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A LOWER BOUND FOR THE REAL GENUS 
OF A FINITE GROUP 

COY L. MAY 

ABSTRACT. Let G be a finite group. The real genus p{G) is the minimum algebraic 
genus of any compact bordered Klein surface on which G acts. Here we obtain a good 
general lower bound for the real genus of the group G. We use the standard representa
tion of G as a quotient of a non-euclidean crystallographic group by a bordered surface 
group. The lower bound is used to determine the real genus of several infinite families 
of groups; the lower bound is attained for some of these families. Among the groups 
considered are the dicyclic groups and some abelian groups. We also obtain a formula 
for the real genus of the direct product of an elementary abelian 2-group and an "even" 
dicyclic group. In addition, we calculate the real genus of an abstract family of groups 
that includes some interesting 3-groups. Finally, we determine the real genus of the 
direct product of an elementary abelian 2-group and a dihedral group. 

1. Introduction. Let G be a finite group. The real genus p(G) [8] is the minimum 
algebraic genus of any compact bordered Klein surface on which G acts. This parameter 
is called the "real" genus because of the correspondence between Klein surfaces and real 
algebraic curves [1]; the bordered surfaces correspond to curves with real points. The 
real genus parameter was introduced in [8], and several basic results about the parameter 
were obtained there. In particular, the groups with real genus p < 3 were classified and 
the real genus of each dicyclic group was determined. The groups of real genus four were 
classified in [9]. In addition, McCullough calculated the real genus of each finite abelian 
group [11], and the actions of metacyclic groups on bordered surfaces were investigated 
in [10]. 

Here we obtain a good general lower bound for the real genus of a finite group G. We 
use the standard representation of G as a quotient of a non-euclidean crystallographic 
group r by a bordered surface group K; then G acts on the Klein surface U/K, where U 
is the open upper half-plane. We apply our lower bound to determine the real genus of 
several infinite families of groups. The lower bound is attained for some of these families. 
We give a quick proof of the genus formula for dicyclic groups; we also consider the 
direct product of an elementary abelian 2-group and an "even" dicyclic group. Next we 
calculate the real genus of an abstract family of groups that includes some interesting 
3-groups. In addition, the lower bound and a slight improvement give the real genus 
p(A) for an abelian group A in some cases. Finally, we calculate the real genus of the 
direct product of an elementary abelian 2-group and a dihedral group. 
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2. Preliminaries. We shall assume that all surfaces are compact. Let X be a bor
dered surface; X is characterized topologically by orientability, the number k of com
ponents of the boundary dX and the topological genus p. The bordered surface X can 
carry a dianalytic structure [1, p. 46] and be considered a Klein surface or a non-singular 
real algebraic curve. Thus the surface X has an algebraic genus g, which is given by the 
following relation: 

[2p + k—\ if X is orientable 
o = / r 

\p + k— 1 if X is non-orientable. 

The algebraic genus is the rank of the fundamental group of X, and this number appears 
quite naturally in bounds for the order of an automorphism group of a Klein surface (the 
monograph [2] contains several examples). The real genus of a group is defined in terms 
of the algebraic genus. 

There is a general upper bound for the real genus of a finite group in terms of the 
orders of the elements in a generating set [8, §3]. This bound will be quite helpful here. 

THEOREM A [8]. Let G be a finite group with generatorsz\,..., zc, where o(zt) = m^ 
Then 

(2.1) p(G)<l+o(G) 
c 1 

c - i - E •=i m i=\ 

Non-euclidean crystallographic (NEC) groups have been quite useful in investigating 
group actions on bordered Klein surfaces. Here see [2], an excellent general reference 
for the work on bordered surfaces. Let L denote the group of automorphisms of the 
open upper half-plane U, and let L+ denote the subgroup of index 2 consisting of the 
orientation-preserving automorphisms. An NEC group is a discrete subgroup r of L 
(with the quotient space U/T compact). If T C L+, then T is called a Fuchsian group. 
Otherwise F is called a proper NEC group; in this case F has a canonical Fuchsian sub
group P" = r n L+ of index 2. 

Associated with the NEC group F is its signature, which has the form 

(2.2) (p\ ± ; [Ai,. . . ,A r];{(i/n,. . . ,z/i5 l),. . . ,(i/H ,-. . ,^5,)})-

The quotient space X = U/F is a surface with topological genus p and k holes. The 
surface is orientable if the plus sign is used and non-orientable if the minus sign is used. 
The integers Ai , . . . , Ar, called the ordinary periods, are the ramification indices of the 
natural quotient mapping from U to X in fibers above interior points of X. The integers 
vi\ » • • •, vlSi, called the link periods, are the ramification indices in fibers above points on 
the /-th boundary component of X. Associated with the signature (2.2) is a presentation 
for the NEC group F. For more information about signatures, see [6], [14], and [2]. 

Let G be a finitely presented group. If the generating set has the minimum size, then 
this number of generators is called the rank of G. 
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The canonical presentation for an NEC group almost always involves redundant gen
erators. Let T be an NEC group with signature (2.2) and associated canonical presen
tation. Suppose k > 1 and exactly t of the k period cycles are empty. Regardless of 
whether the plus or minus sign is present, the number of generators in the presentation 
[2, p. 14] is 

N = r + fl + fc + 7 + 1 , 

where 7 is the algebraic genus of the quotient space U/T and B = s\ + • • • + s^ the 
number of boundary points of U/T above which the quotient map is ramified. Of these, 
Q— 1 +(&—£) are clearly redundant. Thus T has a simplified presentation with N — Q 
generators, and rank(T) < N — Q, that is, 

rank(T) </y + r + B + L 

Let r be an NEC group with signature (2.2) and assume k > 1 so that the quotient 
space U/T is a bordered surface. The non-euclidean area fi(T) of a fundamental region 
for r can be calculated directly from its signature [14, p. 235]: 

(2.3) „(T)/2n = l-l+±(l-^)+J:t1-(l-^), 

where 7 is the algebraic genus of the quotient space U/T. If A is a subgroup of finite 
index in T, then 

(2.4) [T : A] = M ( A ) / M ( 0 . 

An NEC group K is called a surface group if the quotient map from U to U/K is 
unramified. Fuchsian surface groups contain no elements of finite order. If the quotient 
space U/K has a non-empty boundary, then K is called a bordered surface group. Bor
dered surface groups contain reflections but no other elements of finite order. 

Let X be a bordered Klein surface of algebraic genus g > 2. Then X can be represented 
as U/K where K is a bordered surface group with p,(K) = 2iT(g — 1). Let G be a group 
of dianalytic automorphisms of the Klein surface X. Then there are an NEC group F and 
a homomorphism (j>:T —• G onto G such that kernel <j> = K. The group G = T/K, so 
that from (2.4) we obtain 

(2.5) g=l+o(G)- /z(r) /27r . 

Minimizing g is therefore equivalent to minimizing /i(H. Among the NEC groups V for 
which G is a quotient of T by a bordered surface group, then, we want to identify one for 
which /i(r) is as small as possible. 
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3. A lower bound. Here we establish a useful lower bound for the real genus of a 
finite group. This bound is usually a significant improvement on the rough lower bound 
in [8, §4]. 

Let G be a finitely presented group and S a generating set for G. For/? = 2 or/? = 3, 
let tp(S) denote the number of generators in S of order p. Also let th(S) be the number of 
generators of order larger than 3 (using "/i" for high order). We will write simply tp and 
th if the generating set is obvious. Then \S\ = t2 + *3 + */*• We define ip(G) = minimum 
{9th(S) + 8*3(5) + 3*2(5) | S a generating set for G}. A generating set for which i/;(G) is 
attained is said to be ^-minimal. The parameter t/>(G) appears in our lower bound for the 
real genus of a finite group. A similar parameter is used to study the graph-theoretical 
genus of a group in [12]. The following result is basic. 

LEMMA 1. Let G' be a quotient group of the finitely presented group G. Then 

V>(G) > V(G'). 

PROOF. Let IT: G —» G' denote the quotient map. Then let S be a i/;-minimal gen
erating set for G, and let Sf be the induced generating set for Gf. Write t2 — h(S) and 
t'2 = t2(S') and so forth. Clearly |5| > |5'| so that 

th + t3+t2 >t'h + t'3+t'2. 

Let/7 be 2 or 3. If y 6 S' with o(y) > p, then there is at least one generator x in S such 
that 7T(JC) = y. But o(x) > p also. Hence for/? = 2 we have 

h + h > 4 + *3-

With p = 3 we obtain 

th > t'h. 

Now since S is ^-minimal, 

l/;(G) = 9th + 8*3 + 3*2 

= 3(th + t3+t2) + 5(th + t3) + th 

>3(4 + *^+4) + 5(4 + *̂ ) + 4 
> V>(G'), 

whether or not the generating set 5' is ^-minimal. 
Next we obtain an upper bound for i/>(G) for a group G that is a quotient of an NEC 

group T with the kernel a bordered surface group. 

LEMMA 2. Let G be a finite group. Suppose there exist an NEC group T with signa
ture (2.2) and a homomorphism (j>:T —• G onto G such that K = kernel <j> is a bordered 
surface group. Then k>\; suppose exactly I of the k period cycles are empty. Forp = 2 
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orp = 3, let rp denote the number of ordinary periods equal to p; let r^ be the number 
greater than 3. Then 

i/>(G) < 9(7 + rh) + 8r3 + 3(r2 + B + £ -1), 

where B = s\ + • • • + sk and 7 is the algebraic genus of the quotient space U/F. 

PROOF. Simplify the canonical presentation for F as in §2, and let S be the induced 
generating set for G. The bordered surface group K = kernel <f> contains reflections. Each 
reflection in K is conjugate to some generating reflection c# [6, p. 1198]. Thus some Cy 
is in K (the redundant reflections thrown out in the simplification are also conjugates of 
others). Therefore the generating set S has at most 1 + r + B + t — 1 elements. Of the 
elements in S, clearly at most 7 + 0* + rç can have order larger than two. Now apply the 
definition of ip(G). 

Now we establish our general lower bound. 

THEOREM 1. Let G be a finite group. Then 

(3.1) p(G) > 1 + o(G)[\l)(G) - 12]/12. 

PROOF. It is a simple matter to check that the inequality holds for the groups with 
p < 1. Assume then that p(G) > 2, and let G act on the bordered surface X of algebraic 
genus g > 2. Then represent X as U/K where K is a bordered surface group, and obtain 
an NEC group F and a homomorphism <j>: F —•• G onto G such that kernel <j> = K. We 
shall use the notation of Lemma 2. From (2.3) 

/x(T)/27r > 7 - l + r 2 - - + r 3 - - + T V - + « • - . 

Therefore 

(3.2) 12[/i(0/27r] > 127 + 9rh + 8r3 + 6r2 + 3B- 12. 

We always have £ < k < 7 + 1, and thus 127 > 97 + 3(£ - 1). Now 

12[/i(r)/27r] > 9(7 + rh) + 8r3 + 3(r2 + B + £ - 1) - 12. 

Applying Lemma 2 yields 

12[/i(n/27r] > V ( G ) - 1 2 . 

Now from (2.5) we have g > 1 + o(G)[i/;(G) - 12]/12. Thus p(G) > 1 + 
0(G)ty(G)-12]/12. 

This result should be compared with the corresponding result for the graph-theoretical 
genus [12, §2]. In addition, it would be nice to see the companion result for the symmetric 
genus. 

We believe the lower bound (3.1) is quite useful, in general. We shall see examples 
of infinite families of groups for which the lower bound gives the real genus. 
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4. Dicyclic groups. First we consider the family of dicyclic groups. For n > 2, let 
Hn be the group with generators x, y and defining relations 

(4.1) x2n = l, xn=y\ y-xxy = x-\ 

Then Hn is called the dicyclic group of order An [5, p. 7]. Each element outside the big 
cyclic subgroup (x) has order 4, and there is a unique element (xn) of order 2. The group 
Hn is also generated by the two elements w = xy and y of order 4 [5, p. 8] with defining 
relations 

(4.2) W
2=y2 = (w~ly)\ 

The smallest dicyclic group H^ is isomorphic to the quaternion group g, and the group 
H3 is isomorphic to the nonabelian group T of order 12 that is not A4 and not D^. Also, 
the group T is a semidirect product of Z3 by Z4 [13, p. 138]. 

LEMMA 3. Ifn ^ 3, ip(Hn) = 18. Furthermore t/>(#3) = 17. 

PROOF. From either presentation (4.1) or (4.2), we immediately have ip(Hn) < 18. 
Also, V>(#3) < 17. Now let Hn have the presentation (4.1). Regardless of the value of 
n, the subgroup / = (xn) contains the only element of order two and is normal in Hn. 
Since Hn/J = Dn, there must be at least two generators of order larger than two in any 
generating set for Hn. 

Suppose Hn has elements of order 3. Then 3 divides n, of course. So write n — 3E. In 
this case, the two elements of Hn of order 3 and the element of order 2 are contained in 
the normal subgroup N = (xe), and it is not hard to see that the quotient group Hn/N is 
the dihedral group Di if t > 1. Also, H3 is not generated by two elements of order 3, so 
that ip(H3) = 17. 

Assume n ^ 3. Whether Hn has elements of order 3 or not, it follows that there are 
at least two generators of order larger than three in any generating set for Hn, and now 
clearly ^{Hn) = 18. 

THEOREM B [8]. Ifn ^ 3, p(Hn) = 1 + In. Furthermore p(H3) = 6. 

PROOF. Since Hn is generated by two elements of order 4, (2.1) gives p(Hn) < 1 +2n. 
We also have p{H3) < 6. The lower bound is supplied by Lemma 3 and (3.1). 

The dicyclic groups are an infinite family of non-abelian groups for which the gen
eral lower bound (3.1) is attained. It is interesting that (3.1) also gives the genus in the 
exceptional case n = 3. The ideas of §3 allow a nice, short proof of Theorem B; contrast 
with the proof [8, §7]. 

Next we consider the direct product of an elementary abelian 2-group and an "even" 
dicyclic group. 

LEMMA 4. Let G = (Z2)a x Hn, where a > 1 and n is even. Then rank(G) = a + 2 
andx/j(G) = 3(3+18. 

PROOF. Obviously, rank(G) < a + 2. Let Hn have the presentation (4.1), and let 
M = (x2). Then it is easy to see that Hn/M = D2 (since n is even), so that the elementary 
abelian 2-group of rank a + 2 is a quotient of G. Hence rank(G) > a + 2. 
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Since G is generated by a elements of order 2 and two of order 4, t/>(G) < 9 • 2 + 3 • a. 
But there are at least two generators of order larger than three in any generating set for 
Hn. Since rank(G) = a + 2, it follows that i/>(G) > 9 • 2 + 3 • a. 

For these groups it is usually possible to improve the lower bound slightly. 

LEMMA 5. Let G = (Z2f x Hm with n even. If a > 3, then 

p(G)> I+o(G)bKG)-9]/12. 

PROOF. First note that p(G) is not 0 or 1 [8, §6]. We re-examine the proof of Theo
rem 1 and use the same notation. Write M = 12[/i(r)/27r]. Then (3.2) becomes 

(4. 3) M > 127 + 9rh + 8r3 + 6r2 + 3B - 12. 

Always £ <k<J + l. Here we consider two cases. 

CASE I. £ < 7 or r2 > 1. Then easily, 2r2 + 7 > r2 + L From (4.3) 

M > 9(7 + rA) + 8r3 + 3(2r2 +7 +B) - 12 

> 9(7 + rh) + 8r3 + 3(r2 + £ + 5) - 12 

= 9(7 + rh) + 8r3 + 3(r2 + £ + B - 1) - 9 

> V(G) - 9, 

using Lemma 2. 

CASE II. £ = k = 7 + 1 and r2 = 0. In this case all of the period cycles are empty 
so that B = 0. With r2 = B = 0, from (4.3) we have 

(4.4) M > 127 + 9r,, + 8r3 - 12. 

As in Lemma 2, we must have 27 + rh. + r3 > « + 2 = rank(G). Thus M > 
6(27 + rA + r3) - 12 > 6(a + 2) - 12 = 6a > 3a + 9 = I/J(G) - 9, using Lemma 4 
and the condition that a > 3. 

Then, just as in the proof of Theorem 1, we find p(G) > 1 + o(G)[xjj(G) — 9]/12. 
Note that the proof in Case I does not depend on the structure of the group G. 

THEOREM 2. Let G = (Z2)
a x Hn, with n even. Then 

f 1 + 2a(a + 2)n ifa=\ora = 2 
P ( ) _ | l+2a(a + 3)n ifa>3. 

PROOF. First suppose a > 3. Then Lemmas 4 and 5 yield p(G) > 1 + 2a(a + 3)n. Let 
r be an NEC group with signature 

(0;+;[4,4];{(2*+1)}). 
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(There is one period cycle with a + 1 periods equal to two). From (2.3) we calculate 
li(T)/2ir = (<2+3)/4. It is easy to construct a homomorphism </>: T —• G of T onto G such 
that K = kernel^ is a bordered surface group. Then G acts on the surface X = U/K. 
If g is the algebraic genus of X, then from (2.5) we find g = 1 + 2a(a + 3)n. Hence 
p{G) < 1 + 2a{a + 3)n. 

If « = 1, then (3.1) provides the lower bound, and G is a quotient of an NEC group 
with signature (0; +; [4];{( )2}) such that the kernel is a bordered surface group. If 
a = 2, then use (3.1) and an NEC group with signature (O; +; [ ]; {( )3}Y 

An interesting special case involves the quaternion group Q = H^. 

COROLLARY. If a > 3, then p((Z2f x Q) = 1 + 2a+l(a + 3). 

5. A family of abstract groups. Let (/?, q\r, m) denote the group with generators R 
and S and defining relations 

(5.1) Rp = S^ = (RSY = (R~lS)m = 1. 

This family of groups and two related families were studied in [4]; also see [5]. These 
families contain many interesting groups. 

Here we consider each group Mt = (3, 3|3, t). The group Mt has order 3t2 [4, p. 83] 
and contains a normal subgroup (denoted (3,3,3; 1) in [4]) of order t2\ this subgroup is 
isomorphic to Zt x Zt [4, p. 96]. 

The smallest group M^ is isomorphic to A4 and thus has real genus 3 [8, Theorem 6]. 
The group M3 is the nonabelian group of order 27 with no element of order 9. 

LEMMA 6. Let t > 3. Then rank(M?) = 2 and x/j(Mt) = 16. 

PROOF. Write G = Mt. Clearly rank(G) = 2, and t/>(G) < 16 since G is generated by 
two elements of order three. If t is odd, then G has no elements of order 2 and obviously 
i/;(G) > 16. Suppose t is even. The group G contains a normal abelian subgroup A = 
Zt x Zt. The Sylow 2-subgroup S of A is characteristic in A and normal in G. Since 
[G : A] = 3, it follows that S is the Sylow 2-subgroup of G. Let H be the subgroup of G 
generated by all involutions of G. Then H C S C A, and H is a characteristic subgroup 
of A. Therefore H is normal in G, and obviously G JH is not cyclic (since A/H is not). 
Hence, in any generating set for G, there must be at least two elements with order larger 
than 2. Thus xp(G) > 16. 

Using the presentation (5.1) and the bounds (2.1) and (3.1), we obtain the following. 

THEOREM 3. Ift>3, p(Mt) = 1 +12. 

Thus we have another infinite family of groups for which the lower bound (3.1) is 
attained. If Ms a power of 3, then each group Mt is a 3-group, of course. These 3-groups 
are especially interesting, because each is a 3-group of the maximum possible order for 
the value of the genus; here see [3] and [8, §4]. 
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6. Abelian and dihedral groups. The structure of finite abelian groups is well un
derstood, of course. A finite abelian group A of rank c has a unique canonical form 

A — A«i X Zm 2 X • • • X Zmc 

such that mi divides mi+\ for / = 1, . . . , c — 1 and ni\ > 1 [7, p. 387]. A canonical gener
ating set consists of generators for these cyclic groups. This canonical form is especially 
useful for studying genus parameters; see [12] and [15]. 

We can calculate ip(A) for an abelian group A directly from its canonical form. We 
need the following preliminary result. 

LEMMA 7. Let A be a finite abelian group, and letp be 2 or 3. LetAp be the subgroup 
of A generated by the elements of order p. If S is a generating set for A, then 

\S\ ~ tp(S) > mnk(A/Ap). 

PROOF. The induced generating set for the quotient group A/Ap contains at most 
|5| — tp(S) elements. 

LEMMA 8. Let the abelian group A have the canonical form Zmi x • • • x ZWc., where 
m = m\ = m2 = • • • = ma and ma+\ ̂  m. Then 

19c — 6a if m = 2 
9c — a if m = 3 . 
9c if m > 4 

PROOF. Let m = 2. By considering a canonical generating set for A, we obtain 

x/j(A) < 9{c -a) + 3a = 9c- 6a. 

Now let S be a i/;-minimal generating set for A. Applying Lemma 7 with p = 2 yields 
h + h > rank(A/A2) = c — a. For/? = 3 we obtain th + t2> rank(A/^3) = c. We have 

x/j(A) = 9th + 8f3 + 3t2 

= 6(th+t3) + 3(th + t2) + 2t3 

> 6(c -a) + 3c 

= 9c- 6a. 

The arguments for m = 3 and m > 4 are quite similar and no more difficult, and we 
omit them. 

It is now a simple matter to check that for the following two families, the lower bound 
(3.1) and the upper bound (2.1) agree. 
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COROLLARY 1. p((Z3)
c) = 1 + 3c~l(2c - 3) for c > 1. 

COROLLARY 2. p((Z4)c) = 1 + 4c~l(3c - 4) far c > 1. 

Next we find a genus formula for an abelian group with most of the factors in the 
canonical form isomorphic to Z2. Again it is possible to improve the lower bound slightly, 
as in Lemma 5. 

LEMMA 9. Let the abelian group A have the canonical farm {Zzf x Zimx x • • • x Zimb, 
where a> b > 0 and m\ ^ 1. Then 

p(A)> 1 + o(A)[i/>(A)- 9]/12. 

PROOF. First the inequality holds if p(A) < 1 (so that b = 0 and a < 3). Assume then 
that p(A) > 2. We proceed as in the proof of Lemma 5, using the notation of Theorem 1. 
Again write M = 12[/z(0/27r], and note that (4.3) holds. We have I < k < 7 + 1. If 
I < 7 or T2 > 1, then exactly as in Lemma 5, M > ip(G) — 9. 

Suppose I — k = 7 + 1 and r^ = 0. Let c = rank A = a + b. We also have B = 0 and 
(4.4) holds. Now by Lemma 7, 27 + rh > c = rank(A/A3). From (4.4) we obtain M > 
6(27 + ̂ ) - 1 2 > 6 c - 12. But a >&+l so that c = a+b > 2b+l. Then 6c > 3c+66 + 3, 
and again M > 3c + 6b - 9 = *p(A) - 9. It follows that p(A) > 1 + O(A)[I/J(A) - 9]/12. 

THEOREM 4. Let the abelian group A have the canonical form iZif x Z2mi x • • • x 
Z2mby where a > b > 0 and m\ ^ 1. Then 

p{A) = 1 + o(A)(3b + a- 3)/4. 

PROOF. The formula holds for the groups with p < 1. Assume p(A) > 2 so that 
either b > 0 or a > 4. Let À be the NEC group with signature 

(0;+;[];{(y\(2<J-fe+1)}). 

(There are b + 1 period cycles; b of these are empty.) It is not hard to construct a homo-
morphism cj>\ À —• A of À onto A such thatL = kernel <j> is a bordered surface group. Then 
A acts on the surface Y = U/L. If g denotes the algebraic genus of F, then from (2.3) 
and (2.5) we calculate g = l+o(A)(3b + a-3)/4. Hence p(A) < \+o(A){3b + a-3)/4. 
But this agrees with the lower bound of Lemma 9, and the genus formula holds. 

As a special case, we obtain the formula for the genus of an elementary abelian 
2-group [8, Theorem 7]. 

COROLLARY 3 [8]. p((Z2)
a) = 1 + T~\a - 3). 

The formulas of Theorem 4 and the three corollaries can be obtained from the general 
results in [11], although they do not appear there explicitly. These formulas are nice 
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applications of the ideas in §3, and we have tried to be brief. Also, the approach in [11] 
utilizes graphs of groups and is quite different. 

Finally we consider the product of an elementary abelian 2-group and a dihedral 
group. Since Z2 x Dn = D2n for n odd, we only need to consider even n. The dihe
dral group Dn is generated by two involutions, of course, and if n is even, Dn has D2 as 
a quotient group. Thus we have the following. 

LEMMA 10. Let G = (Z2)
a x Dn, where a > 1 and n is even. Then rank(G) = a + 2 

and I/J(G) = 3a + 6. 

LEMMA 11. Let G = (Z2)a x Dn, where a > 1 and n is even. Then 

p(G) > I+o(G)W(G)-9]/12. 

PROOF. If a = 1, then p(G) = 1 [8, Theorem 4] and the inequality holds. Assume 
that a > 2 so that p(G) > 2 and proceed again as in Lemma 5, with M = 12[/x(r)/27r]. 
If I < 7 or r2 > 1, then, as before, M > ip(G) - 9. 

Suppose I — k = 7 + 1 and r2 = 0 so that B = 0 and (4.4) holds. As in Lemma 2, we 
have 27 + rh + r3 > a + 2 = rank(G). Thus M > 6(27 + rh + r3) - 12 > 
6(a + 2) - 12 = 6a > 3a + 6 = ijj(G). Thus in either case, M > \p(G) - 9, and 
again we find p(G) > 1 + o(G)[ip(G) - 9]/12. 

THEOREM 5. Let G = {Z^f x Dn, where a > 1 andn is even. Then 

p(G)= \+2a-\a-\)n. 

PROOF. First the formula holds for a = 1. Let a > 2 and let F be an NEC group 
with signature (O; +; [ ]; {(2a+3)}). It is a simple matter to construct a homomorphism 
(j>: r —• G of r onto G such that K = kernel <j> is a bordered surface group. Then G acts 
on the surface X = £//A .̂ If g is the algebraic genus of X, then from (2.3) and (2.5) we 
calculate g = 1 + 2a-1(<3 - \)n. Hence p(G) < 1 + 2a~l(a - \)n. The lower bound is 
provided by Lemma 11. 

7. Open problems. There are many unsolved problems about the real genus param
eter. We mention three of the more natural ones related to our work here. Some additional 
problems are in [8, §8] and [10, §6]. 

PROBLEM 1. Determine p{iZ2)
a x //„), where n is odd. 

A hamiltonian group is a non-abelian group in which every subgroup is normal. The 
finite hamiltonian groups have the form 

Q x A x B, 
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where A is an elementary abelian 2-group and B is an abelian group of odd order [5, p. 8]. 
The groups in the corollary to Theorem 2 are the hamiltonian groups with no odd order 
part. 

PROBLEM 2. Finish the calculation of p(G) for each finite hamiltonian group G. 
We expect that techniques similar to those applied here may be used to attack the 

more general hamiltonian groups. This is also suggested by the work of Pisanski and 
White [12]. 

The real genus of a group is naturally related to the symmetric genus. The symmetric 
genus a(G) of a finite group G is the minimum genus of any Riemann surface on which 
G acts (possibly reversing orientation). Some basic relationships between the symmetric 
genus and the real genus are in [8, §5]. We always have a(G) < p{G). Further, if p(G) > 
0, then a(G)< p{G) [8, p. 716]. 

PROBLEM 3. Obtain a general lower bound (similar to (3.1 )) for the symmetric genus 
of a finite group. 
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