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Abstract. A celebrated result by Bourgain and Wierdl states that ergodic averages along
primes converge almost everywhere for L p-functions, p > 1, with a polynomial version
by Wierdl and Nair. Using an anti-correlation result for the von Mangoldt function due to
Green and Tao, we observe everywhere convergence of such averages for nilsystems and
continuous functions.
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1. Introduction
Ergodic theorems, originally motivated by physics, have found applications in and
connections to many areas of mathematics. A prominent example is the result on
almost everywhere convergence of ergodic averages along primes by Bourgain [6, 8] (for
p > (1+

√
3)/2) and subsequently Wierdl [37] (for all p > 1).

THEOREM 1.1. Let (X, µ, T ) be a measure-preserving system, p > 1 and f ∈ L p(X, µ).
Then the ergodic averages along primes

1
π(N )

∑
p∈P,p≤N

T p f (1)

converge almost everywhere.

The proof is based on the Carleson transference principle to the discrete model
(Z, Shift), the Hardy–Littlewood circle method and estimates of prime number
exponential sums. An analogous result for polynomials instead of primes was proved by
Bourgain [7, 8], see also Thouvenot [36], with variation estimates by Krause [26] showing
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that the averages converge rapidly. For analogous estimates for averages (1), see Zorin-
Kranich [42]. Moreover, Theorem 1.1 has been generalized to polynomials of primes by
Wierdl [38] and Nair [31, 32].

Since the proof of Bourgain and Wierdl does not give any information on the set of
points where the convergence holds, the following natural question arises.

Question 1.2. For which systems and functions do the ergodic averages along primes (1)
converge everywhere?

We give a partial answer to this question and show that ergodic averages along
polynomials of primes converge everywhere for all nilsystems and all continuous
functions. For the definitions of a nilsystem and a polynomial sequence, see Section 2.

THEOREM 1.3. Let G/0 be a nilmanifold, g : N→ G be a polynomial sequence and
F ∈ C(G/0). Then the averages

1
π(N )

∑
p∈P,p≤N

F(g(p)x)

converge for every x ∈ G/0. Moreover, if G is connected and simply connected, g(n)=
gn and the system (G/0, µ, g) is ergodic, then the limit equals

∫
G/0 F dµ.

The key to this result is the powerful theory developed by Green and Tao [18–20],
partially together with Ziegler [21], in their study of arithmetic progressions and linear
equations in the primes, in particular the asymptotic orthogonality of the modified von
Mangoldt function to nilsequences; see Theorem 2.1 below.

Note that nilsystems and nilsequences have been playing a fundamental role in the
study of other kinds of ergodic averages, namely the norm convergence of (linear and
polynomial) multiple ergodic averages, motivated by Furstenberg’s ergodic-theoretic proof
[16] of Szemerédi’s theorem [35] on the existence of arithmetic progressions in large sets
of integers. Here is a list of relevant works: Conze and Lesigne [10], Furstenberg and
Weiss [17], Host and Kra [23], Lesigne [30], Ziegler [40], Host and Kra [24], Ziegler [41],
Bergelson, Host and Kra [2], Bergelson, Leibman and Lesigne [4], Bergelson and Leibman
[3], Leibman [28, 29], Frantzikinakis [12], Host and Kra [25], Chu [9], Eisner and Zorin-
Kranich [11] and Zorin-Kranich [43]. For other applications of the Green–Tao–Ziegler
theory to ergodic theorems, see, e.g., Frantzikinakis, Host and Kra [14, 15], Wooley and
Ziegler [39], Bergelson, Leibman and Ziegler [5] and Frantzikinakis and Host [13].

Our argument is similar to (but simpler than) the one in Wooley and Ziegler [39] in the
context of the norm convergence of multiple polynomial ergodic averages along primes.

2. Preliminaries and the W -trick
Let G be an s-step Lie group and 0 be a discrete cocompact subgroup of G. The
homogeneous space G/0 together with the Haar measureµ is called an s-step nilmanifold.
For every g ∈ G, the left multiplication by g is an invertible µ-preserving transformation
on G/0, and the triple (G/0, µ, g) is called a nilsystem. Nilsystems enjoy remarkable
algebraic and ergodic properties making them an important class of systems in the classical
ergodic theory; see Auslander, Green and Hahn [1], Green [22], Parry [33, 34] and
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Leibman [27]. For example, single and multiple ergodic averages converge everywhere
for such systems and continuous functions.

For a continuous function F on G/0 and x ∈ G/0, the sequence (F(gn x))n∈N is called
a (basic linear) nilsequence as introduced by Bergelson, Host and Kra [2]. A nilsequence
in their definition is a uniform limit of basic nilsequences (being allowed to come from
different systems and functions). Note that the property of Cesàro convergence along
primes is preserved by uniform limits, so Theorem 1.3 implies in particular that every
nilsequence is Cesàro convergent along primes.

Rather than linear sequences (gn), following Leibman [27], Green and Tao [19] and
Green, Tao and Ziegler [21], we will consider polynomial sequences (g(n)), where g :
N→ G is called a polynomial sequence if it is of the form g(n)= g p1(n)

1 · . . . · g pm (n)
m for

some m ∈ N, g1, . . . , gm ∈ G and some integer polynomials p1, . . . , pm . For an abstract
equivalent definition, see [19]. A sequence of the form (F(g(n)x)) for a continuous
function F on G/0 is called a polynomial nilsequence. Although this notion seems to
be more general than the one of linear basic nilsequences, it is not; see the references at
the beginning of the proof of Theorem 1.3 in the following section.

Note that a nilsequence does not determine G, 0, F etc uniquely, giving room for
reductions. For example, we can assume without loss of generality that x = idG0.
Moreover, denoting by G0 the connected component of the identity in G, since we are
only interested in the orbit of x under g(n), we can assume without loss of generality that
G = 〈G0, g1, . . . , gm〉.

We use the notation oa,b(1) and Oa,b(1) to denote a function which converges to zero
or is bounded, respectively, for fixed parameters a, b uniformly in all other parameters.

We now introduce the W -trick as in Green and Tao [18]. Consider

3′(n) :=

{
log n if n ∈ P,
0 otherwise.

For ω ∈ N, define
W =Wω :=

∏
p∈P,p≤ω

p

and for r < W coprime to W define the modified 3′-function by

3′r,ω(n) :=
φ(W )

W
3′(W n + r), n ∈ N,

where φ denotes the Euler totient function.
The key to our result is the following anti-correlation property of3′r,ω with nilsequences

due to Green and Tao [18] conditional to the ‘Möbius and nilsequences conjecture’ proven
by them later in [20]. Here, ω : N→ N is an arbitrary function with limN→∞ ω(N )=
∞ satisfying ω(N )≤ (1/2) log log N for all large N ∈ N. Note that the corresponding
function W : N→ N is then O(log1/2 N ).

THEOREM 2.1. (Green–Tao [18, Proposition 10.2]) Let ω(·) and W (·) be as above, G/0
be an s-step nilmanifold with a smooth metric, G being connected and simply connected
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and let (F(gn x)) be a bounded nilsequence on G/0 with Lipschitz constant M. Then

max
r<W (N ),(r,W (N ))=1

∣∣∣∣ 1
N

N∑
n=1

(3′r,ω(N )(n)− 1)F(gn x)
∣∣∣∣= oM,G/0,s(1)

as N →∞.

An immediate corollary is the following, cf. Theorem 2.2 (and the discussion
afterwards) in Frantzikinakis, Host and Kra [15]. Here, ω and W =Wω are again numbers,
not functions.

COROLLARY 2.2. Let G/0 be an s-step nilmanifold with a smooth metric, G being
connected and simply connected and let (F(gn x)) be a bounded nilsequence on G/0
with Lipschitz constant M. Then

lim
ω→∞

lim sup
N→∞

max
r<W,(r,W )=1

∣∣∣∣ 1
N

N∑
n=1

(3′r,ω(n)− 1)F(gn x)
∣∣∣∣= 0,

where the convergence is uniform in F, g and x.

Proof. We call a triple (F, g, x) admissible if (F(gn x)) is a bounded nilsequence on G/0
with Lipschitz constant M . Define for ω, N ∈ N and admissible (F, g, x)

aω,(F,g,x)(N ) := max
r<W,(r,W )=1

∣∣∣∣ 1
N

N∑
n=1

(3′r,ω(n)− 1)F(gn x)
∣∣∣∣

and assume that the claimed uniform convergence does not hold. Then there exist ε > 0, a
subsequence (ω j ) of N and a sequence of admissible (F j , g j , x j ) so that

lim sup
N→∞

aω j ,(F j ,g j ,x j )(N ) > ε for all j ∈ N.

In particular, there exists a subsequence (N j ) of N such that aω j ,(F j ,g j ,x j )(N j ) > ε for
every j ∈ N.

Define now the function ω : N→ N by

ω(N ) := ω j if N ∈ [N j , N j+1),

which grows sufficiently slowly if (N j ) grows sufficiently fast. Then we have

aω(N j ),(F j ,g j ,x j )(N j )= aω j ,(F j ,g j ,x j )(N j ) > ε for all j ∈ N,

contradicting Theorem 2.1, which states that limN→∞ aω(N ),(F,g,x)(N )= 0 uniformly in
admissible (F, g, x). �

3. Proof of Theorem 1.3
We first need several standard simple facts.

LEMMA 3.1. (See, e.g., [14]) For a bounded sequence (an)⊂ C, one has

lim
N→∞

∣∣∣∣ 1
π(N )

∑
p∈P,p≤N

ap −
1
N

N∑
n=1

3′(n)an

∣∣∣∣= 0.
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LEMMA 3.2. Let (bn)⊂ C satisfy bn = o(n). Then the following assertions hold.
(a) The sequence (bn) is Cesàro convergent if and only if for every ε > 0, there exist

W, N0 ∈ N such that∣∣∣∣ 1
W N

W N∑
n=1

bn −
1

W M

W M∑
n=1

bn

∣∣∣∣< ε for all N , M ≥ N0. (2)

(b) If (bn) is supported on the primes, then, for every W ∈ N,

1
W N

W N∑
n=1

bn =
1
W

∑
r<W,(r,W )=1

1
N

N∑
n=1

bW n+r + oW (1). (3)

Proof. (a) The ‘only if’ implication is clear. To show the ‘if’ implication, let ε > 0 and
take W, N0 satisfying (2). Let further N1 ∈ N be such that |bn|< εn/W holds for every
n ≥ N1. We can assume without loss of generality that W N0 ≥ N1. For k ≥W N0, let
N = N (k)≥ N0 be such that k ∈ [W N , W (N + 1)). By the triangle inequality, it suffices
to show that ∣∣∣∣1k

k∑
n=1

bn −
1

W N

W N∑
n=1

bn

∣∣∣∣< 4ε (4)

if k is large enough.
We first observe that∣∣∣∣1k

k∑
n=1

bn −
1

W N

k∑
n=1

bn

∣∣∣∣= k −W N
kW N

k∑
n=1

|bn| ≤
W

k(k −W )

(
O(1)+

k∑
n=N1

kε
W

)
≤ o(1)+

k
k −W

ε < 2ε

for large enough k. On the other hand,∣∣∣∣ 1
W N

k∑
n=1

bn −
1

W N

W N∑
n=1

bn

∣∣∣∣≤ 1
W N

k∑
n=W N+1

nε
W
≤

k
k −W

ε < 2ε

for large enough k, proving (4).
(b) The growth condition implies that

1
W N

W N∑
n=1

bn =
1

W N

W∑
r=1

N−1∑
n=0

bW n+r =
1
W

W∑
r=1

1
N

N∑
n=1

bW n+r + oW (1).

If (bn) is supported on the primes, (3) follows. �

The following property of connected nilsystems is well known.

LEMMA 3.3. Let X := G/0 be a connected nilsystem with Haar measure µ and g ∈ G.
Then (X, µ, g) is ergodic if and only if (X, µ, g) is totally ergodic.

Proof. Since ergodicity of a nilsystem is equivalent to ergodicity of its Kronecker factor
(also called maximal factor torus or ‘horizontal’ torus) G/([G, G]0), see Leibman [27],
we can assume without loss of generality that X is a compact connected abelian group.
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Let (X, µ, g) be ergodic, m ∈ N and let F ∈ L2(X, µ) be an gm-invariant function, i.e.,
F(gm x)= F(x) for every x ∈ X . Consider the Fourier decomposition

F =
∑
χ∈X̂

cχχ.

By the assumption, we have
F =

∑
χ∈X̂

cχ (χ(g))mχ.

By the uniqueness of the decomposition, we obtain

cχ = cχ (χ(g))m for all χ ∈ X̂ .

Assume that cχ 6= 0. Then (χ(g))m = 1, i.e., χ(g) is an mth root of unity. Since (X, µ, g)
is ergodic, {gn

: n ∈ Z} is dense in X . Since χ is a character and X is connected, χ(g)
has to be equal to 1—otherwise X would have two clopen components {gn : m0|n} and
{gn : m0 - n}, where m0 is the smallest period of χ(g). Thus, F = c11 and (X, µ, g) is
totally ergodic. �

Proof of Theorem 1.3. As mentioned above, we can assume that x = idG0 ∈ G0, where
G0 is the connected component of the identity in G, and G = 〈G0, g1, . . . , gm〉.

Every polynomial nilsequence can be represented as a linear nilsequence on a larger
nilmanifold; see Leibman [27, Proposition 3.14], Chu [9, Proposition 2.1 and its proof]
and, in the context of connected groups, Green, Tao and Ziegler [21, Proposition C.2].
Thus, we can assume that g(n)= gn for some g ∈ G.

By the argument in Wooley and Ziegler [39, text between Corollary 3.14 and
Proposition 3.15], the nilsequence (F(gn x)) can be written as a finite sum of (linear)
nilsequences coming from a connected and simply connected Lie group. Thus, we can
assume without loss of generality that G is connected and simply connected.

We first assume that F is Lipschitz and define bn :=3
′(n)F(gn x). To show

convergence of
1

π(N )

∑
p∈P,p≤N

F(g px), (5)

by Lemma 3.1 it is enough to show that (bn) satisfies the condition in Lemma 3.2(a).
For every ω ∈ N, we have by Lemma 3.2(b),

1
W N

W N∑
n=1

bn =
1
W

∑
r<W,(r,W )=1

1
N

N∑
n=1

bW n+r + oW (1)

=
1

φ(W )

∑
r<W,(r,W )=1

1
N

N∑
n=1

3′r,ω(n)F(g
W n+r x)+ oW (1)

=
1

φ(W )

∑
r<W,(r,W )=1

1
N

N∑
n=1

(3′r,ω(n)− 1)F(gW n+r x)

+
1

φ(W )

∑
r<W,(r,W )=1

1
N

N∑
n=1

F(gW n+r x)+ oW (1)

=: I (N )+ I I (N )+ oW (1). (6)
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Let ε > 0 and take a large ω such that lim supN→∞ |I (N )|< ε, which exists by
Corollary 2.2. Since the sequence (F(gW n+r x))n∈N is Cesàro convergent for every r ,
see Leibman [27] and Parry [33, 34], there is N0 ∈ N such that |I I (N )− I I (M)|< ε for
every N , M ≥ N0. Thus, (bn) satisfies the condition in Lemma 3.2(a).

Take now F ∈ C(G/0) arbitrary, x ∈ G/0 and ε > 0. By the uniform continuity of F ,
there exists G ∈ C(G/0) Lipschitz with ‖F − G‖∞ ≤ ε. We then have∣∣∣∣ 1

π(N )

∑
p∈P,p≤N

F(g px)−
1

π(M)

∑
p∈P,p≤M

F(g px)
∣∣∣∣

≤

∣∣∣∣ 1
π(N )

∑
p∈P,p≤N

F(g px)−
1

π(N )

∑
p∈P,p≤N

G(g px)
∣∣∣∣

+

∣∣∣∣ 1
π(N )

∑
p∈P,p≤N

G(g px)−
1

π(M)

∑
p∈P,p≤M

G(g px)
∣∣∣∣

+

∣∣∣∣ 1
π(M)

∑
p∈P,p≤M

G(g px)−
1

π(M)

∑
p∈P,p≤M

F(g px)
∣∣∣∣

≤ 2ε +
∣∣∣∣ 1
π(N )

∑
p∈P,p≤N

G(g px)−
1

π(M)

∑
p∈P,p≤M

G(g px)
∣∣∣∣,

which is less than 3ε for large enough N , M by the above, finishing the argument.
The last assertion of the theorem follows analogously from the decomposition (6) using

Lemma 3.3, the fact that a nilsystem is ergodic if and only if it is uniquely ergodic,
see Parry [33, 34], and the uniform convergence of Birkhoff’s ergodic averages to the
space mean for uniquely ergodic systems. The last step (for non-Lipschitz functions)
should be modified by showing that the difference (1/π(N ))

∑
p∈P,p≤N F(g px)−

(1/N )
∑N

n=1 F(gn x) converges to zero. �

Acknowledgements. The author thanks Vitaly Bergelson for correcting the references
and is deeply grateful to the referee for careful reading and suggestions which have
considerably improved the paper.

REFERENCES

[1] L. Auslander, L. Green and F. Hahn. Flows on Homogeneous Spaces (Annals of Mathematics Studies, 53).
Princeton University Press, Princeton, NJ, 1963.

[2] V. Bergelson, B. Host and B. Kra. Multiple recurrence and nilsequences. Invent. Math. 160 (2005),
261–303.

[3] V. Bergelson and A. Leibman. Distribution of values of bounded generalized polynomials. Acta Math. 198
(2007), 155–230.

[4] V. Bergelson, A. Leibman and E. Lesigne. Intersective polynomials and the polynomial Szemerédi theorem.
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