10]—meanwhile well known as the "Brusselator-model"—serve as
a laboratory for various bifurcation phenomena leading to pattern formation, that
is, bifurcation from a spatially and temporally homogeneous solution (the trivial
solution) to several types of inhomogeneous solutions depending on the range of
parameters [1, 2, 8-11]. Here we are interested in the formation of steady state
spatially inhomogeneous solutions resulting from a double zero eigenvalue. Several
authors [2, 8, 10] have discussed the case of a simple eigenvalue and first attempts
towards an understanding of the non-simple case have been made by Keener [9].
A detailed study near a double eigenvalue has been performed by Schaeffer and
Golubitsky [11] by using the general theory of imperfect bifurcations via singular-
ity theory developed in [5, 6].
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[2 ] Bifurcations for the Brusselator 487

The approach of [11] is essentially the following. By means of a Liapunov-
Schmidt reduction a set of two bifurcation equations was derived for two
bifurcation variables—the "amplitudes" of the "bifurcating modes"—and a
distinguished bifurcation parameter. Then it was shown that the reduced bifurca-
tion equations are contact equivalent (in the sense of singularity theory) to a
certain normal form of codimension two which, by unfolding, reveals all possible
bifurcation diagrams in the vicinity of the bifurcation point. Since the original
model-equations possess a natural reflection symmetry, the reduced bifurcation
equations are equivariant under the action of the symmetry group Z(2) and the
unfolding has to respect this symmetry. The results in [11] are valid provided
some certain nondegeneracy conditions are satisfied by the parameters.

There are four free parameters in the model, but two of them are fixed by the
requirement of a double eigenvalue. The space of the remaining two free parame-
ters is divided into several open regions where specific types of bifurcation
diagrams result from the normal form. On the boundary between two adjacent
regions one of the non-degeneracy conditions is not satisfied.

Our objective is to analyse the bifurcation phenomena in the Brusselator near
the boundary separating two adjacent regions. The strategy is similar to that of
[11]; that is, a Liapunov-Schmidt reduction yields reduced bifurcation equations
which turn out to be contact equivalent to certain normal forms. These normal
forms occur in a classification of Z(2)-equivariant imperfect bifurcations carried
out in [4]. However, due to the higher degeneracy on a boundary, our normal
forms have codimension three and contain those of [11] as subordinate bifurca-
tions. By unfolding and analysing the perturbed bifurcation diagrams associated
with a codimension-three normal form, we can move parameters from one region
into the adjacent region. This does not only reproduce the diagrams of [11], but
also shows how the local branches in each region are connected when crossing the
boundary; that is, first attempts are made towards an understanding of the global
bifurcation geometry.

A crucial role for the bifurcation analysis is played by the theory of imperfect
bifurcations [5, 6] which is based on singularity theory. Suitable coordinate
transformations allow us to transform the reduced bifurcation equations resulting
from the Liapunov-Schmidt reduction described before to certain polynomial
normal forms. A classification of these normal forms has been accomplished in
[4]. The codimension-three normal forms relevant for the Brusselator are of types
(9)31, (8)221 and (6a)p_„ in the classification of [4] whereas the generic normal
form of [11] is denoted by (6)p. The bifurcation geometry for some of the
codimension-three normal forms of [4] is discussed in [1] in the context of coupled
Hopf and steady state bifurcations. A further objective of this paper is to
complement the analyses of [1] by a detailed discussion of the types (9)31, (8)22i
and (6a)p K. Each of these types is divided into several subtypes according to
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different signs and modal regions of the normal form. The analyses presented
here contain all cases which appear in the Brusselator and, for completeness,
some further cases which are not present in the Brusselator but may occur
generically in other model-equations that depend on three or more parameters.

The paper is organized as follows. In Section 1 general nonlinear operator
equations with reflection symmetry are considered and a perturbation procedure
is developed for the Liapunov-Schmidt reduction. In Section 2 the model equa-
tions are introduced and cast into a form to which the methods of Section 1
apply. Normal forms which govern the codimension-three degeneracies described
before are set up in Section 3. It has been shown in [11] that four different
degeneracies occur, but no normal forms have been established. The Liapunov-
Schmidt reductions required for three of these degeneracies (the types (9)31, (8)221

and (6a)p K) are carried out in Sections 4-6. In Section 7 the concepts of universal
unfoldings and subordinate bifurcations are introduced which are useful tools in
the analysis of the bifurcation geometry. Structurally stable bifurcation diagrams
associated with those cases of the normal forms (9)31, (8)22i and (6a)p K that occur
in the Brusselator are analyzed in Sections 8, 9 and 10, respectively. Some other
cases corresponding to the types (8)221 and (6a)p „ and leading to isola formation
are discussed in Section 11. In Section 12 we illustrate how the generic type (6)p of
[11] is organized by unfolding the various codimension-three degeneracies.

A sample new global result

In order to exemplify the global results obtained in this paper we describe here
some features of the normal form (9)31 and its relation to the analysis of [11]. If x
and y are, respectively, the amplitudes of the even and odd unstable modes, then
the reduced bifurcation equations have the form (a(x, y2, X), yb{x, y2, X)) =
(0,0), that is, the bifurcation diagrams have a reflection symmetry with respect to
the plane y = 0. Here, X is the bifurcation parameter with scale chosen such that
the degeneracy occurs at X = 0. In [11] it has been shown that two adjacent
regions of the parameter space of the Brusselator-equations give rise to degenerate
bifurcation diagrams which correspond to subtypes of (6)p and are denoted by
III0 and IIIj, respectively. They are sketched in Fig. A where the signs in the
brackets indicate the signs of the real parts of the eigenvalues of dixy)(a, yb)
along a solution branch. The latter T refers to the trivial solution x = y = 0
corresponding to a spatially homogeneous solution of the model equations.
Observe that for both III0 and 11^ three branches of solutions bifurcate from the
trivial solution at the degenerate bifurcation point, one lying in the plane y = 0
(symmetric branch) and the others having y # 0 (asymmetric branches). For 11^
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only a subbranch of the symmetric branch is stable whereas no stable nontrivial
branch exists for III0. The result of Section 4 implies that on the boundary
between the regions corresponding to III0 and IHj a codimension-3 degeneracy
of type (9)31 appears with degenerate bifurcation diagram as shown in Fig. B(a).
Here the branches in the plane of symmetry form a pitchfork bifurcation. In
addition to the symmetric branches two further asymmetric branches branch off

Figure B
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(c)
Figure C

the degenerate bifurcation point. When moving away from the boundary into the
regions leading to types III! or III0 the degeneracy of Fig. B(a) is removed and
the bifurcation diagrams evolve to those shown in Fig. B(b). This corresponds to a
partial unfolding of the normal form (9)31, that is, only one of the three unfolding
parameters is varied. In a small neighborhood of the degenerate bifurcation
points of the diagrams in Fig. B(b) we discover qualitatively the same behaviour
of the branches as in Fig. A. The globalization of the local results of [11] consists
in the appearance of limit points in the symmetric branches. Similar globaliza-
tions are obtained by unfolding the other codimension-3 degeneracies (see Section
12).

The structurally stable (or perturbed) bifurcation diagrams in a neighborhood
of a codimension-2 degeneracy of [11] (e.g. IIIX) are determined by the full
unfolding of the underlying normal form and the same holds for the codimension-3
degeneracies considered in this paper. Each of the former diagrams can be
discovered as part of a structurally stable diagram of one of the codimension-3
cases. In Fig. C(a) we have sketched a structurally stable bifurcation diagram
corresponding, to the case 11^ which is part of the diagram of Fig. C(b)
corresponding to type (9)31. Contrary to that the diagram of Fig. C(c), also
corresponding to type (9)31, does not contain any of the perturbed bifurcation
diagrams obtained in [11] as part of it. This demonstrates that globalizations as
well as new diagrams are obtained by analyzing the codimension-3 degeneracies.

1. Liapunov-Schmidt reduction for general equations

In this section we recall the basic facts about the Liapunov-Schmidt reduction
method for nonlinear operator equations with reflection symmetry. This method
will be used in Sections 2, 4-6.
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1.1. The bifurcation problem

Consider an equation of the form

F(w,X) = 0, (1.1)

where F is a smooth map from a neighborhood of the origin in Xx X R to X with
Xx, X being real Banach spaces. For simplicity it is assumed that Xx is dense in
Xand

F(0,X) = 0. (1.2)

The Frechet-derivative with respect to u e Xx and X e U is denoted by du and
dx, respectively. We make the following assumptions on F.

(I) There exists a reflection R: X -* X, R2 = id which commutes with F,

F(Ru,\) = RF(u,\). (1.3)

Clearly, in order that (1.3) makes sense we must assume that Xx is invariant
under the action of R.

(II) The linearized operator

) (1.4)

has a two-dimensional null space N = span{^>1, (f>2) c Xv Moreover, <(>l is
even and <f>2 is odd with respect to R,

(III) A Fredholm alternative is valid for L: There exist <$>%, <p% in the dual X* of
X such that the equation Lu = v is solvable if and only if (v, ^ > = (u, </>5>
= 0.

(IV) All generalized eigenvectors of L (viewed as densely defined operator in X)
corresponding to the eigenvalue zero belong to N (kerL2 = kerL).

Assumptions (III), (IV) imply that we can normalize the </>f such that

**tf = ( - l ) ' - y and (<J>,,<*>;) = «,.,(/= 1,2), (1.6)

6(y being the Kronecker symbol. Assumptions (II)-(IV) are standard in bifurca-
tion theory [3, 12] and allow the application of the method of Liapunov and
Schmidt which reduces (1.1) to a system of two real equations.

We briefly recall the general Liapunov-Schmidt method. Introduce projections
P, Q in X,

2

( > - . G = id-F
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and decompose X into X = E® N where E = QX. Similarly, Xt is decomposed
into X1 = Ex® N with El = QXl = E n Xv For the solutions of (1.1) one
makes the ansatz u = x<j>1 + y<j>2 + w where (x, y) e U2 are coordinates in N
and w e Ev Standard arguments of bifurcation theory [3, 11, 12] show that the
equation

QF{x<t,l+y4>2 + w , X ) ^ 0 (1.7)

has locally a unique and smooth solution w>(.y, v, X) which satisfies w(0,Q, X) — 0
and contains no linear terms in (x, y, X). Hence, the solutions of (1.1) are
uniquely determined by the solutions of the following system of two equations,

G(x,y,X)
+y<t>2 + w(x,y,X), X), tf

= 0. (1.8)
y<j>2 + w(x, y, X), X), <

Moreover, the symmetry and (1.5) imply (see [11])
Rw{x,y,X) = w(x,-y,X) (1.9)

and that G has the form

with smooth functions a and b satisfying

a(0,A,0) = 0, 6(0) = ax(0) = 0. ( l . l l )

Clearly, G is equivariant under the Z(2)-action (x, y) -» (x, —y).

1.2. Computation of Taylor-coefficients

We give expressions for those Taylor-coefficients

1 8 a ( 0 )
°iJk i\j\k\ d ' W d " ' ijk i\i\j\k\

of a and b which are needed in Sections 2, 4-6. To this end we introduce the
multi-linear operators

): z - x ( 1 1 2 )

For convenience we use the notation

Fnm(«i, . . . , « ! , . . . , « / • • •« / ) = ^ n m "r • • • «,"' (1.13)
if M, eJf i (1 < / < /) occurs n,-times on the left-hand side of (1.13) and
nx + • • • +/!, = /?. We also need the operator

Io= QL\El:El^E (1.14)

which, in virtue of assumptions (III), (IV), has a bounded inverse.
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The solution w of (1.7) is split into even and odd parts,
w(x,y,X) = V(x,X,z) + yU(x,X,z) (1.15)

where RV = V and RU = -U. The Taylor coefficients of U are denoted by

and analogously VlJk. We can express the coefficients of U and V in the form

I/,,* = - Lo- ^ f i , ^ , ^ = - Lo- ^ ^ , (1.17)

where BlJk and A k are vectors in E and /4100 = j4OnO = 0. Those of lowest order
(quadratic in (x, y, X)) are given by

^ 2 0 0 =

From (1.17) and (1.18) we can compute the following vectors (cubic in (x, y, X)),

^300 =

A o n = 2F20<j>2U010 + FnVan + F2l<j>2
2 (1.19)

•#001 = 2^20^2^001 +
Using the last equation of (1.19) in the first equation of (1.17) allows us to
compute Um from which the only "fourth order vector" (needed in Section 6) is
obtained,

^002 = *2o(*Wl + 2<*>2£/oOl) + 3^0*2^00! + F^\. (1.20)

The Taylor coefficients of a and b required in Sections 2, 4-6 are then computed
from (1.18)-(1.20) via

{ i ) {) (1.21)

2. Formulation of the problem

2.1. The model equations

The relevant equations for the Brusselator model are [11]

^ (£) (2.1)
where

I D , 0\V I B - X A 2

j + { -B -
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(2.2b)

Equation (2.1) is a parabolic system for the unknown functions U(i-), F( | ) where
| e [0, IT], subject to Dirichlet-boundary conditions

U(0) = U(ir) = F(0) = K(«r) = 0. (2.3)

Here T) and ZX are diffusion coefficients A B are extemsllv co^^ol^d
concentrations and U and V describe deviations of the concentrations of two
chemical reactants from spatially independent steady values A and B/A, respec-
tively.

The following notation will be used throughout the paper,

6 = DJ/DL D = Dv (2.4)

We regard L as a linear operator acting on, say, C°([0, TT], R2) with homoge-
neous Dirichlet boundary conditions. The eigenfunctions of L have the form

(2.5)

with eigenvalues K / ± , where K1± and (al±, b,±) are eigenvalues and eigenvectors
of the matrix

B-l-l2D /.
-B -A2 -

The parameter B is considered as a distinguished bifurcation parameter, that is,
we look for bifurcations of new solutions of (2.1) from the trivial solution u = 0
as B is increased. Both time independent and time periodic solutions can
bifurcate from the trivial solution, but we consider only the former case. For
coupled bifurcations of steady state and time periodic modes see [1].

In [11] it has been shown that the first bifurcation is from a double zero
eigenvalue of L if and only if

A = Ak = ^6fiY\i2D and B = Bk = (1 + 2)j*1)(l + Dp2), (2.7)

where

M l = k2, ii2=(k + I ) 2 , (2.8)

holds for some integer k. If (2.7) is satisfied, then the zero eigenfunctions are [11]

sin(A: + 1)$. (2.9)
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We also need the eigenfunctions <f>^, <p% corresponding to the zero eigenvalue of
the adjoint L* of L,

where the normalization constants

1/ / , = \D{6tL, - fi, + Dw2(8 - 1 )} , i, j = 1,2, i *j (2.11)

are chosen in such a way that (<(>,,<#>*) = 5,y with (•, •) denoting the L2-inner
product.

Since (2.1) does not depend explicitly on £, the problem possesses a natural
reflection symmetry, namely, the right-hand side of (2.1) commutes with R where

Ru{i) = u(tr-l). (2.12)

Observing that

there is always one odd and one even zero eigenf unction of L. Assume that the
double degeneracy occurs for somey e TV, that is, *,-_= K , + 1 _ = 0. Following [11]
we use (2.7)-(2.11) with k = j if j is odd and with k = — (j + 1) if j is even. In
this way it is achieved that </>1; <J>f are even and </>2, </>* are odd with respect to the
symmetry (2.12).

2.2. The unperturbed problem

Following [11] we define now the unperturbed problem for (2.1). To this end
the Banach spaces X = C°([0,w], R2) and XX = {w e C2([0,w], R2): u(0) =
u(w) = 0} are introduced. For A = Ak and fixed D, 8, the right-hand side of
(2.1) induces a smooth map F: Xx X R -* X via F(u, \ ) = Lu + N(u) where we
have set

\ = B-Bk. (2.13)

The unperturbed problem is then defined by the equation

F(u,X) = 0. (2.14)

The steady states of (2.1) are determined by (2.14).
In order to apply the method of Section 1 to (2.14) we have to check the

assumptions (I)-(IV). Clearly, assumptions (I)-(III) hold, however, assumption
(IV) is only satisfied if \/fxf2 * 0 which will be assumed throughout the paper.
In Subsection 2.5 we shall see that stability of the bifurcating solutions requires
the further restriction that fl and f2 must be positive.
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We give now the expressions for the multi-linear operators Fnm, Eq. (1.12), to
be used in Sections 4-6:

F n u =U(-\)> F^U2 = (l/D]feiHJ~2)uiU2i[ _ | ) (2.15)

c _ 1/jrrn/ i jjntr . n rnr \\ -i I

i \ — 1 I

All other Fnm vanish.

2.3. The quadratic Taylor coefficients

Applying the method of Section 1 to (2.14) yields reduced bifurcation equations
of the form of (1.10) with (1.11). The functions Aljk, Bljk collected in (1.18)
become here

Auo = 0DMl( _ | ) sinA:£, fi010 = 6D^ _ j ) sin(A:

A 2 Q 0 =

(2-16)
sin2(A: + 1){

From (2.16) we obtain the quadratic (in (x, y, X)) Taylor coefficients of a and b,
tfno = fiODnjir/2, b0lo = f2ODp2-n/2

3 / 2 ^ M i ) ( l - D,i2)(4/3k)

^ ) ( 1 l > ) ^

where

P = 4 M 2 / A : ( 4 M 2 - M I ) . (2.18)
The coefficients (2.17) differ slightly from those of [11] because we have used a
different normalization for the eigenfunctions. This does not, however, affect
further discussion.

Schaeffer and Golubitsky [11] have shown that G = (a, yb) is contact equiva-
lent (in the sense of singularity theory) to a certain codimension-two normal form
(see Section 3) if the following non-degeneracy conditions hold,

^200*0, aooi±0, blO0±0 (2.19)
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and

anofcioo * a2oAio- {220)

Our purpose is to establish normal forms for G if one of the three inequalities
(2.19) fail. For these cases higher order coefficients must be computed which will
be pursued in Sections 4-6.

2.4. Remarks about the perturbed problem

The ultimate task is to analyse the bifurcations of (2.1) near a double eigen-
value subject to various perturbations. The unperturbed problem (2.14) has been
defined such that the double eigenvalue occurs at \ = 0 (B = Bk) because there
A is fixed by the condition A = Ak. In Sections 4-6 we shall also fix D in order
to violate one of the three inequalities (2.19). The perturbations are then accounted
for in a universal unfolding of the codimension-three normal form to which the
reduced bifurcation equation G turns out to be contact equivalent. We do not
perform a Liapunov-Schmidt reduction for the perturbed codimension-three cases
because this follows the same lines as in the codimension-two case of [11].

It is fairly obvious which perturbations are relevant. At first we can change D
and A from their fixed values to perturbed values. Changing only D leads us to
the codimension-two cases of [11], while changing A from Ak splits the double
eigenvalue into two separate (different values of X) simple eigenvalues. Variations
of 0 alone do not induce qualitative changes in the bifurcation diagrams because
6 is only restricted by the condition to be in a certain open interval of the positive
real axis.

The second perturbation—suggested in [11]—is not contained in the model
equations (2.1). In the underlying chemical reaction, A is a concentration fixed by
the experimenter. In practice, however, A will be depleted relative to its diffusity.
Taking this effect into account disturbs the trivial solution u = 0, similar to
bifurcations from a simple eigenvalue discussed in [5]. For details we refer to [11].

2.5. The pseudo-inverse Lo 'Q

If A = Ak, B = Bk, then the eigenvalues KW_ and K|t+1|_ of L are zero, with
eigenfunctions and co-eigenfunctions given by (2.9) and (2.10), respectively. The
other two eigenvalues corresponding to / = \k\, \k + 1| in (2.5) are, respectively,

«l*l+
s «i = - 2 A A , Kik + li+= K2 = -2/irf2, (2.21)

https://doi.org/10.1017/S0334270000005555 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005555


498 Gerhard Dangelmayr 113 ]

with eigenfunctions

+ ^ J ^ *^{i~+X)Mk+iH' {222)

and co-eigenfunctions

SjMk + Vl- (2-23)
In principle it is possible to compute the generalized Green-matrix for LQ1Q

explicitly, however, we prefer to work with a sum-representation. Let u e X be
given as a trigonometric series,

" = - £ ",sin ji, Uj^U2. (2.24)

Then LQXQ has the representation

{Lo lQ)u = \ Z ' (M/1^) sin,* + t ^{u^f)*, (2.25)
i>\ 1=1

where the prime at the first sum in (2.25) indicates that the terms j = \k\ and
j = \k + l\ have to be omitted.

In order that stable steady states near the double eigenvalue exist, the real parts
of all non-zero eigenvalues of L must be negative. It is easily seen that the
eigenvalues KJ± with j ¥= \k\, \k + 1| are negative for A = Ak, B = Bk. The
eigenvalues (2.21) are negative only if fx and f2 are positive, so we must assume
that

0> 6 = max{0o,l/6o) (2.26)

where

e0 = M 2 ( l + D / t J / Z i ^ l + D/ i 2 ) , (2-27)
that is, 0 = 60 if k > 0 and 6 = 1/0O if A: < 0.

3. The normal forms

3.1. Imperfect bifurcation theory

Consider a germ of a C°°-mapping G: (U3,0) -» (R2,0), with variables
(x, _y, X) e U3, which is equivariant under the Z(2)-action (JC, j ' , A) -> (x, —y, X),
that is,

https://doi.org/10.1017/S0334270000005555 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005555
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A germ of the form (3.1) satisfying

fl(0) = ax(0) = b(0) = 0 (3.2)

will be called a bifurcation problem. (If 0^(0) =£ 0 and b(0) =£ 0, (3.1) reduces to
problems discussed in [5] and [7], respectively.) The solution set of the equation
G = 0 is called the bifurcation diagram associated wiht G. The question, when are
two bifurcation problems qualitatively similar, is made precise via the notion of
contact equivalence.

DEFINITION 1. Let G and H be germs of the form (3.1). We say that G and H
are contact equivalent if there exists a diffeomorphism

$(* , y, X) = (px(x, z, X), yp2(x, z, X), XA(X))

satisfying A(0) > 0, and a Z(2)-equivariant matrix

T(x,y,X) =
\yT2i(x>z>*) T22{x,z,X)

satisfying plx(0)Tn(0) > 0, p2(0)r22(0) > 0, such that
H = TG°Q.

(Our definition of contact equivalence differs slightly from the one used in [1,
4, 6] in order to preserve stabilities.) Note that contact equivalence preserves the
foliation R3 = R 2 XR, so that the special role of X as a distinguished bifurca-
tion parameter is respected.

Let Ga be a Z(2)-equivariant perturbation of G depending smoothly on n real
unfolding parameters a = (a1;. . . ,an) such that Ga=0 = 0. We call Ga an
w-parameter unfolding of G.

DEFINITION 2. The unfolding Ga is versal if, for any other unfolding Gp,
P = ()81,..., fim), there exists a smooth map a = \p({l) so that G^^ is contact
equivalent to Gp. The unfolding Ga is universal if it is versal and possesses the
minimum number of unfolding parameters needed for being versal. This mini-
mum number is called the codimension, codG, of G.

Roughly, the codimension is a measure of the degeneracy G possesses at the
origin. If Ga is a universal unfolding of a bifurcation problem G, we call the
solution set of the equation Ga = 0 the perturbed bifurcation diagram associated
with G.

By using the general results of [6], a classification of bifurcation problems up to
codimension four has been carried out in [4], in terms of a list of normal forms.
To any normal form GQ belongs a set of expressions in terms of the a!jk, bijk,
which must be zero if an arbitrary bifurcation problem G be contact equivalent to
Go. They are called degeneracy conditions for the normal form. The number of
degeneracy conditions equals codG0. Since we have specified bifurcation prob-
lems to satisfy (3.2), one of the degeneracy conditions is always a0l0 = 0, that is,
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the codimension of any bifurcation problem is > 1. There is, furthermore,
another set of expressions in terms of the aiJk, bljk which must be non-zero.
These are called non-degeneracy conditions. An arbitrary bifurcation problem G is
contact equivalent to the normal form Go if and only if the degeneracy and
non-degeneracy conditions are satisfied.

In what follows we collect those normal forms up to codimension three which
are relevant for the Brusselator, together with the corresponding degeneracy and
non-degeneracy conditions. The conditions are specified here to bifurcation
problems satisfying also the first equation of (1.11) (for the general case see [4]),
that is,

flOnO = 0, neN. (3.3)

3.2. The codimension-two normal form

First we state a normal form which is contact equivalent to the one discussed in
[11]. It has the form

Uixi-X + ez) ^ p * h p > 0 (3.4)
\e2y(x - pX)

with the e's being +1. The Schaeffer-Golubitsky normal form is given by

e'2y(p'x+X) J

Assuming e' — 2/p' =#= 0 and choosing

$ = (e"x - e'\,y,2\), Tn = e", T22 = l / |p ' | , Tl2 = T2l = 0,

where e" = sgn(e' - 2/p'), we find that (3.5) is contact equivalent to (3.4) with

e1 = e[e", e2 = e"e'2sgnp', p = \e' - 2/p' | .

Observe that the bifurcation problem G occuring in the Brusselator satisfies
(3.3). This implies that the equation G = 0 possesses the solution x = y — 0
corresponding to the trivial solution u = 0 of (2.14). If G is transformed to the
normal form (3.5), then the trivial solution also corresponds to the branch
x = y = 0 of the bifurcation diagram associated with (3.5). This branch trans-
forms onto (x, y) = (e'e"A, 0) under the contact equivalence from (3.5) to (3.4). A
similar situation occurs with the normal forms of Subsections 3.3-5. (We could
choose alternative normal forms satisfying (3.3), but for discussing the bifurcation
diagrams it is more convenient to use the normal forms introduced here. Note
that contact equivalence does not distinguish between the trivial solution x = y
= 0 and any solution (x, y) = (.x(X), 0) depending smoothly on X.)
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In [4], (3.4) is denoted by (6)p. The parameter p is a modal parameter

parametrizing the largest family of perturbations of (3.4) siuch that no two

perturbat ions in this family are contact equivalent under the smooth equivalence

of Definition 1. The codimension of (3.4) is 3* where the asterisk indicates the

presence of the modal parameter. We regard (6)p as a codimension-two problem

because its topological codimension (contact codimension minus number of modal

parameters) is two.

The degeneracy conditions ( a 0 1 0 = 0) for type (6)p are always satisfied in virtue

of (3.3). The non-degeneracy conditions are ano =t 0, b0l0 =£ 0 (satisfied for the

Brusselator) and the inequalities (2.19), (2.20). If they are satisfied, the modal

parameter and the signs in (3.4) are given by

e = sgn (a 0 0 1 a 2 0 0 ) , (3.6a)

ej = sgn( / i a 2 0 0 ) , e2 = sgn(/iZ>100), p = | j u | if jx # 0, ^ ^

ex = sgn a200, e2 = sgn b100, p = 0 if ju = 0,

where

H = 1 - 2a2 0 0/>0 1o/aii(Aoo- ( 3 - 6 c )

3.3. Type (9)31

Normal form:

U(x>-e>x\ + ez)\

\e2y(x-X) J
Degeneracy condition:

a200 = 0 (3.8)
Non-degeneracy condition:

a300a110a001^100^010 ^ 0 (3.9)
The signs in (3.7) are given by

e1 = sgna300, e 2 = - s g n 6 0 1 0 ,

e ' = -sgn(a 3 0 0 a 1 1 0 ) , e = £1e2sgn(Z)100a001)

3.4. Type (8)221

Normal form:

( £ i ( J f : x \ t : z ) (3.1D
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Degeneracy condition:

b100 = 0. (3.12)

Non-degeneracy condition:

a a a b c ¥* 0 (3 13)

where

C8 = *>200fl001 ~ fl 200*001- ( 3 -14)

The signs in (3.11) are given by

e1 = sgna200, e2 =
(3.15)

e = sgn(a0Ola200), e' = - e 2 s g n 6 0 1 0 .

3.5. Type (6a)PtK

Normal form:

I e^x2 - X2 + ez2 + 2KZX)

I s2y(x-p\)

p* 1, p > 0

e(p2 - 1) * K2

a i

200^010 ~

(3.16)

Degeneracy condition:

flow = 0 (3-17)

Non-degeneracy condition:

a2Qob1Q0prd # 0, (3.18)

where

d = 4rp — q2

(3.19)

Type (6a)p K has codimension 5**, that is, there are two modal parameters p, K
which have to satisfy the inequalities in (3.16). These separate (p, »c)-space into
various open regions which are distinguished as follows.

e = + 1 : Cl(p2 < 1), C//(l < p2 < K2 + 1), CIIl(p2 > K2 + 1) (3.20a)

e = - 1 : DI(P
2 + K2 < l ) , DII{\ - K2 < p2 < l) , DIIl(p2 > l ) . (3.20b)
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The different modal cases of (3.20) are determined by

CI: ( ± , ± , + , - ) , CII: ( ± , ± , + , - ) , CM: ( + , ± , + , + ) , (3.21a)
DI: ( ± , ± , + , +),DII:(±,T, +,-), Dili: (±, + , ± , - ) , (3.21b)

where in the brackets in (3.21) the signs

(sgn a 200, sgn p, sgn r, sgn d )

are collected. The regions defined by (3.20) are not connected in the (p > 0, ic)-half
plane. We have to specify (3.20) further by

sgn/c = sga(qa200) if q # 0, ,

K = 0 i f g = 0 . K }

The signs e1, e2 and p are given by (3.6b, c).

3.6. Type (7)2

It will be shown in Sections 4-6 that the types (9)31, (8)22i, (6a)p K occur in the
Brusselator if one of the non-degeneracy conditions (2.19) for type (6)p is not
satisfied. For completeness we present also the normal form (7)2 corresponding to
the non-degeneracy condition allo^ioo = a2oo^oio which violates (2.20). It has the
form

\e2y(x-e'\-e"\2)}'

Since this case will not be discussed further, non-degeneracy conditions etc. are
omitted (see [4]). For perturbed bifurcation diagrams associated with (7)2 we refer
to [1].

4. Liapunov-Schmidt reduction for type (9)31

From (2.17) and (3.8) we infer that the degeneracy conditions for type (9)31 are
satisfied if

Dn2 = 1, (4.1)

so that

2, Bk = 2(1 + ^/fi2), eo = {H + p2)/2nv (4.2)
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The non-degeneracy condition (3.9) implies that we have to compute the coeffi-
cient a300 in addition to those given in (2.17). Noting that (4.1) implies A200 = 0,
hence V200 = 0, the first equation in (1.19) yields Am = FJ0<t>\, that is,

^300 = -e2{H/ii2)\l + Ml/M2)( _ \ ) s i n 3 ^ . (4.3)

From (4.3) a300 is readily computed,

"300 = -/ l«2(/ i l / / i2)2(1 + Ml//i2)3w/'16- (4-4)

The remaining coefficients entering (3.9) are

_
""

blO0 =

Noting that sgn a001 = sgn bm = sgn k, the signs in (9)31 are obvious.

THEOREM 1. Let 6 > 8 andD\i2 = 1. Then the bifurcation problem resulting from
the unperturbed problem (2.14) via Liapunov-Schmidt reduction is contact equiva-
lent to the normal form (9)31, Eq. (3.7), with signs

£ l = e 2 = - l , e = e' = l. (4.6)

5. Liapunov-Schmidt reduction for type (8)221

The degeneracy conditions for type (8)22i (b100 = 0) are satisfied if

D2Wi - 1, (5-1)
hence,

In order to find the signs in (8)22i we need the Taylor coefficients b200 and b^.

5.1. Computation of b200

Observe that, in virtue of (5.1), B100 = 0, hence i/100 = 0 so that, from (1.19),

200 = 20 »2 200 30rl*r2* \ /

T h e second term in (5.3), JBJOO S 3F30<>I<|)2, is readily found to be

- lV^Jt + ?N I sin2 kt- sinf )t + I 'lf (S 4)
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The first term in (5.3) requires to compute V200 = —LQ1QA200, where

y42oo = l)2( 1 )sin2£:£ (5.5)

with

v2 = -6i/2k(2k + l)/(k + I)3. (5.6)

To achieve this we write A200 as a Fourier series,

^200 = -«2 E Pjk sin ft, (5.7a)

where

P., = f" d£ sin2 / | sin ft. (5.7b)
y •'o

Note that Pk<k+i = P (cf. (2.18)) and Pjt = 0 if j is even. Applying the represen-
tation (2.25) to (5.7) gives V200 = V^ + K2

2
X), with

(5.8a)

( 5 - 8 b )

In (5.8a) we have used the notation

m, = detM, = 0D2{H -j2){n2 -j2). (5.9)

Setting B200 = 2F20<j>2V2'00 (i = 1,2) we obtain from (5.8)

£200 = ^62(2k + l)( _ \ ) E — f ~ I sin yf sin (k + 1 ) | , (5.10a)

(5.10b)

•l-k8)( -

where

flx = (2ik + l)/fc. (5.11)

Using (5.3) and (5.10) in (1.21) yields

*200 = *200 + *220O + *200. ( 5 - 1 2 )

where

^ (5.13a)

2)(2k + 1). (5.13c)
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In (5.13a), S2 denotes the sum

S2= I PjkPj,k+i/{^-J2)- (5-14)

In order to compute S2, consider the generalized Green function A"n(£, 17) (n an
integer) corresponding to the differential operator (9/9£)2 + n2, with homoge-
neous Dirichlet boundary conditions. The sum representation for Kn is

( 5 . 1 5 a )

Alternatively, we can write

K_(£,TJ) = — cos«£sinw7j H ijcoswrj - •=— sinnij sinw£
nit UTT \ in )

— cosnijsin«£, I < TJ < w
" (5.15b)
— sin /IT) cos w£, 0 < TJ < | .

Consider then the function

U(£) i 2 ^ j ^ A:| (5.16)

which is orthogonal to sin k£ with respect to the L2-inner product. By using the
sum representation (5.15a) one readily verifies that

S2 = y f dif driKk+l(S,r,) sin2(k + 1)£ I/2(i,). (5.17)
^ •'0 •'0

Substituting (5.15b) into (5.17) allows the computation of an exphcit expression
for S2 which, when inserted into (5.13a) yields

16

5.2. Computation of b^,

Here one has to compute first V001 = — LQ ^^001 vvith Am given in (2.16).
Then V001 is substituted into the last equation of (1.19) yielding i ^ from which
b001 is obtained via (1.21). Proceeding in the same way as in the last Subsection
we find

6001 = *ooi + *MI + *ooi, (5-19)
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where

\ (5.20a)

i)\e - ex)
6001 ~ ,k\e - e0)

 (5 • }

*ooi = -(3/20V2/16A:3)(2A: + 1). (5.20c)

In (5.20a), St denotes the sum

where

= ? f ' di f diiKk+1(£,i,) sin2(k + 1)| U.iv), (5.21)
•̂  •'0 •'0

From (5.21) we obtain the final result for ftJoi.

2 "(2A: + 1)TT}. (5.22)

5.3. The signs in (8)221

We are now in the position to determine the signs in (8)22i- The quadratic
coefficients entering the non-degeneracy condition (3.13) are

auo=fi0kir/2(k + 1), boio=f26(k + \)m/2k

a200 = -4A03 / 2(2A: + l ) / 3 ( * + I ) 3 (5.23)

From (5.23) and the results of Subsection 5.1-2 we obtain for c8, Eq. (3.14),

c8 = -TTfJ2e
1/2(2k + l)2(l5k3 + 40k2 + 42k + 12)/12A:4(A: + 1).

(5.24)

Observe that c8 is negative for 6 > 6 and all relevant k (k odd, k 3s 1 or

k < — 3), hence the signs in (3.11) are obvious.

THEOREM 2. Let 6 > 6 and D2nln2 = 1. Then the bifurcation problem resulting

from the unperturbed problem (2.14) via Liapunov-Schmidt reduction is contact

equivalent to the normal form (8)221, Eq. (3.11), with signs

£ l = £2 = £ = - 1 , e' = 1. (5.25)
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We note that the signs in (5.25) are consistent with stability considerations: only
if el = e2 = —1 the solution (x, y) = ( — X,0) of G = 0, corresponding to the
trivial solution u = 0 in (2.14), is stable for X < 0 and unstable for X > 0.

6. Liapunov-Schmidt reduction for type (6a)p,K

The degeneracy conditions (a001 = 0) for (6a) pK are satisfied if

D^ = 1, (6.1)

so that

Ak = ( W / h ) 1 7 2 . Bk = 2(l+Ii2/^), eo = 2li2/(fi1 + li2). (6.2)
In order to decide which of the subtypes of (6a) pK (cf. (3.20), (3.21)) occur in the
Brusselator, we have to estimate the signs of a200 and p, q, r, d, defined in
(3.19). The latter depend on the non-vanishing quadratic Taylor-coefficients and
on a101, aooj, aon, b^i-

6.1. Computation of Taylor coefficients

Since (6.1) implies ^QQ! = 0, hence V001 = 0, it follows that B0Q1 = F30</>2, so

Bool = — (#M2/Mi) (1 + M2/M1) 1 I sin3(fc + l ) | , (6.3)

and

*ooi = - ^ V K M i + J^) / 1 6 !^- (6-4)
The computation of aon is also straightforward. First note that Bow (cf. (2.16))

is orthogonal to all eigenvalues of L* except \pf (cf. (2.23)). This implies that
only the second term in (2.25) contributes to U010.Therefore, f/010 is easily
computed and we obtain a011 by means of the third equation in (1.19) and (1.21).
The result is

(6.5)

where

For evaluating a ^ observe that V001 = 0 and Fw = 0. Hence, from (1.20) and
(1.21),

(6-7)
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where UO0l = -LQ1QBOOV Splitting the "sine-cubed" in (6.3) into

Cin I if -4- 1 if- =̂ — Qifll if -4- I I >• — QITi I if -I- I \ £•

shows that, when applying (2.25) to Bm, only one term in the first sum survives.
Therefore, i / ^ is easily computed and we obtain from (6.7),

(6.8)

The last coefficient, a101, is found in the same way as b200 in Subsection 5.1.
We obtain

aioi = aioi + ai2oi + aioi. (6-9)

where

a}01 = -/1^2(M2//ti)(2*: + 1)^3 (6.10a)

a2
01 = —/1^

2(/i2//xf)(2A: + \)P2J (6.10b)

4

In (6.10a), S3 denotes the sum

where

e,fc = T ^sin7|sinit|sin(A: + 1)£, (6.11b)
•'o

so that Qjk = 0 if _/ is odd. Defining

£/3(£) = sinA:£sin(A: + 1)^ - -i>sin(A: + l)£, (6.12)
IT

S3 can be evaluated by substituting (5.19b) into

S3 = T f d*r dvKk(Lv)™kZsin(k + l)t l/,({). (6.13)

F r o m (6.13) and (6.10a) we obtain the final expression for a\0l,

i f * * l , (6.14a)

(6.14b)
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For completeness we present also the quadratic coefficients. If (6.1) holds they
reduce to

«2oo = -W^ilk + 1 ) A H ( A : + 1), flU0 = A « y ,
- (6-15)

6 1 0 0 = - 2 f 2 e ' / \ 2 k + l ) ( * + \ ) P / k \ b n o J i J

6.2. Estimating the signs of p, q, r, d

Using the results of the last Subsection, we are now in the position to estimate
the signs of p, q, r, d defined in (3.19). These terms can be written in the form

P=fJ2
20n/2(Pl+p2J)

(6.16)

where

di = ^ I ' I - 1\, d2 = 4p2r1.

The /?,, q1 etc. are rational functions of k, explicit expressions are given in
Appendix A.

The following result is proved in Appendix B.

PROPOSITION \. If 6 > 0, then sgn r = - sgn k and q < 0.

Next we estimate p and d.

PROPOSITION 2. Let 0 > 6.

(i) p > 0, d < 0 ifk > 1.
(ii)/> > 0 ifk < - 5 .
(iii)// k < — 5, then d has a unique zero 6d > 6 such that d < (>)0 for

0>(<)6d.
(iv) If k = — 3, then p and d have zeros 6p and 0d, respectively, satisfying

9 < dd < 6p. Moreover, p >(<)0 if 0 < (>)8p andd>(<)0 if 0 < (>)6d.
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PROOF. The functions px + J(8)p2 and dx + J(6)d2 have unique zeros 8p and
8d, respectively, given by

a Pi+Pi Q dx + d2

" eo(p1+P2/2)' " »oK2

An analogous estimation to that of Appendix B shows that 8p, 6d < 80 if k > 1,
8p < 6Q1 if k < - 5 and 8d > d^1 if k < - 3 . Similarly we find that px + p-^2
> 0 for k * - 3 and dl + d^l < 0 for all odd k. Hence, px + Jp2 and
d± + Jd2 approach for k ¥= — 3 a positive value and for all odd k a negative
value, respectively, when 0 goes to infinity. This proves (i)-(iii). If k = — 3, a
direct computation yields

0 = 1 . 6 3 , 0p = 3.59, 0rf =1 .93

and /?! + P2/2 = -0.015, which proves (iv).
It is worth noting that both 6p and 0d approach 1/0O (the pole of / ) for large

k,

0p - l/d0 = (l024/277r2)jfc-3 + 0{k~A)
2)fc-4 + O(k~5),

thus 0d approaches l/80 rapidly. In fact, the numerical values for k = — 5 are
1/0O = 1.28 and 8d = 1.29 so that the region where d > 0 is very small.

Recalling that a2oo < 0 and sgn« = sgn(qw200) = 1, the modal cases of (6a)p K

are now obvious by virtue of Proposition 2 and (3.21).

THEOREM 3. Assume that 8 > 8, 8 ¥= 8p, 8d, D\ix = 1 and let G = (a, yb) be the
bifurucation problem resulting from the unperturbed problem (2.14) via Liapunov-
Schmidt reduction. Then G is contact equivalent to a member of the family (6a)
with K > 0, ej = e2 = ( — )1 ifk < — 3 (k > 1) and modal cases as follows.

k>l: Dili
k = - 3 : />/(£ < 0 < 8d), DIl(8d <8< 8p), Cl(8 > 6p)

k < - 5 : Dl(8 < 8 < 8d), DII(8 > 8d).

Note that the trivial solution u = 0 of (2.14) corresponds to the branches
(x, y) = ( — X,0) and (x, y) = ( \ ,0) of the bifurcation diagram associated with
(6a)p<K if k > 1 and k < - 3, respectively.

Observe that for A: < — 3 and 8 = 8d the nondegeneracy conditions for (6a)p,,
are violated. In this case the degeneracy conditions for a type called (6c)p in [4]
which has codimension 5* are fulfilled. Similarly, if k = - 3 and 8 = 8p, the
degeneracy conditions for another degenerate bifurcation of codimension 5*
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called (6b)p in [4] are satisfied. On the other hand all nondegeneracy conditions
are satisfied in the cases of (8)22i and (9)31 if 6 > 6. Consequently, the only
codimension-4 problems which can appear in the Brusselator are the types (6b)p

and (6c)p.

7. Universal unfoldings and subordinate bifurcations

7.1. Universal unfoldings

The universal unfolding of a codimension-3 normal form G(x, y, X) introduced
in Section 3 has the form

[ * = y (71)

where a = (a, /?, y) e R3 are unfolding parameters and F(x, y, X; 0) =
G(x, y, X). Here, x and y are bifurcation variables representing the amplitudes
of the bifurcating modes and X is a distinguished bifurcation parameter. In the
Brusselator, x corresponds to an even and y to an odd mode. The perturbed
bifurcation diagrams associated with the unfolding F are defined by the equation

F(x,y,X;a) = 0. (7.2)

The solution set of (7.2) corresponding to a = 0 is called the degenerate bifurca-
tion diagram. In general, Eq. (7.2) possesses two types of solutions, namely,
symmetric branches (under the reflection y -* -y) with y = 0, determined by
A(x, X,0; a) = 0, and "asymmetric" branches determined by the simultaneous
solutions of the equations A = B = 0. We refer to the former as 5-branches and
to the latter as //-branches. Equations (7.1), (7.2) can be viewed as ordinary
corank-1 bifurcations without symmetry in the Golubitsky-Schaeffer sense [5]
coupled to Z(2)-equivariant corank-1 bifurcations which are classified in [7] in the
context of degenerate Hopf bifurcations. Each normal form has a specific
interpretation in terms of these corank-1 bifurcations. Type (9)31 couples a
pitchfork in the 5-branch to a i/(2)-bifurcation of [7], (8)22i a bifurcation point
to a (2)p-bifurcation of [1, 4] which, in turn, organizes H{1) and H{3), whereas in
the case of (6a)p K a bifurcation point coalesces with a #(7)-point of [7].

The S-branches of types (8)221 and (6a) pK (see Sections 9 and 10) are
essentially unfolded bifurcation points. [5]. There are alternative versions of these
normal forms where the 5-branch consists of an isola. For completeness we
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discuss in Section 11 the isola-version of (8)22i and (6a)p K although they do not
appear in the Brusselator.

In Section 12 we illustrate how the generic type (6)p is organized by those
codimension-3 bifurcations which occur in the Brusselator, including the further
type (7)2. This gives a more global picture of the bifurcating branches.

7.2. Subordination

The standard method [1, 5-7, 11] for analyzing the perturbed bifurcation
diagrams associated with the unfolding F via (7.2) is to decompose the space U3

of unfolding parameters (a,/?, y) into connected open regions separated by
varieties where the degeneracy conditions for codimension-1 bifurcations are
satisfied.

We have to distinguish the following codimension-1 varieties,

SH = {a \y = 0, A = Ax = Axx = 0}
SB = {a Iy = 0, A = Ax = Ax = 0}

{a\A=B = 0, AXBX = AXBX, AXBZ = AZBX)

H(3) = {a\y = 0,A = B = 0,AxBz = AzBx)

LH = {a\y = 0, A = B = Ax = 0}.

The sets (7.3) have the following geometrical meaning. The first two, SH and SB,
correspond to a hysteresis and a bifurcation point in the S-branch, respectively
[5]. The third, HB, yields a bifurcation point in the //-branch. The sets H(l) and
//(3) are the Z(2)-symmetric codimension-1 bifurcations of Golubitsky and
Langford [7]. On H(2), the H- and S-branches have a tangential contact and on
//(3) a limit point of the //-branch occurs for y = 0. The last set, LH, corre-
sponds to a corank-2 bifurcation, that is, a //-branch meets a limit point of an
S-branch corresponding to the normal form (1)21 of [1, 4]. Normal forms for the
degeneracies associated with SH, SB, HB and H(2), //(3) can be found in [5]
and [7], respectively. In general, we have to consider one further set corresponding
to a hysteresis in the //-branch which, however, does not appear in our normal
forms.

Since we did not include non-degeneracy conditions in (7.3), the varieties SH,
SB etc. may contain subvarieties of codimension 1 (codimension 2 in IR3) where a
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codimension-2 bifurcation takes place which are distinguished as follows,

7/(7) = {a Iy = 0, A = B = 0, AXBX = AXBX, AXBZ = AZBX)

(7.4)
( 1 ) 2 2 = { a \ y = 0,A = B = A x = A , = 0}

(2 ) p = {alj> = 0, A = B=AX = BX = 0}

(6 ) p = {al>> = 0, A = B =Ax = Ak = 0}.

Here, SP corresponds to the standard pitchfork (see [5]) and //(7) to a degenerate
Z(2)-symmetric corank-1 bifurcation defined in [7]. We may regard H(l) as
coalescing //(2) and //(3) bifurcations. The sets (1)31 and (6)p correspond to a
//-branch meeting a hysteresis and a bifurcation point in the S-branch, respec-
tively. On (1)22 and (2)p, respectively, a //(3) and 7/(2) bifurcation takes place at
a limit point of the S-branch. For normal forms describing the latter corank-2
and codimension-2 degeneracies see [1, 4].

Denoting the degenerate bifurcations corresponding to the sets in (7.3), (7.4) by
the same symbol, the organisational power of the codimension-3 normal forms
(9)31, (8)221, (6a)p K are visualized in the subordination diagram of Fig. 1. In this
diagram a degenerate bifurcation organizes a lower-codimension type if the latter
can be reached from the former by following a sequence of arrows. We have
included in Fig. 1 also the generic (codimension-0) bifurcations, namely, SL (limit
point in the S-branch), HL (limit point in the //-branch) and //(I) (generic
Z(2)-symmetric corank-1 bifurcation, see [7]).

(9)

Figure 1. Subordination diagram
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73. Stability of the bifurcating branches

To any non-degenerate solution of (7.2) we associate two stability symbols
( ± , ±) corresponding to the signs of the real parts of the eigenvalues of the
Jacobean of F, evaluated at the solution. If (7.2) is regarded as an equation for
the steady states of a dynamical system

i \
\yB(x,X,y\a)l

a solution of (7.2) corresponds to a stable steady state only if the stability symbol
is ( - , - ) . By varying A, one sign in the stability symbol is reversed when crossing
a limit point or a //(l)-point (secondary bifurcation). The contact equivalence of
Section 3 has been chosen to preserve these stability exchanges. In [11] it has been
shown that the stability exchanges are also preserved if the solutions of (7.2)
correspond to the steady state branches of the Brusselator near a double eigen-
value, where F\a_0 is contact equivalent to the bifurcation problem obtained
from the reaction diffusion equation of the Brusselator via Liapunov-Schmidt
reduction.

In the diagrams of Sections 8-11 we use the letters s, u, n to denote the
stability symbols ( - , - ) , ( + , + ) , ( + , - ) , respectively.

8. Perturbed bifurcation diagrams for type (9)31

Choosing signs e1 = e2 = — 1, e' = 1, the universal unfolding of the normal
form (9)31 is given by [4]

\ -y(x-\ + y) )

In the Brusselator only the case e = 1 occurs but it is very easy to discuss both
signs e = ± 1 simultaneously.

From (7.3) and Fig. 1 the codimension-1 sets of F are obtained as follows.
LH is given parametrically in the form

y = -x + 20x + 3x2, a = 2x3 + fix2. (8.2)
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Solving the first equation of (8.2) for x and inserting into the second yields a as a
smooth function of (/?, y),

LH: a = a(/8,y) = fly2 - 2Y
3 + y2O(2), (8.3)

where the symbol 0{j) denotes terms of at least y-th order in the unfolding
parameters.

A parametric representation for //(2) is

Y = 2x - 20* - 3x2, a = - x 2 ( l - 2x - /?). (8.4)

Proceeding as with LH we obtain an explicit representation a as smooth function
of(j8,y),

\ (8.5)

The sets SH and SB have the same form as the standard pitchfork of [5],

SH: a = B3/21,

The codimension-2 sets are given by

SP: a = £ = 0

(1)31: a = 03/27,

(6)p: « = Y = 0 .

SB: a = 0. (8-6:

(8.7)

(8.8)

(8.9)

It may now be verified that the decomposition of the unfolding space U3 via
LH U H(2) U SH U SB is as shown in Fig. 2 for sections /? = constant. Projec-
tions of the perturbed bifurcation diagrams onto the (x, X)-plane are shown in
Fig. 3 for the regions marked in Fig. 2. Since the //-branches do not possess limit
points with y =f=- 0, the (x, \)-projections contain complete information about the

SH \ ^ \ <ft SB

4A
' H(2)

f3>0

Figure 2. Decomposition of unfolding space for type (9)31
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qualitative behaviour of all branches. To illustrate this we have sketched in Fig. 4
a three-dimensional diagram corresponding to region 4 in Fig. 2.

Observe the stability exchanges ( + , + ) - » ( — ,—) in some of the diagrams of
Fig. 3 corresponding to a Hopf bifurcation. Although these exchanges are not
preserved by contact equivalence, there is topological evidence where at least one,
respectively an odd number of Hopf bifurcations must be present.

s..-

n

16

Figure 3. Projections of bifurcation diagrams onto (x,X)-plane for parameters in the regions
marked in Figure 2. Solid lines are S-branches, broken (dotted) lines are //-branches for e = 1
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n

Figure 4. Three-dimensional version {y > 0) of diagram 4 in Fig. 3.

9. Perturbed bifurcation diagrams for type (8)22i

Here,

(9.1)

where the sign e = - 1 occurs in the Brusselator. The relevant codimension-1 sets

are (cf. Fig. 1 and (7.3)),

SB:

LH:

H(3):

a = 0

a = /82

(9.2)

(9.3)

(9.4)

LHuH(2)wH(3)

SB
oc

5 SB

S=0

Figure 5. Decomposition of unfolding space for type (8)221. The numbers in brackets refer to y < 0.
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Figure 7. Three-dimensional version (y > 0) of diagram 4 in Figure 6.

and H{2) is implicitly determined by
X(2x + y) - x = 0 (9.5a)
P + y x + x 2 - X = 0 (9.5b)
a = X2 - x2. (9.5c)

Solving (9.5a, b) for x and X in terms of (/?,y) and substituting the result into
(9.5c) yields a as smooth function of (/?, y)

H{2): a = a(/i,y) = p2 + p2y2(\ + 0(1)). (9.6)
The codimension-2 sets are

The decomposition of unfolding space by LH U SB U i/(2) U //(3) is shown
in Fig. 5 for sections y = const. Projections of the perturbed bifurcation diagrams
onto the (x, X)-plane are collected in Fig. 6 Since the projection of the //-branches
with y > 0 onto (x, A)-plane is one-to-one and preserves limit points, the
(x, A)-diagrams of Fig. 6 contain complete information about the qualitative
behaviour of all branches. In Fig. 7 a three-dimensional diagram corresponding to
region 4 in Fig. 5 is sketched.

10. Perturbed bifurcation diagrams for type (6a)p,K

The universal unfolding of the normal form (6a)p K is given by

\ e2y(x - px-y) )
where

e i , e 2 > e= ± 1 , p > 0 (10.2a)
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X

521

(0,0) (1,0) (0,0) (1,0)
E=-1

Figure 8. The six modal cases of (6a) p K.

and

p * 1, e(p2 - l) * K2. (10.2b)

We may confine to K 3* 0 because the reversal A -» - \ and an appropriate
contact transformation brings (10.1) to a form where K is replaced by - K . The
presence of the modal parameters p, K implies that (6a)p K has codimensiop 5**,
that is, topological codimension 3. In virtue of the inequalities (10.2b) we have to
distinguish six different modal cases for (6a) p K which are denoted by CI, II, III,
DI, II, III. The regions in the (p, «)-plane to which these cases correspond are
shown in Fig. 8. We discuss perturbed bifurcation diagrams associated to (10.1)
with the signs £x = e2 = 1 for the cases CI, DI, DII and with e1 = e2 = — 1 for
CII, CIII, Dili. Recall from Section 3 that the cases CI, DI, DII and Dili
occur in the Brusselator with signs e1 = e2 = 1 and ej = e2 = — 1, respectively.

For fixed y we define the straight line L in the (x, \)-plane by B = 0, that is,

L: x = pX + y. (10.3)

Since the //-branches are located in the plane E spanned by L and the >>-axis,
any perturbed bifurcation diagram can be decomposed into the //-branch lying in
E and the S-branch and L lying in the (x, X)-plane. In Fig. 9 this is shown for
the unperturbed diagrams (parameters equal to zero). From Fig. 9 we infer the
geometrical meaning of the six sub-types CI, CII etc. The cases CI, DI, DII are
distinguished from CII, CIII, Dili by the position of L relative to the unper-
turbed S-branch (Fig. 9(a)). Modulo orientations, the unperturbed //-branches
can be grouped into three different topological types, namely, (CI, Dili), (CII,
DII) and (CIII, DI) (Fig. 9(b)) corresponding to the three different modal cases
of the corank-1 Z(2)-bifurcation H(l) [7] (apart from stabilities). The distinction
of the six sub-types of (6a)p K is obtained by combining the three cases of Fig.
9(b) with Fig. 9(a). We note that Fig. 9(a) corresponds—modulo stabilities and
orientations—to the two different modal cases of type (6)p (see [1,11]).
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U U S L

s s
CI.DI.DE CH.CE.DE

(a)

ci DH en D I CI.DI
(b)

Figure 9. Unperturbed bifurcation diagrams associated with type (6a)p „ (a) 5-branches. (b)
//-branches.

For analysing the varieties in the unfolding space it is convenient to introduce
transformed unfolding parameters (5, /J) as follows,

a = (p2- l )a - Y2 (10.4a)

^ = | K p Y + i ( l - p 2 ) J 8 } s g n A , (10.4b)

where

A = e(p2 - 1) + K2. (10.5)

Assuming «p # 0 it is straightforward to derive analytic expressions for the
codimension-1 and -2 sets of Section 7. In terms of the parameters (a,J3,y) they
take the simple forms,

SB: a = - y 2

H{2): a = 0

H{2): a = - £ 2 / K 2 (10.6)

LH: a = - Y V P 2

HB: a = /82/A,i8>0,
and

^(7) : a = p = 0

(1)22: a = -Y2/P2, J8 = (KY/P) sgn A (10.7)
(6)p: a = Y = 0.
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The varieties (10.6) are shown in Fig. 10 for sections B * 0. In Fig. 10(a) the sets
7/(2), SB and LH are sketched. The sets i/(2), HB and H(3) are presented in
Fig. 10(b) for /? > 0 and in Fig. 10(c) for /? < 0. The open regions in unfolding
space separated by the sets (10.6) are numbered by triples (/, j) (1 sg / < 6,
1 < j < 5) corresponding to the intersection of region i in Fig. 10(a) and region j
in Figs. 10(b), (c).

The perturbed bifurcation diagrams corresponding to the regions (/, j) are
summarized in Fig. 11. We have used the same representation as in Fig. 9, that is,
the diagrams are decomposed into S-branches and the line L in the (x, A)-plane
(Fig. 11 (a)) and H-branches lying in the plane E spanned by L and the j>-axis
(Fig. ll(b)) corresponding to the regions 1-6 in Fig. 10(a) and regions 1-5 in

1 (0,0)

3/ i\5\ / T Y
SB LH LH SB

CI.DI.DE (a) Cn.Cffi.DIE

-H(2)

1 (0,0) -H(2)

-HB

-H(3)

C I . D I

1 (0,0)

1 (QO)

•H(2)

—H(3)

(0 p<0

-H(2)

-H(3)

-HB

1

2 (0,0)
-HB

-H(2)

-H(3)

CE.DH CI.DI
(b)

CX.

Figure 10. Sections fi * 0 of the varieties (4.6) for type (6a)p «. (a) The sets H(2), SB, LH. The sets
H(2), HB, //(3) are shown in Figs. 10(b) and (c) for p > 0 and J5 < 0, respectively. The unfolding
space is decomposed into open regions (i, j) obtained by intersection of region / in (a) and region j
in (b) or (c).
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n u

CI (3,3)
figure 12. Three-dimensional perturbed bicfurcation diagram corresponding to region (3,3) for the

modal case CI of type (6a)p ..

Figs. 10(b), (c), respectively. The two points where the line L intersects the
S-branch are secondary bifurcation points. At these points an #-branch emerges
from the S-branch as shown in Fig. ll(b). The perturbed bifurcation diagram
corresponding to a non-empty region (/, j) is obtained by putting diagram j in
Fig. ll(b) vertically onto diagram / in Fig. ll(a). The stability symbols in the
brackets associated with a sub-branch of an i/-branch in Fig. ll(b) correspond,
respectively, to the regions (2, 3, 4, 5, 6) of Fig. 10(a). The symbols s -> u and
u —* s indicate a stability exchange s to u and u to s via a tertiary bifurcation,
respectively, when moving along L from left to right. In order to illustrate how
the diagrams of Figs. ll(a) and (b) are combined we have sketched the three-di-
mensional perturbed bifurcation diagram for case CI, region (3,3), in Fig. 12.

11. Isola-versions of types (8)22i and (6a)P|K

In this Section we analyze the perturbed bifurcation diagrams for the isola-ver-
sions of the types (8)221 and (6a)p „ which are obtained by replacing x2 - \2 in
(3.1) and (4.1) by x2 + A2.

11.1. Type (8)22i-isola

Proceeding as in Section 9 we find the following expressions for the codimen-
sion-1 and -2 sets,

SB: a = 0
LH: a = - 0 2

(HI)

H(2): a = - )
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(6)p: a = /} =

(2)P: « = - / * 2

527

(11.2)

The decomposition of unfolding space is shown in Fig. 13 for sections y # 0.
Perturbed bifurcation diagrams corresponding to the regions of Fig. 13 are
summarized in Fig. 14.

(8)/ / 5
H(2) LH H(3)

T > 0 ( y < 0 )

Figure 13. Decomposition of unfolding space for type (8)22i-isola. The numbers in brackets refer to
y < 0.

*

s , -n

u

n
4

n

Q<
"-S 8

\

n
..n

r\ s
10

Figure 14. Projections of bifurcation diagrams onto (x, \)-plane for parameters in the regions
marked in Figure 13. Meaning of solid, broken and dotted lines as in Figure 6.
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11.2. Type (6a)p,K-isola

[43]

Defining A by

A = e(l + p2) - K2,

we have to distinguish three modal cases as follows,

A:
BI:
BII:

e = - 1
e = l , A
e = l , A

>
<

0
0.

(11.3)

(11.4)

For all three cases of (11.4) we choose the signs ex = e2 = —1. The unperturbed
S-branch consists of the origin which blows up to a circle by unfolding. The
unperturbed //-branches for the cases A and BII have the form of Fig. 9(b), case
Dili (with u and s interchanged) and case CII (with u replaced by s),
respectively, where the straight line L is defined by (10.3) as in Section 10. The
unperturbed //-branch for the case BI consists of the origin.

Defining

a = (l + p2)a +
(11.5)

the sets SB and (1)22 are given by

SB: a = Y2

(1)22: a = -Y2/p2 , fi= -(«Y/p)sgnA.
(11.6)

The analytic expressions for the remaining codimension-1 and -2 sets are the same
as in Section 10 (Eqs. (10.6), (10.7)). In Fig. 15 the sets H(2), SB and LH are
shown in the (a, Y)-plane. The sets //(2), HB and H(3) have the same form as in

H(2)-

Figure 15. The sets H(2), SB and LH for type (6a)p ,-isola.
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-X 2 3 4
(Q)

(s,s*u, (s->u,u,u)
s->u)

1
(s,u-»s,u)

n

(s,u,u) (s,s,u)

n

(s,s-»u,s*u)

II

D

(s,s-»u,s+u)

4

(s,s-ms->u)

/(s-»u,u,u)

5

A

5

BI

(b)

is,s,u)
5

BII

Figure 16. Perturbed bifurcation diagrams for type (6a)p ,-isola.
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Figs. 10(b), (c), for sections /? =£ 0. The unfolding space is decomposed into
regions (/, j) obtained by intersection of region i in Fig. 13 and region j in Figs.
10(b), (c). The perturbed bifurcation diagrams are summarized in Fig. 16 which
must be interpreted similarly as Fig. 11. The stability symbols in the brackets in
Fig. 16(b) refer, respectively, to the regions (3, 4, 5) of Fig. 15.

12. Subordination of type (6)f

The objective of this Section is to demonstrate how the "generic" bifurcation of
type (6)p is organized by those codimension-3 bifurcations which occur in the
Brusselator. The results are summarized in Fig. 17 for the types (9)31, (8)22i and
the further type (7)2 (see [1, 4], in [1] the subscript 2 is suppressed), and in Fig. 18
for the relevant modal cases of type (6a) . We have not analysed type (7)2 in
this paper because it is discussed in detail in [1]. From the results of [11] it follows
that the degeneracy conditions for type (7)2 are satisfied for the Brusselator on
certain lines in parameter space (the non-degeneracy conditions still need to be
proved). The essential feature of the degenerate bifurcation diagram of (7)2 is
that the //-branch terminates tangentially in the 5-branch where the (y, ^-pro-
jection encounters a cusp. The cases k > 0 and k < 0 give rise to different signs
in the normal form (7)2. Recall from Section 3 that the modal cases Dili; DI, II
and DI, DII, CI of type (6a) p K occur, respectively, if k > 0, k < — 4 and
k = - 2 .

The letter T in Figs. 17, 18 refers to the solution branch corresponding to the
trivial (spatially and temporally homogeneous) solution of the reaction diffusion
equations associated with the Brusselator model. For each type and modal case
Figs. 17 and 18 show the degenerate diagram in the middle and the two different
subordinate modal cases of (6)p to the left and right of the degenerate diagram.
We have used the notation of [11] to denote the various (6)p-cases. The Roman
numeral indicates the number of solutions emanating from the trivial solution at
the bifurcation point and the subscript denotes the number of them which are
stable. Note that each //-branch in Figs. 17, 18 corresponds actually to two
branches via reflection y -* —y.
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IL (8)221 I ,

m, V (7 ) 2 :k<0 l"

Figure 17. Type (6)p as subordinate bifurcation of (9)31, (8)22i and (7)2.
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DI

in, DI

CI

Figure 18. Type (6)p as subordinate bifurcation of those modal cases of (6a)p « which occur in the
Brusselator.
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Appendix A

The expressions for px, p2 etc. occuring on the right-hand side of (6.16a-c) are

192(fc + 1)13(2A: + l)(M l + fi2)(l44/i2
2 - 23^lM2 - Mf)

https://doi.org/10.1017/S0334270000005555 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005555


534 Gerhard Dangelmayr |491

914 . so
Pl = 1548TT2 - 5 5 ^ = 11982.3 (if k = 1)

Pl =

1)5(3M
3

2 - V x -

(if k*\)

688 128 1392 772

5—=

=

Appendix B

PROOF OF PROPOSITION 1 (Subsection 6.2). The first statement in Proposition 1
is obvious from the last expression in Appendix A. In order to prove that q < 0 if
6 > 6 we need to show that ql is negative. For k = 1 this is clear, so let k =£ 1.
Write q1 in the form q1 = — q2Q where

(* + l)\2k + 1)

(4 )3(4 )*12

and <2 is the polynomial,

Q = Uir2kn + 522ir2kn
 +(1191T72 - 1536)jt10 (B.I)

-(9728 - 7907T2)A:9 -(25600 + 2899^72/2)A:8

-(34304 + 3817TT2)A:7 -(19200 + 8273w2/2)A:6

- ( 2 6 0 8 T T 2 - 10240)A:5 +(27392 - 964T72)A:4

+ (23040 - 176T72)A:3 +(10496 - 8TT2)A:2

+ 2560A; + 256.

The coefficients multiplying the power k" in Q are denoted by an. We have to
show that Q > 0 for all odd k # 1.
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(a) Let k > 0. Then numerical estimates of the coefficients a, show that

a12k
u + a9k

9 + a6k
6 > 100k6(lk6 - 20A:3 - 700) (B.2)

ank
n + ask* + a$k

5 > 103k5(5k6 - 40k3 - 16) (B.3)

a10k
10 + a7k

7 > 104k7(k3 - 8).

The zeros of the right-hand sides of (B.l-3) are all < 3. Since a, > 0 for / < 4 it
follows that Q > 0 if k > 3.

(b) If k < 0 a similar estimate as in (a) shows that a10k
10 + • • • +aQ > 0 for

k < - 3 and a12k
u + auk

n > 0 for k < - 7 which guarantees that Q > 0 if
k < - 7. By substituting k = - 3 and k = - 5 into (B.I) we find that Q > 0 also
for these values of fc.

https://doi.org/10.1017/S0334270000005555 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005555

