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1. Introduction

Let G denote a finite group with a fixed-point-free automorphism of
prime order p. Then it is known (see [3] and [8]) that G is nilpotent of class
bounded by an integer k(p). From this it follows that the length of the
derived series of G is also bounded. Let l(p) denote the least upper bound of
the length of the derived series of a group with a fixed-point-free auto-
morphism of order p. The results to be proved here may now be stated:

THEOREM 1. Let G denote a soluble group of finite order and A an abelian
group of automorphisms of G. Suppose that

(a) \G\ is relatively prime to \A\;
(b) GA is nilpotent and normal in Gu for all co e A^;
(c) the Sylow 2-subgroup of G is abelian; and
(d) if q is a prime number and qk-\-l divides the exponent of A for some

integer k then the Sylow q-subgroup of G is abelian.

Then if G£*> = 1 for all co e A&, G^ = 1 and p is any prime divisor
of \A\, it follows that G(<) is nilpotent where t = max (n, l(p)-\-m—1).

THEOREM 2. Let G be a group of order prime to p with a group of auto-
morphisms A of order p2 and exponent p. Suppose that for each co e A^y

Gw is nilpotent. Then GjF{G) belongs to the variety V generated by all groups
with a fixed-point-free automorphism of order p.

NOTATION. The notation is standard and agrees with that in [9] with
the following additions. If G is a finite group then \G\ denotes the order of G;
G& denotes the set of non-identity elements of G; G{n), where n is a positive
integer, denotes the «-th derived group of G; and F(G) denotes the Fitting
subgroup of G.

If A denotes a group of operators acting on G then Gu, for co e A,
denotes the subgroup of G consisting of those elements fixed by co. GA

denotes the subgroup of G consisting of all those elements of G left fixed by
all the operators in A.
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If H and K are groups then H wr K denotes the wreath product of
H with K. Thus H wr K contains a normal subgroup N which is a direct
product of \K\ copies of H and a complementary subgroup isomorphic
toK.

DISCUSSION OF THE RESULTS. In order to illustrate Theorem 1 the
special case in which \A\ = 2 may be mentioned. In this case the conditions
(c) and (d) are automatically satisfied and the theorem reduces to the first
part of [9] Theorem 1. Indeed, subject to the restrictions imposed by the
conditions (c) and (d), the theorem of H. Kurzweil [4] and Theorem 1
generalise the Kovacs-Wall theorem [6] and [9] Theorem 1 to the case in
which the automorphism group is abelian.

Another consequence of theorem 1 is:

COROLLARY. Let G be a soluble group with a fixed-point-free automorphism
a) of order p2, where p is some prime. If the Sylow 2-subgroup of G is abelian
then G'21'"'-1) is nilpotent.

This corollary contains the essential part of theorem 2 in [10] (although
a stronger result in this case is proved in [5]). The corollary is obtained by
applying theorem 1 to the group G and the automorphism group generated
by cop.

The hypotheses (c) and (d) arise from applications of [2] Theorem B
and [7] Theorem 3.1 respectively. Although the restrictions are necessary
in these theorems, it is not known whether they are needed for the truth
of Theorem 1.

Since we are assuming in Theorem 1 that the Sylow 2-subgroup of G
is abelian, we can let l{p) be the least upper bound of the length of the
derived series of a group of odd order with a fixed-point-free automorphism
of order p. This change will not alter the validity of the theorem or its
proof. Subject to this alteration we will display examples to show that in
certain respects Theorem 1 is the best possible. The point of each example
is given below but the actual constructions are deferred until section 5 of
the paper.

In example 1 we exhibit a group G with an automorphism group A
of prime order satisfying all the conditions of the theorem. The point of
this example is to show that G(t), where t is defined as in Theorem 1, is the
first nilpotent term in the derived series of G.

Whenever the automorphism group A in Theorem 1 is cyclic of prime
order then we have m = n and t = l(j>)-\-m—\. Groups of the type ex-
hibited in example 1 show that in this case G(n) need not be nilpotent. In
example 2 we display groups for which m is less than n and (;(1<J')+m-i) j s

not nilpotent. For these groups we have t = n.
The groups constructed in [9], page 480, show that the assumption
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that GA is nilpotent is necessary, even when the remainder of hypothesis (b)
and all the other assumptions in Theorem 1 aie satisfied. In example 3
we will give an example to show that the other assumption given in (b) is
also necessary, even when the other hypotheses are satisfied.

Turning now to Theorem 2, we mention that using the methods de-
scribed in section 5, it is possible to show the following: let Q be a group
with a fixed-point-free automorphism of order p; then there exists a group
G satisfying the hypothesis of theorem 2 and for which we have G/F(G) ^ Q.

I thank the referee for his comments on an earlier form of this paper.

2. Preliminary Lemmas

The following result of H. Kurzweil is obtained by combining [4]
lemma 5 and [7] Theorem 4.1.

LEMMA 1. Let A be an abelian group of operators on the soluble group G.
Assume that A and G satisfy the conditions (a) and (d) of Theorem 1. Let
GA denote the split extension of G by A.

Suppose that V is a vector space over a field IF of characteristic q where
q is not a divisor of \A\. Assume that V yields a representation of GA whose
restriction to G is homogeneous and faithful. Also assume that every q'-subgroup
of Gu for each co e A# centralises VA.

Then there exists <f> e A& such that G^ = G.
The next lemma follows from [1], section 248, (although the 'theorem'

stated at the end of that section is false).

LEMMA 2. Let A be an abelian group of operators on the group G. Suppose
that each element of A7^ acts fixed-point-free on G. Then A is cyclic.

3. Proof of Theorem 1

The theorem is to be proved by induction on the group order and by
way of contradiction. Suppose that G and A form a counterexample to
the theorem, with the order of G as small as possible. Let GA be the split
extension of G by A.

If HjK is an A -factor of G then either A is represented faithfully on
HjK or {HjK)a = HjK for some co e A*. In the first case the hypothesis
of the theorem is satisfied by HjK so, provided that HjK ^ Gjl, we know
that HjK satisfies the conclusion by induction. In the second case, since
the orders of G and A are relatively prime, HjK is isomorphic to a section
of Ga and therefore satisfies the conclusion of the theorem. Thus by [6],
lemma 2, F(G) is the unique minimal normal A -subgroup of G. Let
F = F(G).
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If w is a non-trivial element of A then {GjF)a ^ GIF or else G(i) is
contained in F which is contrary to the definition of G. Now if Fa = F
for some co e A# then (G/.F)W = GjF, since the solubility of G implies
that CG(F) ^ F. This contradiction shows that Fa^ F and hence that
A is represented faithfully on F.

Since F is the unique minimal normal A -subgroup of G, F is elementary
abelian. Thus F may be considered to be a GAjF module over the appro-
priate Galois field. Since F is irreducible as a GA/F module and GjF is
normal in GA/F, we have by Clifford's theory:

F = Fj. © Fa 0 • • • ® Fu

where the F( are the homogeneous G/.F-components of F. The group A
permutes these components transitively. Let A denote the subgroup

of A. Since A is abelian and transitive on the Fit A is independent of i.
If co e A# and R is a Sylow subgroup of Ga of order prime to the order

of F then R normalises FA. By [4], lemma 1 (hi) if U is a subgroup of
GA then

NG(U) = CG(U)(NG(U))A.
In particular we have

NG(FA) = CG(FA)(NG(FA))A.

Since GA is nilpotent and the order of R is prime to the order of FA, it
follows that R sg CG(FA). From this we can conclude that for each i

()
Suppose that A ^ 1. Let K( = CG(2%). Now for each value of i, the

group of operators A on the group G\Kt and the vectoi space Fi satisfy the
hypotheses of lemma 1. Thus there exist elements colt co2, • • •, cou in A&
such that for each i, (G/K^^. = G/Kf. Hence G\Kt is isomorphic to a
section of Gw. and we can conclude that G(i) ^ Kt for each i. It now follows
that

Since this is contrary to the definition of G we must have A = 1.
Now let v e Ft and set w = ^aeAvco. Then w e FA so that if x e Gw

(for some co e ^4#) is of order prime to \F\ then wx = w. Equating the Ft

compcnents of each side of this equation we find that vx — v. Since v was
an arbitrary element of Ft we may conclude that x centralises F(. But this
applies for all possible values of i so that we have x e CG(F) = F. Since
x was of order prime to the order of F it follows that x = 1. Thus we have
shown for each co e A& that Gw is a group of prime power order.

https://doi.org/10.1017/S1446788700007424 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007424


[5] Automorphisms of finite groups 471

Suppose that F is a g-group. Then F2(G)/F is a q'-group. Since FA > 1,
we must have that Gw is a ^-group for each m e A&. Thus each element of
A# acts fixed-pcint-free on F2(G)IF and, by lemma 2, A is cyclic. Let a>
denote a generator of A; now GA = Gw.

If q = 2 then since the Sylow 2-subgroup of G is abelian and
CG(F) = F, F must be the Sylow 2-subgroup of G. Now if of ^ 1 then
since Gw, is a 2-group, we have (G/F)^ = 1. Thus G/F is nilpotent of
derived length not greater than l(p) where p is any prime dividing the
order of co. Since this is contrary to the definition of G we may suppose that
q^2.

Now suppose that <f> e A and that G^ has derived length k. We will
show that G^"1' ^ F. Since FA ^ G^, we have (FA, G^1 ' ) ^ Gf~1].
Therefore ((FA, G'f"11), Gf~1]) = 1. In the additive notation this implies
that if v e FA and x e G{k~1] then v(l— x)2 = 0. Now if w e Ft for some i
then v = 2»ex w® s -F^- Thus for this v we have w(l—x)2 = 0. Equating
the Ft components of each side of this relation we find that w{\— x)2 = 0.
Since w was an arbitrary element of Ft, i was arbitrary and F is the sum
of the i7, it follows that for all v e F we have v(l—x)2 = 0. But since q
is odd and the Sylow 2-subgroup of G is abelian, if xF has order qr in G/i7

then ([2], theorem B) the minimal equation of xF on F is of order qr.
Now if r 2; 1 then 9r 5: 3 which is contrary to what we have just shown.
Thus x e F. Since x was an arbitrary element of G f̂"1' we may conclude
that G$-v ^ F.

The final step in tiie proof is to prove that o> centralises GjF^G). This
will yield the theorem for since GA = Gm and GjJ1"1' ^ ^ it follows that
G(«-D ^ F2(G). But if 1 =£ of then a>r acts fixed-point-free on F2(G)/F.
Thus if /> is any prime dividing the order of OJ, F2(G)/F has derived length
at most l(p). Combining these two results we find that G(i) ^ F contrary
to the assumption that we are dealing with a counterexample.

Thus it remains to prove that o> centralises GjF2(G). The proof is in
two steps. We first prove that if <f> is an element of A with prime order then
G^ covers GjF2(G). The second part of the proof is to show that for the same
(/> if x e GQ then x e FGa. From these two results we conclude that Gw also
covers GjF2{G) and hence that o> centralises GjF2(G). Suppose in the re-
mainder of the proof that a = \A | and that <f> is an arbitrary, but fixed,
element of A of prime order.

Since G is soluble we have CG/FiiG)(F3(G)IF2(G)) ^ F3(G)IF2{G).
Applying this result to cosets of the form x~1x'i'F2(G) we see that in order
to prove that <f> centralises G/F2(G) it is sufficient to show that <j> centralises
F3(G)IF2(G)- Write L = F3(G). We aim to prove that <f> centralises LjF2{G).
Let n denote the set of prime divisors of \F2(G) : F\. For each r en let
Pr denote the Sylow r-subgroup of F2(G)IF. Then Pr\<t>(Pr) may be con-
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sidered as an L{</>} I F2(G)-module over the Galois field of r elements. Let
Kr/F2(G) denote the kernel of the corresponding representation of
L{<f>}jF2(G). Since CG,F{F2(G)IF)^ F2{G)jF we have f\r^KT= F2{G).
Therefore to prove that <f> centralises GjF2(G) it is sufficient to show that
for each r en (LIKr)^ = L\Kr. Since <f> acts fixed-point-free on Prj0(Pr)
for each r en, this will follow from [7], Theorem 3.1 if we can show that
L\F2 (G) is an r'-group for each r e n. (The exceptional cases either do not
arise or are excluded by our hypotheses). We already know that F is a
^-group and hence that F2{G)jF is a q'-groxxp. We now prove that L/F2(G)
is a <7-group. Let H/F denote the Hall ^'-subgroup of L\F. Since LjF2(G)
is nilpotent and F2(G)/F is a ^'-group, H is characteristic in L. But L is a
characteristic subgroup of G and hence H is characteristic in G. Since G^
is a ^-group <f> acts fixed-point-free on HjF. Since <f> is of prime order we
deduce that H/F is nilpotent and hence that H = F2(G). This completes
the proof that <f> centralises GjF2(G).

We now conclude the proof by showing that if x e G^ then x eGuF.
Let x e G$. Since Ga = GA is normal in G^ x normalises Gu. Let w e F{

for an arbitrary but fixed i. Using the additive notation again we have

w{l+co+co2-] +CO"-1) e Fm

so that
w(l+co+co2-\ l-w0-1)* e Fa.

Therefore

w(l+co+co2+ • • • +a>a~1)x = (w(l+co+co2+ • • • +co°-1)a;)ft>.

Equating the F{ components of both sides we have:

wx = wxa.
But w was an arbitrary element of F( and F is the sum of the F,- so we
have vx = vxm for all v e F. Therefore xax-1 e CG(F) = F. Hence xa e Fx
from which we may conclude the desired result.

This completes the proof of Theorem 1.

4. Proof of Theorem 2

We use the same methods and notation which are set out in the first
paragraph of the proof of Theorem 1. For the same reasons as are set out
in the second paragraph of the proof of Theorem 1 we know that F = F(G)
is the unique minimal normal A -subgroup of G. Thus F is an elementary
abelian g'-group where q is some prime.

Let a> e A& and suppose that GjF = (GIF)U. Then, since Ga is nil-
potent, GjF is nilpotent. The minimal nature of G now implies that GjF
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is an r-group for some prime r. Since G is a p'-group, we may choose an A-
invariant Sylow r-subgroup R to complement F in G. Since {GjF)a = GjF,
we have Ra = R. Now Z(G) = 1 for otherwise F ^ Z(G) which is false.
Since Gw is nilpotent and F is abelian we have Fw 5S CG(FR) = Z(G) = 1.
Therefore Fa = 1. Now consider the join of the subgroups F^ where
<f> e A&; call this subgroup F x . Now Fj is a subgroup of F and is normalised
by A. li Fx=£ F then by Maschke's theorem there exists a subgroup F 2

complementary to Fx in F and normalised by A. By the definition of F1 (

each element of A& must act fixed-point-free on F 2 , which contradicts
lemma 2 since A is not cyclic. Therefore F1 = F. Now suppose that cf> e A
but </> £ {co}. Since Ra = R and 4̂ = {eo, <£}, we have R^ = iv^. But RA is
an r-group and F is an r'-group so that RA centralises Fg for each 6 e A7^6.
Since F is the join of the Fe for 6 e ^4#, we can conclude that i?^ = i?^
centralises F. But since G is soluble, this implies that

R^^Rn CG{F) ^ R n F = 1.

Therefore <£ induces a fixed-point-free automorphism of order p on R.
Since i? s G/F it follows that G/F e V and hence that G satisfies the con-
clusion of Theorem 2. Thus we may assume that for no co e A^ is
(G/F). = G/F.

We now consider F as a GF (q) (N) -module where N = GA/F. By
extending the field to a splitting field !F of all subgroups of N we may
obtain, as in [6], page 118, an ^"(iV)-module V with the following properties:

(1) V is an irreducible and faithful &(N)-module;
(2) Vu is centralised by any ^'-element of Mu where co is any element

of A& and M denotes the group GjF.

As an ^(MJ-module, by Clifford's theory, V = Wx © W2 © • • • © Ws

where the Wi are homogeneous components. Since V is irreducible as an
& (N) -module, A permutes the W( transitively. Let A = {we. A\W{co = W{}.
Then, since A is abelian, A is independent of i. Also we have s = \A : A\.

Assume that s > 1 (so that A ^ A). Let co eA—A. Let w e Wi for
some fixed i. Then if

u = w(l+co+co2-j hw""1)

we have u e Va. Now if x e (F(M))a then by (2), since F(M) is a ^'-group,
it follows that ux = u. Equating the JFrcomponents of both sides of this
relation we find that wx = w. Therefore x is represented trivially on Wf.
Since this is true for all i, x is represented trivially on the sum V of the W{.
Hence by (1), we have x = 1. Thus (F(M))m = 1. Now let Be A and
suppose that (F(M))e ^ F(M). Then there exists an abelian A -factor,
T, of F(M) such that Tg ^ T. Since A is abelian, T0 is normalised by A.
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Thus A operates on T\Tg in such a way that each element of A& has a
trivial centraliser in T\Te. But since A is not cyclic, this is contrary to
Lemma 2. Therefore, if OeA then we have (F(M))g = F(M). Since
CM(F(M)) ^ F(M), it follows that Me = M. However this is contrary
to the assumption made at the end of the second paragraph of the proof.
Thus we conclude that s = 1 and A = A. In other terms what we have
shown is that V is a homogeneous Jr(M)-module.

We now show that if a> e A& and L is a non-trivial normal A -subgroup
of M then La =£ 1. It is sufficient to consider the case in which L is abelian.
Considering V as an 1F(L)-module we have V — Wx ® W2 @ • • • © Wr

where the Wt are the homogeneous components. For at least one * we have
Wt(o = Wi; we suppose that this is the case for i = 1. For each i, the
representation of L on Wi is defined by some character Xi- Since the char-
acters Xi are all conjugate in M and L is represented faithfully on V, none
of the characters Xi c a n De the trivial character. We show that £„ ^ 1 by
showing that if La = 1 then Xi is the trivial character. Suppose then that
Lw = 1 and for convenience we write x = Xi • Now if x e L and w eW1

then wco e Wx and we have:

x(x)w = wx = ww(co~1xco)co~1 = wco(xa)(o~1 = ^(xw)(z»co)w~1 = x{x<")w-

Thus for all x e L it follows that x(x") = x(x)- Now since Lu = 1, we have
xx'-x'^ • • • x»v~l = 1. Therefore

But if x is of order n then the greatest common divisor of p and n is 1 and
(x(x))n = 1- Hence ^(x) = 1, showing that x is the trivial character. This
proves that La =£ 1 for any to e ^4#.

By Lemma 2 we know that for some m e A^ vie. have Fa =£ 1. We now
choose and fix a> e A such that JFW 7̂  1. Now by our method for obtaining
the module V it follows that Vu ^ 1. We now show that if L is a non-trivial
normal co-subgroup of M then La 7̂  L. Since Af is soluble we may suppose
that L ^ F(M). Now if La = L then, by (2) since L is a y'-group, L
centralises Va. But as an .L-module V is a sum of conjugate homogeneous
components. Therefore since L centralises Va, L must be represented
trivially on V. But then L = 1 which is contrary to our hypothesis.

Keeping a> as in the last paragraph and applying the conclusion of that
paragraph we deduce that (Z{M))a = 1. Therefore Z(M) = 1 and M is not
nilpotent. By the minimality of G, MjF{M) must be irreducible under A.
Thus MjF(M) is an elementary abelian s-group for some prime s. Let 5
denote a Sylow s-subgroup of M normalised by A and suppose that
5 n F(M) ^ 1. Then Z(S) n F(M) =£ 1 since 5 n F(M) is normal in S.
But Z(S) n F(M) ^ Z(Af) since Z(S) n F(Af) is centralised by S and all
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the s'-elements of M since they lie in F(M). Thus S n F(M) = 1 and 5
is a complement of F(M) in M.

Since A acts irreducibly on S we have Se = S for some 6 e A. Now
1 ^ (F(M))g is centralised by S since Me is nilpotent and F(M) is an
s'-group. But then (Z(F(M)))g ^ Z{M) = 1, a contradiction. This com-
pletes the proof of Theorem 2.

5. Examples

Before proceeding to the constructions of the promised examples,
we make two remarks which will be useful.

REMARK 1. Let H and K be soluble groups with derived lengths m and n
respectively. If the orders of H and K are relatively prime then the derived
length of the wreath product, H wr K, is precisely m-\-n.

PROOF. Even without the assumption on the orders, the derived length
of H wr K is not greater than m-\-n. Let N denote the normal subgroup of
H wr K which is isomorphic to the direct product of \K\ copies of H.
Identify K with a complementary subgroup of N in H wr K. Now it is
easily checked that (N, K("-1') has derived length m. Since the orders of H
and K are relatively prime, (N, K(n~v) is the first term of the lower Fitting
series of iV^'"-1 ' ) . Therefore {N, if'""1') = {(N, Z'""1'), K<n~v). This
means that (N,K<n-v) ^ (H wr K)(n) and hence that H wr K has derived
length at least m-\-n.

REMARK 2. Let H and K be finite groups and let A be a group of operators
on H. Then there exists a group of operators A isomorphic to A on the group
HwrK.

PROOF. Let A be a group isomorphic to A. Let N and K denote the
same subgroups of H wr K as in the proof of Remark 1. The action of each
element of A on H wr K is now defined: if w e i we let co centralise K and
operate on each of the direct factors of Af which are isomorphic to H, as the
corresponding element of A acts on H. It is easily checked that co is an
operator on H wr K.

EXAMPLE 1. Let H be a group with a fixed-point-free automorphism
co of order p, and derived length l(p). We may assume that H is an r-group
where r is a prime. Let A = {co} and let K be an arbitrary <?-group where q
is some prime not dividing 2rp. Now form H wr K and its group of auto-
morphisms, A, as described in Remark 2. Let L denote the extension of
HwrK by the automorphism group A. Denote by F the group CawrL
where CQ is the cyclic group of order q. F contains a normal subgroup G
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of index p. Let co be the automorphism of G induced by an element of F
of order p.

Now G has a series, G >N± >2V2 > 1, of normal co-subgroups. The
factor group G/N1 is isomorphic to K and is centralised by co. The other
factor, NJNz, is isomorphic to the direct product of \K\ copies of H, and
is acted on fixed-point-free by co. Finally iV2 is an elementary abelian
g-group and is the Fitting subgroup of G.

By our choice of H, the derived length of H is l(p). Let d and n denote
the derived lengths of K and Ga respectively. Since G/N2 is isomorphic to
H wr K and iV2 is the Fitting subgroup of G, the derived length of G/F(G)
is, by Remark 1, l(p)-\-d. Since Ga is a q-group and GJN2 n Ga is isomorphic
to K it follows that n is either d or d+1. Now, provided that the hypotheses
of Theorem 1 are satisfied by G and the automorphism group {co}, G(t) is
nilpotent where t = l(p)-\-n— 1. Thus we have l{p)-\-n— 1 ^ l(p)-\-d,
so that n is at least d+1. It follows that n — d+1 and that G"-1* is not
nilpotent.

The hypotheses of Theorem 1 will be satisfied if r ^ 2. This can
certainly be achieved if the definition of l(p) has been changed as mentioned
in the discussion of the results.

EXAMPLE 2. Choose a pair of primes (p, q) and a group H so as to satisfy
the following conditions:

(a.) l(P)^l(q);
(b) there exists a fixed-point-free automorphism co of order p, acting

on the group H;
(c) the derived length of H is l(p); and
(d) q does not divide the order of H.

Let r denote some prime, distinct from both p and q, and not dividing
\H\, such that there exists a solution a, (a ^ 1), of the equation z" = 1
(mod r). Form the group H{co} by adjoining co to H and let ' / " denote the
group Cr wr H{co). If G denotes the normal subgroup of F of index p then
there is induced on G an automorphism co of order p by an element of order
p in /". Since p does not divide |G|, co normalises some Hall r'-subgroup
H of G. Clearly H is isomorphic with H. Now F = F(G) is an elementary
abelian r-group and we have G = HF. From the construction it follows
that Ha = 1 so that Ga = Fa is abelian.

We now define a second automorphism <f> of G. If x e H and y e F
then we set (xy)^ = x(ya). It is routine to check that <f> is an automorphism
of G of order q and that <£ commutes with co. Since we have a 7̂  1 it follows
that G,s = # .

Now we define A = {co, <f>}. Then GA = GonG^ = l. Now GjF ^ H
so that the derived length of GjF is l(p). If £, « and m are defined as in
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Theorem 1 then we have t = n = l(p) and m = 0. G""11 is not nilpotent
and l{q)+m—l ^ l(p)+m—l < t.

EXAMPLE 3. Let H be a group of derived length 3 with a fixed-point-free
automorphism co of order four. (An example of such a group is given in [5]
page 294; although this example has a nonabelian Sylow 3-subgroup,
a similar construction will yield such groups with abelian Sylow 3-sub-
groups). In order to ensure that the group which we construct will satisfy
the hypotheses of Theorem 1, we suppose that H has an abelian Sylow
3-subgroup.

Choose an odd prime r which does not divide \H\. Form the group
F = CTwr H{co} where H{co} is the group obtained by adjoining co to H.
Fhas a normal subgroup G of index 4. The factor group GjF(G) is isomorphic
with H and F(G) is an elementary abelian r-group. An element of order 4
in /"induces an automorphism <f> of G with (GIF(G))lj, = 1. Thus G$ ^ F(G)
is abelian. Since <f> induces a fixed-point-free automorphism of order 2 on
(G/F(G))(^2), this group is abelian. Thus G^ has derived length at most 2.

If Theorem 1 were to apply to the group G with the automorphism
group A = {<f>}, then since 1(2) = 1, we would have G" nilpotent. This is
clearly false, the missing hypothesis being that GA = G$ is not normal
in G(0i).
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