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Abstract

We present a geometrical method for the solution of a certain class of non-
linear boundary value problems. The results generalize those of the standard
hypercircle method for linear problems. Two illustrative examples are
described.

1. Introduction

The hypercircle [7] provides a method for the approximate solution of certain
boundary value problems of mathematical physics. In this method the analytical
problem of solving a differential equation subject to prescribed boundary con-
ditions is transformed into a geometrical problem of finding the point of inter-
section of two manifolds in a suitably chosen function space. As developed so far,
the theory deals with boundary value problems that are linear, and in this paper we
consider an extension which enables us to obtain corresponding geometrical
results for an interesting class of non-linear boundary value problems. Our theory
is illustrated by calculations for two examples, corresponding to non-linear
ordinary and partial differential equations respectively.

2. Class of non-linear problems

We shall consider boundary value problems described by equations of the form

14 = T*T<f> = / ( # \nV, (1)

<f> = 4>B o n B, (2)
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where L = T* T is a linear self-adjoint second-order differential operator, / is a
given scalar-valued function of a scalar variable (j> with certain properties that will
emerge later, and <f>B is a prescribed function on the smooth boundary B of the
closed region V, a compact connected subset of Euclidean space En. We assume
the existence of a unique solution of (1), (2).

Let Hu and H^ be real Hilbert spaces of vectors u and scalars <f> respectively
defined on V+B, and we denote by [, ] and < , > the inner products on Hu and H^.
Then let the operator T map H$ into Hu and suppose that the domain of T is
dense in H$. The adjoint operator T* is denned on Hu and maps Hu into H^. We
have

[u, T<f>] = (T* w, £> + boundary terms, (3)

and we assume that these boundary terms in (3) vanish when <j>B = 0. Standard
examples of the scalar products are

[u, v]

fcuvdx \\^dx djdx -d/dx
jyU.vdV iv<f»lidV grad -div (4)

which we shall use later. More general examples arise when the inner products
involve weighting factors or when the operators are more complicated, but we do
not need the details here.

Examples of operators T, T* and their corresponding domains are given in [1].
For the examples given in this paper it is sufficient to suppose that the domains of
Tand T* are subsets of continuous functions. We note also that if the function/in
(1) satisfies condition (12) following, the existence of a unique solution of the
problem (1), (2) follows from consideration of the canonical form of the problem
(see [1, p. 67] and [6, p. 146]; see also the observation after equation (16)).

3. Geometrical formulation

To derive hypercircle results for the class of problems in (1) and (2), we first
employ the basic procedure of splitting equation (1) into a pair of canonical
equations by taking

T<f> = u, <f> = (f>B o n B , ( 5 )

T*u=f{$) iuV. (6)

A solution (u,(j>) of these equations satisfies (1) and (2).
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Next we introduce a new function space (F-space like phase space) with points
^i = (ut, <j>J, but without metric for the moment. Let S = (u, <f>) denote the solution
of (5) and (6). Then S is the intersection of two manifolds:

(1) a linear subspace Qx defined by

T<f>1 = u1, <f>! = (f>s o n B; (7)

(2) a non-linear manifold Q2 defined by

T*u2=A<j>2) in f - (8)

Now we shall define the scalar or inner product for any two vectors S{ and Sj in
F-space by

(9)

where 5f = (uit <£f) and y is some positive constant. Then the metric is positive
definite. Evidently F-space is the Cartesian product HuxH$, and is a Hilbert
space if y ̂  0. If y = 0 we can work instead with the F-space Hu of vectors «f.

If S = (u, <f>) is the solution, S1 = (uv <f>j) a point in Qx and 52 = («2> ^2) a point
in Q2, we have

(S-SJ. (S-SJ = [u-u1,u-

by (3) and using the fact that the boundary terms vanish since <j>x = <f> = <f>B on B.
By (8) we therefore have

To get a hypercircle result from this we now suppose that

f° r aM^i. (ID

that is, —A<f>) iS monotone. For differentiable/this implies

^ P < - y < 0 for all*. (12)
dip

We also choose

which we can do. Then, under these circumstances, it follows from (10) that

(14)
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Hence the solution 5 lies inside (or on) a hypersphere

{X-Cf = R\ (15)

with centre C and radius R given by

(16)

where S'J = 5i.Si.
We owe to the referee the observation that under the assumptions used here the

geometrical formulation suggests a uniqueness proof. For if S1 = S2 = one solu-
tion, then any other solution is contained in a hypersphere of radius R = 0 about
C = St and hence is again Sv

Linear problems correspond to

A<f>) = g<l>+h, (17)

where g and h are given functions, and we recover the hypercircle results for them
by replacing y by — g and imposing the condition —g^O. In this case condition
(13) becomes unnecessary and the solution S actually lies on the hypersphere (15).

4. An error bound

From the hypersphere (15) we have

^-sy^-s^. (is)
Now

by (3)

(19)

where A is a lower bound to the lowest eigenvalue XQ of the problem

T*T6 = \d in V, 9 = 0 on B. (20)

Equations (18) and (19) give

^ ^ ^ say. (21)

We have thus obtained a mean square estimate of the error in the trial function ^ .
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5. Example 1

To illustrate these results we first take the non-linear ordinary differential
equation problem described by

(22)

(23)

This problem arises in heat conduction and it is known that there is a non-negative
solution <f> [4]. Our theory applies to (22) and (23) with the choices

T=d/dx, T* = -djdx,

4>B = 1 at x = ± 1. (24)

If we confine our attention to non-negative functions, then

-df(<f,)/dip= \+4>l2>\ f o r ^ O . (25)

By (12) we see therefore that we can choose

y = l . (26)

The scalar product (9) for this problem is then

S{. Sj = f1 (ut Uj+<j>i <f>,) dx. (27)

We take very simple trial functions Sx in i2x and S2 in ii2 with 52 = (wx, <f>^) and
•$2 = (W2> ^2) where

1 jij (28)
and

"a = ix+Mx-i^Hic^x-f^+i*5), (29)

where u2 is a solution of

-dujdx =

Here a is a parameter which is found by minimizing the radius R of the hyper-
sphere given in this case by

4*2 = (S1-S2)2= [X (fr-utfdx. (30)
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The results are

a = -0.399, * = 0.01944, |C | = 1.23733. (31)

Since the lowest eigenvalue of the associated eigenvalue problem (20) is \
we can choose

A = 7r*/4, (32)

and so by (21) we find the mean square error

£(&) = 4R2/(A+y) = 0.00044 (33)

in our trial function
& = 1-0.399(1-x2). (34)

Bounding curves for the exact solution <f> are known, namely

*(*), (35)
and

(36)

where cx(x) and c2(x) are the Collate [5] curves

c^x) = 1 -0.35(1 -x2)-0.05(1 -x4) ,

cz(x) = 1-0.35(1 -x2)- 0.04(1 -JC4),

and b^x) and b2(x) are the Bailey et al. [4] curves

bx{x) = sech^fcosh^l*,

bz(x) = sech 1 cosh JC.

Our trial solution <̂  is compared with these curves in Table 1. We see that <̂  lies
between bt(x) and bz(x), but strays just above c2{x) at x = +0.6 and x = ±0.8.
A more accurate approximate solution could be obtained here by taking, for

TABLE 1

Hypercircle function ^ = 1 —0.399(1 —ac2) and bounding curves for the
exact solution, Example 1

X

0.0
±0.2
±0.4
±0.6
±0.8
±1.0

0.5409
0.5572
0.6071
0.6937
0.8220
1.0

0.6000
0.6140
0.6572
0.7324
0.8444
1.0

0.6010
0.6170
0.6648
0.7446
0.8564
1.0

Ctix)

0.6100
0.6241
0.6670
0.7412
0.8504
1.0

0.6480
0.6611
0.7006
0.7682
0.8667
1.0
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example,

but the simple choice in (28) is suflBcient to illustrate the method.

6. Example 2

As our second illustrative example we consider the non-linear boundary value
problem described by

in V, (37)

<f> = 1 o n B , (38)

where Kis the disc r2 = x2+y*4:1, so that B is given by r = 1. Here k is a positive
constant. In this case we take

r=grad , r * = -div,

<f>B = L (39)
Since

forall^and*:>0, (40)

we see by (12) that we can choose

y = 0. (41)

The scalar product (9) for this problem is then

. I F

(42)

and thus we are working in the F-space Hu rather than the space Hu x Jfy.
We shall seek the radially symmetric solution of (37) and (38) approximated by

^ = 1+^-1). (43)

where B is an arbitrary parameter. Then

and
- div uj, = /(&) = - keh, (45)

which has solution
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finite at the origin. From (16) and (42) we find that

4R? = f Un^-v^rdrdB = 2n ^(u^-utf rdr, (47)

and by integration

2R2/TT = ]S2+/fc{eW(i +p-1)-ep-1}+(k2p-2<?-2/i/&) ["t-\J-\fdt. (48)
10

Since the lowest eigenvalue of the associated eigenvalue problem (20) is \ = 77̂ /4,
we can choose

A = TT2/4, (49)

and so by (21) we have the mean square error estimate

(50)
The optimum value of B is found by minimizing the radius R of the hypersphere
as given by equation (48), and the results for three values of the constant k are
given in Table 2. Evidently better approximations to the solution are given by 4>i

TABLE 2

Hypersphere parameters, Example 2

R \C\

5 1.405 0.31831 3.5437 0.16415
2 0.8065 0.10137 2.02708 0.01666
1 0.4926 0.03698 1.23547 0.002217

as k becomes smaller, since the radius R of the hypersphere then decreases, as
does the parameter B. This situation is not surprising since <f>x = 1 corresponds to
the exact solution, corresponding to zero hypersphere radius, of the problem
V2 <f> = 0, <f> = 1 on B, for the unit disc.

7. Concluding remarks

We have presented a geometrical approach to the problem of solving a certain
class of non-linear boundary value problems, thereby extending the available
hypercircle results for linear problems. Alternative variational results exist for
these problems—in the linear case they are directly related to the geometrical
results [3], while for the non-linear case it will be seen from [1] that there is no
such direct connection.
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Also, we remark that while the error estimates in our examples are of the mean-
square type, point wise error bounds can be established for examples 1 (see [2])
and 2.
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