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Abstract

Necessary conditions for optimal controls are given for non-linear
systems with time delayed effects in both control and state variables.

1. Introduction

Time-delayed optimal control problems have been considered by many
authors. [1-11] The time-delayed terms may be restricted to state variables.
[1, 2, 3, 5] Other authors have allowed time-delayed effects of control
variables, but the control variables may enter only linearly. [4, 7]

Non-linear time-delayed control and state variables have been consi-
dered by N. D. Georganas. [11, 12] Our present work is closely related to his.

To elucidate the differences, consider a simple special case:

(i) Only one, scalar, state variable x(r).

(ii) Only one, scalar, control variable v(t).

(iii)) Only one, constant, time delay 6 > 0.

(iv) A fixed planning horizon T, with no condition on x(T).

The control problem involves three functions, f(x,v,t), g(x, v,t), and
fo(x, v, t), where x is real, v is within some control set ), and 0=¢=T. All
these functions are taken to be differentiable with respect to x, continuous in
v, and piecewise continuous in ¢ with at most a finite number of points of
discontinuity. We want to extremize

J= ijo[X(t), v(t), t] dr 1.1)

subject to
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%:f[x(z),u(:),t] for 0<t=0 (1.2a)
=flx(@),v(t),t] +g[x(t — 8),v(t — 0),t — 8] for 6 <t =T (1.2b)
x(0) = a = given (1.3a)

v(r) piecewise continuous, v(1)EQ forall 0=t=T (1.3b)

Problems of this type arise in many areas. For example, x(¢) may be a
population at time ¢, v(t) the birth-rate (considered controllable), fo(x, v, t)
some kind of instantaneous utility associated with this population, birth-rate,
and time; the meaning of the time delay 6 is then the lifetime of each member
of the population (considered to be exactly the same for all). The differential
equation which governs the time dependence of the population x(t) is

%=x(r)v(t)—x(r—0)v(t—0) for 6<t=T (1.4)
Comparison with (1.2b) allows us to identify f(x,v,¢) = xv and g(x,v,t)=
— xv. Georganas [11, 12] writes the same equation (1.4) in the form:

%‘: Ao(t) flx (1), v(t), 1]+ A1) flx(t — 8), v(t — 0),t — 8] (1.5a)

where
f(x,v,t) = xv, Ast)=1, A(t)= -1 (1.5b)

The differences between (1.2) and (1.5) are:

(a) In (1.2), f and g may have different functional dependence on all
three variables x, v, ¢. In (1.5), however, the instantaneous and time-delayed
terms have the same functional dependence on two of these three variables,
namely x and v. This can be a serious restriction in practice.

(b) More important, there is a basic conceptual difference. Georganas
assumes that his equation (1.5) holds for all t in 0 = ¢ = T. This includes values
of 1 for which the precursor time ¢’ =t — 6 is negative. He is therefore forced
to consider controls v(t’) at negative times, — § < (' < 0; and he must state
“initial conditions” on x(t') over that same time interval, rather than merely
at the point + =0. In his later paper [12] he introduces the concept of
‘“penalization of the initial data”, i.e., the cost functional is taken to depend
on the values of the adjustable control v(t'), and of the given “initial data”
¢(t') (equal to x(t') in the interval — 6 <’ <0) at negative times.

In our view, the past is beyond control. It is given history and should be
treated as such. Thus, we do not assume that (1.2b) holds for times ¢ such that
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t' =t — 0 is negative. For those times, we use equation (1.2a) instead. In our
simple example, let us denote the actual number of births per unit time by

b(t)
b(t)=x(t)v(1)

We consider b(t) controllable for r >0, but we insist that it is a given function
of ¢ for t =0, completely beyond control. Thus (1.4) is not valid for 1 = 6, and
must be replaced by

%=x(t)v(t)—6(t) for 0<t=¢6 (1.6)
where B(t)=b(t — 0) is a given function of t. This is the conceptual difference
between Georganas’ approach and ours.

As a result of this conceptual difference, there are several differences in
the mathematical formulation. These include:

(i) Our initial condition (1.3a) is at a point (t = 0), not over an interval

(—6<t<0).

(i) The differential equation (1.2) assumes different forms in different
time intervals, see (1.2a) and (1.2b).

(iii) A control function v(t) is defined only on 0=t = T; no control
exists at negative times.

(iv) The function f(x, v,t) cannot be restricted to be continuous, but
must be allowed to have discontinuities at isclated points (see below).

This last point (iv) emerges from our example. If we compare (1.6) with
(1.2a), and (1.4) with (1.2b), we get

f(x,o,)=xv—-B() for 0<t=9 (1.7a)
= xv for 6<t=T (1.7b)
g(x,v,t)= —xv for 0<t=T-86 (1.7¢)

Thus f(x, v, t) is clearly a discontinuous function of ¢ at ¢t = 6, although it is
differentiable in x and continuous in v for any given ¢ (we assume left-hand
continuity in ¢ at all points of discontinuity, so that f is defined also at t = ).

Although the usual proof techniques [11, 12] depend on continuity, it
turns out that a finite number of points of discontinuity cause no difficulty.

We note that there is an asymmetry between our equations (1.1) and
(1.2): (1.2) contains time-delayed terms whereas (1.1) does not. (The same
asymmetry occurs between equations (1) and (2) of Georganas. [12]) We wish
to point out that this does not result in any significant loss of generality.

To see this, consider the apparently more general cost functional:
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J= foo[x(t), v(t), t]dt +J’Tg‘o[x(t -8), v(t—0),t—0]d (1.8)

where ﬁ)(x, v, t) and gu(x, v, t) are given functions. We assert that J, far from
being more general than (1.1), can be rewritten in the form (1.1). Just
introduce t'=t — @ in the second integral of (1.8) to get

T T-0
J =I folx (1), v(t),t]dt+f Go[x(t), v(1"), t')dt’
0 0
This is of the form (1.1), with
folx, v, 1) = fo(x, v, 1) + e(T — 6 — 1) §o(x, v, 1) (1.9)
where e(7) is the unit step function defined by

e(r)=0 for =0
(1.10)
=1 for >0

Since isolated discontinuities in fy(:, -, t) are permissible, expression (1.9) for f,
is quite acceptable. Thus the extra complication of (1.8) over (1.1) is not
justified by any gain in generality.

Section 2 is devoted to a simple, heuristic derivation of a Pontryagin-type
maximum principle for the control problem (1.1)}-(1.3). The derivation is
along the lines of chapter 4 of Hadley and Kemp, [13] and we do not attempt,
in this paper, to make the argument rigorous (although this can be done).
Rather, Teo and Moore [14] give a rigorous argument using the conventional
techniques of control theory introduced by Pontryagin; we refer the reader to
their paper for a rigorous proof. Section 3 of our paper is devoted to various
extensions of the theory beyond the extremely simplified problem (1.1)}-(1.3).

2. Heuristic derivation of a maximum principle

We rewrite (1.2) as a single equation by using the step function e(t),
(1.10):

’Z—f= flx(@),v(t), t]+e(t—0)g[x(t—6), v(t —0),t— 0] 2.1)

We also define x,(t) by

xolt) = f "Rl ("), v("), 1] di” 2.2)

so that x,(t) satisfies
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cfixt“ = fo[x(t), v(¢), t] (2.3a)

x0(0) = 0 (2.3b)

The quantity to be optimized, (1.1), equals xo(T). For definiteness, we shall
take our optimum to mean a maximum.
Assume that an optimal control v*(¢) exists, is piecewise continuous as a

function of ¢, and that x *(¢) is the corresponding optimal path. We then have

dx* _ - N * *

el flx*@), v*(t) t] +e(t—0)g[x*(t —8),v*(t—0),t — 0] (2.9
Following standard procedure, we introduce a varied control v(t). Let ¢ >0
and 7 be such that 0<7=T,0=71—-¢<T, and the interval T—e =1 <7
contains no discontinuity of f, g, fo, or v*. Let v be any member of the control
set Q2. Then

v(t)=v for r—e<t=7 (2.5a)
=p*(t) for all other ¢ in [0, T] (2.5b)

The resulting path x (t) satisfies (2.1) and (1.3a). For small enough ¢, it turns
out [13, 14] that x(¢) is related to x*(t) by

x()=x*()+el(t)+o(e) (2.6)
and clearly
Z()=0 for 0=t=r-¢ 2.7

The difference between v(t) and v *(¢) enters the right-hand side of (2:1),
and hence alters dx/d:, within two distinct time intervals

() r—-e<t=r+

) 7+0—-e<t=7+80
In the first of these intervals, the instantaneous term f(x, v, t) in (2.1) differs
from its optimal value. In the second time interval, the delayed term g has
v(t — 0) different from v*(¢ — @), because the precursor time ¢’ = ¢ — ¢ falls
within the range 1 —e <t'= 7.

In both these special time intervals, the function {(¢) in (2.6) changes
very rapidly. For time interval (i) one obtains, with conventional methods

x(t)—x*(1)=€el(1)+ o(e)
= [ {flx(t"), v, ] = flx*(t"), v*(t"), t"]} dt”

= e{f[x*(7), v, 7] = flx*(7), v*(7), 7]} + 0(¢)
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so that

()= 8(r) = {(r =€) = flx*(r), v, 7] = fx*(7), v*(7), 7] 2.8)

In this result, it is not necessary that f(:, -, t) be continuous at ¢t = 7, only that it
and v *(t) be left-hand continuous at t = 7 and continuousint —eg =t <.

In the second region, 7+ 8 — ¢ <t = 7 + 6, the relevant term in (2.1) is
the delayed term, g. An entirely similar argument leads to

Lr+0)—L(r+0—€)=g[x*(1), v, 7]~ g[x*(7), 0*(r), 7] + o(e) (2.9)

At all other times ¢ in 7 <t =T, we have v(t)=0v*(t) and v(t —08) =
v*(1 — 0). We subtract (2.4) from (2.1) and use (2.6) to get

& — Lt + e, 0* (), 1)~ flx*(0), 0*(0), 1]

+e(t— 0)% {g[x*(t—8)+el(t—06),v*(t—06),t— 6]

—g[x*(t—0),v*(t-8),t—06]}+0(1)

Since df/dx and dg/dx exist by assumption, the mean-value theorem of the
differential calculus can be used to simplify this expression. A more detailed
argument [14] shows that

df lg(r)+e(: 0) (—5;) +o(1) (2.10)

where df/dx is evaluated at (x*(t), v*(¢),t) and (3g/dx){ is evaluated at
(x*(t = 6),v*(t — 8),1 — 0). Equation (2.10) holds within the following time
intervals:

(i) 0<tr=r7—¢ (trivially, { =0 and e(t — ) =0)

(ii) r<t=min(r+6—¢T)

Gi) if T>7+6,in7t+0<t=T
For the remaining time intervals, r— e <t=rtand r+ 0 —-e<t=71+ 60, we
use (2.8) and (2.9), respectively.

The variable x(t), (2.2), satisfies the differential equation (2.3) and can
thus be treated similarly. Its optimum path is denoted by x 3(¢) and is related
to the varied path x,(t) by

X()(l)’:‘xz(t)‘l' E{O(t)+0(£) (211)
with
L(t)=0 for 0=t=7-¢ (2.12a)

https://doi.org/10.1017/5033427000000134X Published online by Cambridge University Press


https://doi.org/10.1017/S033427000000134X

484 John M. Blart 17]

Lol(7) = folx *(7), v, 7] = fo[x *(7), v*(7), 7] (2.12b)
‘fi{: Bé for »<t=T (2.12¢)

where dfs/dx in (2.12c) is to be evaluated at the point (x*(¢), v*(¢), 1).
Equations (2.12) are simpler than the corresponding equations for ¢(¢),
because by assumption (2.3a) contains no time-delayed terms (see the
discussion in section 1. after equation (1.8)). Note that the right-hand side of
(2.12¢) contains £(t), not o(¢).

Since x§(T) is an optimum (i.e., a maximum) by assumption, we have
xo(T)= x3(T), so that (2.11) together with £ >0 yields

L(T)=0. (2.13)

At this stage, we need to define a Hamiltonian for this problem. It is best
to use the time-integrated functional

% = f()\od’“ﬂ(:)dt)d:

where we are to substitute the right-hand sides of (2.1) and (2.3a) for dx/dt
and dx,/dt, respectively. Straightforward substitution gives

= " {hofol 0, 1)+ A1) fx, 0, 1)
(2.14)
+e(t—0)A()glx(t—0),v(t—0),t— 6]}de

However, there is also an equivalent form, obtained by introducing the
dummy variable t' =t — 0 in the last term

H = JT {Aofolx, v, 1)+ A (1) f(x, v, 1)} dt
(2.15)

[ A+ 0)lx (), 00, rldr

The canonical equations dx/dt = 8 /8A(t) and dxo/dt = 8F/8A(t) are
reduced to explicit form most easily by starting from (2.14) for #. These
equations are just (2.1) and (2.3a), respectively.

The adjoint equations for the co-state variables, on the other hand, are
derived most easily by starting from (2.15). They turn out to be
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dA _L é[_ o ag
" 8x(t) —hoglm A —e(T—0-DA(t+6)22  (2.16)
where dfo/dx, df/dx, and dg/dx are to be evaluated at (x(t), v(¢), t); and
dro _ _ 8% _
dt sxo(t)_(l 2.17)

Thus Ay(t) is a constant, and the differential equation (2.16) for A () contains,
in the last term on the right-hand side, the value of A at the later time
t"=t + 6, provided t” is not beyond the planning horizon T (in that case, the
unit step function e(7T — @ — t) becomes zero).

It is relevant to remark that the differential equation for the state
variable x(t), equation (2.1), and for the co-state variable A(t), equation
(2.16), both allow systematic numerical integration, but from opposite direc-
tions: To find x (¢) from (2.1), we must integrate forward in time, for only then
is x (¢ — @) a known quantity; to find v(t) from (2.16), we must integrate in the
direction of decreasing time t, i.e., backwards from ¢t = T, for only then is
A(t+ 6) a known quantity.

Let us now define Z(t) by

Z(t) = Aalo(t) + A(1t) {(2). (2.18)
In order to relate Z(T) to the inequality (2.13), we impose the conditions:
A(T)=0 Ao=1, all ¢ (2.19)

the first of which acts as an initial condition on A(t) if we integrate (2.16)
backwards from ¢ = T. (2.13), (2.18) and (2.19) give

Z(T) = {o(T)=0. (2.20)

In ordinary control theory, Z(t) turns out to be a constant of motion, i.e.,
dZ/dt =0. This is not true in time-delayed control theory. However, we
assert that the following equality holds:

Z(M=Z(r)te(T—1—0)A(v +0) {g[x*(7), v, 7] — g[x*(7), v*(7), 7]}

+0(1). (2.21)
To prove this, we write
T+0—¢ T
Z(T)Y-Z(n)= j dZdt+Z(7+0) Z(tr+0—¢)+ %%dt
T+8

We now use (2.10), (2.12¢), (2.16), (2.17) and (2.18) to simplify the two
integrals to get
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Z(T)- Z(1)= UM_F dt +I,T dt) {e(t— 0)A(t)(§f {)’_a

~e(T-0-1)A(1+0) (gfg).}

+ o1+ 0) = fo(r+ 6 —£)
+H{A(r+0)L(r+8)—A(r+0—€){(r+0—¢)}

In the first line on the right-hand side, the additional interval from 7 + 0 — ¢
to 7+ 6 contributes an amount of higher order for small ¢; and in the last
term, replacing A(r + 6 — ¢) by (7 + 8) also contributes an amount of higher
order in ¢, since the differential equation (2.16) is quite well-behaved for
T+ 68— & <t=r1+0. Using (2.9) and the fact that {,(t) does not jump sharply
inT—0—¢e<t=7+ 86, we therefore obtain

Z(T)= Z(r) = f {e(t —0)A() (-gf 5).-9_ e(T=0—-1)A(t + 6) (%{)l}dt

+A(r+0){g[x*(r), v, 7] - g[x*(7), v*(7), 7]} + 0(1). (2.22)

The last term is what we want for (2.21). The extra factor e(T —  — ) makes
explicit what is already understood in (2.22) and earlier, namely

A(t)=0 for t=T. (2.23)

The point is quite simple: An “advanced effect” at time t"=t+ @ can
enter the equations only if ¢” is still within the planning period, "< T. In
writing our formulas, leading to (2.22), we have assumed tacitly that 7+ 8 <
T. This tacit assumption underlies (2.22), and in (2.21) the factor e(T — 7 — 8)
makes the assumption explicit: this factor vanishes unless r + 8 < T. The
formal expression (2.23) is consistent with (2.16) and (2.19), i.e., A(t) =0 for
all t = T is a solution of that system.

It remains to show that the integral in (2.22) vanishes. This is a difference
of two integrals. Because of (2.7) we can write the first integral as

o[l (229,

(i.e., there is no contribution from 7 =¢t=7++ 6 since {(t— 0) vanishes
there). Similarly, the factor e(T — 6 — t) allows us to write the second integral
as

12=f7r—6 A(t+6) (gf{)'dt
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However, a simple change of dummy variable, t' = ¢ — 6, converts the integral
I, into the form I,, so that I, = Lyand thus I, — I, = 0. Q.E.D.

Now substitute (2.18) for Z(7) into (2.21), and use (2.20) for the left-hand
side. This gives the inequality

Aolo(T) +A(T) (7)) +e(T— 7= 0)A(r + 0){g[x*(7), v, 7]
—glx*(r), v*(7), 7]} =o0. (2.24)

Since Ao =1, {u(7) is given by (2.12b) and /(1) by (2.8), (2.24) is expressible
entirely in terms of known quantities.

In order to express the inequality (2.24) succinctly, we now define the
point Hamiltonian H (A, A, x, v, t) by

H(Ao, A, x, 0, )= Aofo(x, v, 1)+ A (1) f(x, v, 1)

+e(T-60-DA(+60)g(x,v,1t). (2.25)

A look at (2.15) shows that this definition is consistent with the known value
of the integrated Hamiltonian %, i.e., it follows from (2.15) that..

T
¥ =f H(Ao, A, x, v, t)dt. (2.26)
0

However, we emphasize that (2.25) is not a consequence of (2.26). We used
the integrand of (2.15) for our definition (2.25); but as far as satisfying (2.26) is
concerned, we might just as well have used the integrand of (2.14), with the
same result for # but a quite different form for H. The real reason for
choosing (2.25) is not (2.26), but rather the fact that we wish to simplify the
inequality (2.24). This inequality reduces very nicely if and only if we define H
by (2.25); then (2.24) reduces to the maximum principle

H[Ao, A(T), x*(7), v*(7), 7] = H[ Ao, A(7), x*(7), v, 7] (2.27)

for all v € Q, the control set. That is, the optimal control v*(r) at each time 7,
0 <7 =T, is such as to make the Hamiltonian (2.25) a maximum with respect
to all permitted values of v. (2.27) is the desired extension of the Pontryagin
maximum principle to the time-delayed control problem.

We note that H has a different functional form for different regions of .
When (2.25) is written out explicitly, it gives

H= Ao fo(x,0, )+ A(t) f(x,0, 1)+ At +0)g(x, v, 1)
for O0<r=T-86 (2.28)
H = Aofo(x,0,8)+ A(t)f(x,v,1) for T-0<t=T. (2.29)
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There is no reason to expect the value of H to be independent of the time ¢, or
even to be a continuous function of ¢. On the contrary, one should expect a
discontinuity at t = T — 6.

Note that (2.29) is the ordinary Pontryagin Hamiltonian for a problem
without time-delays. Since (2.27) tells us to maximize H, we conclude that the
time-delayed terms do not directly influence the choice of the optimal control
v*(t) for T— 0 <t =T. This makes sense intuitively: For T-0<(=T, a
time-delayed effect, occurring at t” = r + 8, is not visible within our planning
horizon (i.e., t” > T'), and can therefore have no influence on maximization of
(1.1).

This argument, however, implies a warning against uncritical application
of this theory! In many, indeed in most, practical situations a sharply defined
planning horizon T is only a rough idealization of the true problem. An
“optimization” which ignores all effects occurring at times ¢ > T may be of
very doubtful value.

One way out is an infinite planning horizon, coupled with discounting of
the future. Let U(x, v) be some “‘utility” of the state (x, v) at time ¢, and let
p >0 be a discount rate. Then we may use the theory to maximize

J= lTx_r:rl fT exp (— pt) Ulx(t), v(t)] dt (2.30)

subject to (2.2) and to v(t) € £}, all + = 0. If the limit exists, the effect is to
make the region T —~ 6 <t = T unimportant, since it shifts out to infinity and
its effect is discounted by an exponential factor no larger than
exp[ — p(T — 6)], which goes to zero. In this limit, therefore, we expect (2.28)
to remain relevant for all finite values of «.

3. Extensions of the theory

(a) VECTORS:
Let the state x (¢) be a vector with n components

(1) = (6 (), x:(1), . . ., xa(1)).

Similarly, v(t) may be a vector with m components (m may differ from n).
We still wish to maximize (1.1), but the differential equation (1.2), or (2.1),
now is replaced by the coupled set:

%z fillx(®), (1), t]+e(t—0)g[x(t—6),v(t—6),t—0]

i=1,2,..,n (3.1)
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This reduces to (2.1) for n = 1. In (1.3b), Q is a subset of an m-dimensional
vector space. The co-state variable A becomes an n-vector also, and (2.16) is
replaced by the coupled set

9fo _
d: ~ Aoy ;A(t)

n P (3.2)
—e(T-0-1) ,\,(:+0)5§ i=1,2,...,n
1=1 v

This reduces to (2.16) for n = 1. Finally, the Hamiltonian is defined by
H(Ao, A, x, 0, 8) = Ao folx, v, £) + 2, A, (1) f,(x, v, 1)
1=1

+e(T-0-1)3 A +8)g(x v,1). 3.3)
j=1
This reduces to (2.25) for n = 1.

The maximum principle, in the form (2.27), is unaltered, and so are the
differential equations (2.3a) for x, and (2.17) for A,. If v is a vector control
variable, then both v* and v in (2.27) are vectors, and are to be varied over
the permitted (vector) control set (), a subset of the full m-dimensional vector
space R™.

There is no substantial change in the argument of section 2, and the
trivial modifications are left as an exercise to the reader.

{(b) MULTIPLE TIME DELAYS:
In many practical applications, there are several time-delayed terms, with
different delay times. We denote the delay times by 6,, 8,, - - -, 8, with

0<6,<f,<---<80. (3.4)

The differential equations (3.1) are then extended to

= fi(x(1),v(t), 1) + 2 e(t — 0.) gu[x(t—6.),v(t—6.),t — 6.]

i=12,--,n (3.5)
This reduces to (3.1) when s = 1. The adjoint equations (3.2) become:
dri _
dr ax. ,Z. A (t)
~ 3 o(T- 0—:)2A(:+0)—3’— (3.6)
a=1
i=12,--,n
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The Hamiltonian is:

Ho A % 0,0 = Ao folx, 0, )+ S A1) f(x, v, 1)

+ i e(T—0.,—1t) > A(t+0.)ga(x,0,1). (-7
a=1 1=1

The derivation of the maximum condition (2.27) is made more awkward by
the presence of jumps in {(t) at a number of times t'> 71, namely at
t'=7+6, t'=7+80,---, t'= 1+ 6, (or rather as many of those as are no
greater than T). But this is a mere complication of detail, involving no new
essential point.

(c) CONTINUOUSLY DISTRIBUTED TIME DELAYS:

New points do arise in connection with time-delays which are distributed
continuously, i.e., instead of discrete delays 8,,---, 6, as in (3.4) we have a
continuous variable 8. We do not attempt, in this paper, to discuss this
problem in proper mathematical fashion; but we do wish to motivate, by
means of a heuristic argument, a conjecture concerning the following control
problem.

Let fo(x,v,t), fi(x,v,t), and h.(x,v,1,0) for i=1,2,---,n be given
functions. The problem is to maximize

xo(T) =L fo[x (1), v(t), t]dt 3.8)
subject to (i =1,2,--+,n)
%~ fLx(0), (0), 1] +L' h[x(e), v ('), ¢t = ] dr (3.9)
x,(0) = a, given (3.10)
v(t) € ) (given control set), for all 0=t = T. (3.11)

Note that the h, are explicitly functions of 8 =t — (', and also that the
precursor time ¢’ in (3.9) is never negative, nor can it ever exceed the current
time t: We neither attempt to control the past (negative times), nor do we
permit effects at time ¢ to be due to causes in the future (¢'>t).

In order to motivate our conjecture, we rewrite (3.9) in terms of the time
delay 8 =t —t', and we let 8 go from 0 to T, formally, so as to have a fixed
interval of integration:

L [, 0(0)1)

+J;Te(t_0)hi[X(t—0),v(t-—0),1*_0, e]do (312)
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Now divide the interval (0, T) into a large number s of sub-intervals of equal
length. We define

=a(Tl/s) a=12-s (3.13)

and we approximate the integral in (3.12) by a sum to get

= = f.—[X(t), D(l), t]

+2 e(t—0.)ga.[x(t—6.),v(t—6.),1—6,] (3.14)

a=1

where
galx, 0, t] =(T/s)h(x, vt 86.]. (3.15)

The approximate form (3.14) of (3.9) is identical with (3.5). Our conjecture
consists in a transliteration of equations (3.6) and (3.7) to the integral form,
i.e., a step inverse to the one which we made to get (3.14) from (3.9). The
resulting equations for the co-state variables A, () are (see (3.6)):

d! I\O—Li IZ] A ([)‘lL

B T-t n a_ht)
L ;A,(He) <3x. de

where dh,/dx. in the last term is evaluated at x(t), v(t), ¢, 6. The definition of
the Hamiltonian is (see (3.7))

(3.16)

H(Ao, A, %, 0, 1) = Ao fol, 0, 1)+ 3 A (1) f (% 0, 1)

Tt n (3.17)
+f 2 At + 0)h[x(1), v(t), 1, 8] d6.

Our conjecture is that a necessary condition for optimal control of problem
(3.8)-(3.11) is the maximum condition (2.27), with H defined by (3.17).

In conclusion, it is our pleasant duty to thank Professor M. Kemp and Dr.
K. L. Teo for valuable discussions.
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