
II
Experiments and analysis tools

5 Nuclei in collision

5.1 Heavy-ion research programs

The energy content available in the nuclear collision is the main factor in
which experimental facilities differ from each other. The ultra-relativistic
nuclear-collision systems we are considering are identified in table 5.1. For
the maximum possible mass number up to Amax � 200, we show the fixed-
target maximum beam energy per nucleon EmaxP [A GeV]; for colliders, we
present in this line the equivalent projectile energy. Similarly, we show the
CM energy in the nucleon–nucleon system

√
sNN [GeV], which is twice the

nominal beam energy of the RHIC and LHC collider systems. We also
show the total

√
sAA [GeV] energy in the interaction region, allowing

for the maximum mass number A of the beam. The final line refers to
the rapidity ‘gap’ ∆y. We will discuss these variables in the following
sections.
∆y is defined as the difference between the rapidities of projectile and

target. In laboratory fixed-target experiments, yt = 0, and ∆y is the
rapidity of the projectile yp. Using the definition of rapidity Eq. (5.4), we
have

cosh∆y = Ep/mp. (5.1)

For head-on interactions occurring at rest in the laboratory, at the collider
facilities, ∆y/2 is the projectile (target) rapidity of each beam, which is
evaluated using, e.g., Eq. (5.1) again.
A convenient way to represent the data of table 5.1 is shown in Fig. 5.1:

the solid line depicts the CM energy per pair of nucleons,
√
sNN, as

a function of the rapidity y. The horizontal distance between the two
branches of the solid line is the projectile–target rapidity gap ∆y. The
shaded areas correspond to the accessible CM energies,

√
sNN, at ex-
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AGS

LHC

RHIC

SPS

Fig. 5.1.
√
sNN (vertical axis) of various accelerators as a function of the projec-

tile and target rapidities seen from the CM frame. Shaded areas: energy ranges
accessible at the various accelerators.

perimental facilities that are in operation and under construction to-
day.
As the energy increases, the rapidity gap ∆y between projectile and

target opens up as we see in Fig. 5.1. In the central rapidity region, we
can study conditions of matter without having to account for particles
spilled from the projectile and target fragments, which are known exper-
imentally to spread over about two units of rapidity. Two extreme cases
are illustrated qualitatively in Fig. 5.2, in which we sketch the distribu-

Table 5.1. Parameters of existing ultra-relativistic heavy-ion beam facilities and
those under construction.

AGS AGS SPS SPS SPS RHIC RHIC LHC

Start year 1986 1992 1986 1994 1999 2000 2001 2006
Amax

28Si 197Au 32S 208Pb 208Pb 197Au 197Au 208Pb
Emax
P [A GeV] 14.6 11 200 158 40 0.91×104 2.1×104 1.9×107√
sNN [GeV] 5.4 4.7 19.2 17.2 8.75 130 200 6000√
sAA [GeV] 151 934 614 3.6×103 1.8×103 2.6×104 4×104 1.2×106

∆y/2 1.72 1.58 2.96 2.91 2.22 4.94 5.37 8.77
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(a)

(b)

dE/dy

dB/dy

y

Fig. 5.2. Rapidity distributions of energy (solid lines) and baryon number
(dashed lines) (in a qualitative representation): (a) for a ‘Transparent’ reaction
mechanism; and (b) for full stopping in the collision.

tions of the energy (solid lines) and baryon number (dashed lines), as
functions of the rapidity.
In the baryon-punch-through case, shown in Fig. 5.2(a), which was in-

vestigated by Bjørken [73], see section 6.4, the colliding nuclei are leaving a
trail of energy between the projectile–target rapidity, but the baryon num-
ber continues to move out of the collision zone, apart from the down-shift
in projectile and target rapidities necessary for conservation of energy.
The stopping limit, implicit in the work of Fermi [121] and described by

Landau [173, 175], is shown in Fig. 5.2(b): both the particle multiplicity
(energy) and the baryon number are centered around the central rapidity
yCM. The projectile and target baryons will, under the most extreme
circumstance of complete stopping, lose all memory about the initial state,
and in this limit there should in particular be little, if any, difference
between the distributions of energy and baryon number in the longitudinal
and transverse directions with respect to the collision axis.
We now survey the nuclear-collision experiments that are currently op-

erating or under development. These include in particular the CERN–
SPS heavy-ion program which continues a 15-year-long tradition in the
so-called North Area (NA) in fixed-target mode with energy range up to
200A GeV for up to A � 100 and dropping to 158A GeV for neutron-rich
projectiles such as Pb. At higher energies, we have the beginning of the
experimental program at the RHIC collider, and in the near future there
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will be one at the LHC. The RHIC allows head-on collisions of two Au
ions, each carrying energy in the range (10–100)A GeV. Results from the
initial 65A-GeV run will be described and a glimpse of first 100A-GeV
results is presented as this book goes to press. Compared with the SPS
energies, the available CM energy per nucleon has been increased by an
order of magnitude and accordingly the densities of matter reached are
more extreme. Since the laboratory frame is also the CM frame in a
collider experiment, the greatly increased particle density is distributed
more evenly in all spatial directions.
We begin with the CERN–SPS research program∗.

• The experiment NA45.2 investigates primarily the production of elec-
tron–positron pairs and of direct photons, continuing the research pro-
gram of NA45 carried out with S-beams. Both experiments observe
dielectron pairs and compare results with expectations based on p–p
reactions. The current experimental set-up consists of a double spec-
trometer covering a region near mid-rapidity with full azimuthal cov-
erage. Electrons are identified in two ring-imaging Čerenkov detectors
(RICH).

• The experiment NA49, which had as its predecessor experiment NA35,
uses several time-projection chambers (TPCs) for large-acceptance track-
ing of charged particles. Its current objective is to explore in greater
detail the excitation function of strangeness near the possible thresh-
old for the formation of the QGP phase. NA49 is at present the only
experiment at the SPS capable of measuring many global observables
required to characterize the nature of heavy-ion collisions as the energy
is varied.

• The experiment NA57 continues the research program of experiments
WA97, WA94, and WA85, all of which studied the production of (multi)
strange hadrons in the central rapidity region, with particular emphasis
on the production of strange antibaryons. NA57 is completely differ-
ently instrumented compared with the WA series and provides an im-
portant cross-check for all the results. It comprises silicon pixel tracking
of hadrons in a magnetic field, and its results are based primarily on
reconstruction of decays of strange hadrons.

• The experiment NA60 attempts detection of charmed hadrons, to com-
plement the earlier study of suppression of production of J/Ψ by its
predecessors NA50 and NA38. The NA50 muon spectrometer is comple-
mented by a completely redesigned target area using radiation-tolerant
silicon pixel detectors. The NA50 experiment studied dimuons pro-

∗ For further details consult the following CERN web pages:
http://greybook.cern.ch/programmes/SPS.html; and see also http://greybook.cern.ch/
programmes/EXP NAM.html, for all CERN experiments, including those completed.
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duced in Pb–Pb and p–A collisions. The muons are measured in the
former NA10 spectrometer, which is shielded from the target region by
a beam stopper and absorber wall. The observed muons traverse 5 m
of BeO and C.

• The completed experiment WA98 will be repeatedly mentioned in that
which follows: WA98, which had as predecessors WA80 and WA87,
which addressed the measurement of photons, but also measured the
global production of charged hadrons. It comprised, in particular, a
10 000-module lead-glass spectrometer, which now is incorporated into
the PHENIX detector (see below), yielding high-precision data on π0

and η at mid-rapidity within a large range of transverse momenta 0.3
GeV/c > P⊥ > 4.5 GeV/c for π0. Detailed comparison of photons with
the production of charged particles allowed also an evaluation of the
photon enrichment potentially due to direct radiance from QGP.
We now turn to review the experimental research program at the BNL.

Four experiments are at present taking data at the RHIC†. They are
designed to allow both a survey of the reactions occurring in this hitherto
unexplored condition of matter and an in-depth study of the properties
of the deconfined QGP phase. We review the first results from the year-
2000 run in section 9.5. The experiments currently under way are the
following.
• BRAHMS (Broad Range Hadron Magnetic Spectrometer)
is designed to measure hadronic particles inclusively (that is, to mea-
sure one particle at a time irrespective of what else is happening, when
the system is triggered), over a wide range of rapidity (0 < η < 4)
and transverse mass (up to 30 GeV). It consists of two (forward and
mid-rapidity), magnetic focusing charged-particle (π±, K±, p, p̄) spec-
trometer arms, which can be set to the desired angular acceptance
window.

• PHENIX (Pioneering High Energy Nuclear Interaction Experiment)
is a detector optimized to observe photons and dilepton pairs (γ, e±
and µ±). It comprises a central detector made of an axial field magnet
and two almost identical arms placed on the left and right of the mag-
net, each covering a window of ±0.35 units of pseudorapidity. Each
arm comprises several detector subsystems: the important goal of the
central detector is observation of dielectrons at high mass resolution, al-
lowing one to detect changes in the properties of decaying vector mesons
(e.g., J/Ψ → e+e−, φ → e+e−). The electro-magnetic calorimeter al-
lows one to measure low-p⊥ photons near y = 0. Hadron detection in
the silicon vertex detector, for −2.65 < η < 2.65, will allow studies of

† For RHIC experiments, see http://www.rhic.bnl.gov.
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the distribution of charged hadrons (without identification of particles)
on an event-by-event basis. First results from this subsystem obtained
in the RHIC 2000 run have recently been published [16].

• PHOBOS, a scaled down ‘satellite’ of MARS (ModularArray forRHIC
Spectra),
is a very small (in comparison) arrangement of silicon-based detec-
tors that will allow one to study low-momentum particles within the
complete (pseudo)rapidity interval −5.4 < η < 5.4, aiming to explore
global event structure. PHOBOS has published the first results from
the RHIC 2000 run on particle multiplicity [49], as well as the RHIC
2001 run [50].

• STAR (Soleonoidal Tracker at RHIC)
is a (large) 4π primarily hadronic-particle detector, with a 4-m-diameter
and 4-m-long solenoidal 0.5-T magnetic-field volume, comprising as the
main charged-particle-tracking device a TPC with inner radius 50 cm
and outer radius 200 cm, with 45 planes of tracking. This allows a
pseudorapidity coverage of −2 ≤ η ≤ +2, and the design allows for a
lower particle-momentum cutoff at 60 MeV/c. In addition, the inner
silicon vertex tracker (SVT) is surrounding the interaction region be-
tween 5 and 15 cm, facilitating observation of the production of stran-
geness. The time-of-flight array, �2.5 m from the primary interac-
tion vertex, will help identify charged particles. The outside electro-
magnetic calorimeter (EMC) aims to measure jets of particles, fluctua-
tions, and high-p⊥ phenomena. The high tracking resolution facilitates
reconstruction of unstable hadronic resonances. First results on central
production of antiprotons [19] and anisotropy of particle multiplicity
(elliptical flow) [15] have been published.
Still much more extreme matter conditions will be reached when the

LHC collider is completed (http://lhc.web.cern.ch/lhc/) and the equiva-
lent laboratory energy of EmaxP � 2×1016A eV reaches into the domain of
highest cosmic-particle energies, where the cosmic flux begins to decrease
unusually rapidly. This ‘knee’ in cosmic flux as a function of the energy
is below the high end of the LHC energy. At the LHC there will be ini-
tially three major detectors, ATLAS, CMS, and ALICE. ALICE is the
dedicated heavy-ion experiment. CMS is intended to measure dilepton
spectra under heavy-ion operation conditions. The ATLAS collaboration
is exploring the potential of its detector in the heavy-ion environment.
• ALICE (A Large Ion Collider Experiment)‡. It comprises a TPC as a
main tracking device of charged particles with an inner radius of 1 m
and an outer radius of 2.5 m, and a length along the beam direction

‡ See for further details the web page http://www1.cern.ch/Alice.
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Fig. 5.3. The square root of the inelastic reaction cross section,
√
σ, as a func-

tion of the geometric size of interacting nuclei, A1/3T +A
1/3
P , for various collision

partners, after [37].

of 5m, covering the pseudorapidity interval −0.9 < η < 0.9. The high-
resolution inner tracking system consists of five concentric cylindrical
layers with radii from 7.5 to 50 cm around the beam pipe and allows the
study of decays of charmed particles. An electro-magnetic calorimeter
and a dilepton arm complement this very large and universal detector.

5.2 Reaction energy and collision geometry

On intuitive grounds, we expect that, for the short-range hadronic inter-
actions, the collision geometry determines the amount of matter partic-
ipating in nuclear collisions. The collision geometry is a very important
and carefully explored subject. For an in-depth discussion of the impor-
tance of collision geometry, we refer the reader to the extensive body of
work for hadron–hadron and hadron–nucleus interactions [184, 190].
The earliest experimental heavy-ion results confirmed the role of this

simple geometric picture of nuclear-collision reaction dynamics [201]. The
reaction radius, defined as the square root of the reaction cross section,
rises linearly with the geometric size of the colliding nuclei, described
by the sum of their radii, which is proportional to A1/3, as is shown in
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a

Fig. 5.4. A geometric illustration of nuclear collision. Left: small sulphur or
aluminium nuclei colliding with much heavier lead or gold targets (correct rela-
tive scale). Right: symmetric collision of large nuclei at impact parameter a.

Fig. 5.3. This result confirms that the colliding nuclei need to ‘touch’
each other for local deposition of energy and baryon number to occur.
We show the central collision of sulphur or aluminium nuclei colliding

with much heavier lead or gold targets in Fig. 5.4 (left-hand side). On
the right-hand side, the symmetric slightly off-center collision with lead
or gold is illustrated using the correct relative scale – we can see how
important it is to assure that, in this system, the collision is geometrically
as central as possible, in order to minimize the number of spectator (non-
interacting, or partially interacting) nucleons. In symmetric collisions,
only in a quite rare situation in which the impact parameter a is very small
do we truly have the benefit of the largest possible region of interaction
of the projectile and target, and do not encounter complications arising
from spectator matter ‘polluting’ the experimental data.
A quantity of considerable importance is the energy content of the col-

liding system, which must be, by virtue of conservation of energy, the
energy content of the final-state many-body system. The Lorentz invari-
ant quantity we can form from the energy and momentum of the colliding
projectile (p) and target (t) is

√
spt ≡

√
(Ep + Et)2 − (/pp + /pt)2. (5.2)

In the CM frame where by definition /pp + /pt = 0, √spt is recognized
as the available energy content of the projectile–target reaction, the CM
energy. The quantity

√
s is thus the available reaction energy. Since it is

an invariant,
√
s can be evaluated in any reference frame. It is natural to

generalize this definition to any number of particles:

√
s(n) ≡

√√√√( n∑
i=1

Ei

)2
−
(

n∑
i=1

/pi

)2
. (5.3)

For n = 1, we see that
√
s is just the mass of a particle, i.e., its energy

content at rest. The conservation of energy assures that, when a particle
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Fig. 5.5. A streamer-chamber picture of a S–Ag collision taken at 200A GeV
(NA35 experiment [115]) showing the multiplicity of charged particles bent up
and down in magnetic fields (with decays of neutral strange particles identified
by superposed dashed lines).

decays, the final state comprising any number of particles n has the same√
s. Conversely,

√
s(n) is also the (Lorentz invariant) mass of the ancestor

system of the final-state n-body system, as determined by the momentum
four vectors pµi = (Ei, /pi) of the particles produced.
This final-state energy described by Eq. (5.3) must be delivered by the

colliding nuclei, see Eq. (5.2).
√
s(n) is also the invariant intrinsic rest

energy (mass) of the fireball of dense matter, measured in terms of the
participating energy and momentum of the colliding nuclei. Both these
measures are jointly used in experiments to characterize a collision in-
teraction: for example, the absence of the forward energy/momentum of
the beam in the so-called zero-degree calorimeter (ZDC) can be corre-
lated to the energy found in particles emitted in a direction transverse
to the collision axis, see section 9.4, in order to define the geometric cen-
trality of the collision. We will not follow these procedures further in
this book, also since each experimental group applies a slightly different
method.
In the fixed-target experiments, the longitudinal momentum is largely

due to the Lorentz transformation from the CM frame to the laboratory
frame. This longitudinal momentum is in general considerably greater
than the transverse momentum component, and particles are focused for-
ward along the collision axis, as seen in Fig. 5.5 [115]. In this streamer-
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Fig. 5.6. The decomposition of particle momentum /p (shown in the CM frame)
into the parallel pL and perpendicular p⊥ components. Note the inclination angle
θ of /p and the azimuthal angle ϕ of p⊥ (this is a qualitative presentation).

chamber picture of a S–Ag collision at 200A-GeV of the NA35 experi-
ment, we see all particles in a cone to the right of the interaction vertex
to which the charged-particle tracks are pointing. We also see that cen-
tral collisions of S–Ag nuclei at 200A-GeV lead to the production of many
secondary particles. Both positive and negative particles are bent in the
applied magnetic field pointing normal to the plane of the picture. Several
simultaneous photographs taken from various directions allowed precise
tracking of charged particles.
Not all particle tracks go through the interaction vertex at the left-hand

edge of Fig. 5.5: a few particle tracks, highlighted by dotted lines, belong
to the V decays of neutral (strange) particles, see Fig. 2.3 on page 28.
Low-momentum particles winding up as spirals in the high (1-T magni-
tude) magnetic field do not originate from the primary high-energy-vertex
interactions.

5.3 Rapidity

We will now introduce the key kinematic variables that relate particle
momentum to the dynamics that is occurring in the heavy-ion reaction.
Each particle momentum decomposes, as shown in Fig. 5.6, into a longi-
tudinal component (pL) and a transverse component (/p⊥) with reference
to the collision axis. We note, in Fig. 5.6, the inclination angle θ of the
particle against the collision axis. Also shown is the azimuthal angle ϕ of
the two-dimensional vector /p⊥.

https://doi.org/10.1017/9781009290753.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.008


82 Experiments and analysis tools

The longitudinal momentum of a particle is an inconvenient variable,
since it depends on the velocity of the CM frame with reference to the
laboratory frame, as the appearance of Fig. 5.5 reminds us. For the
analysis and understanding of the experimental results, it is necessary to
be able to view the physical results from the CM frame, e.g., to transform
the coordinate system to the CM frame of reference. The introduction
of the rapidity y, replacing pL, allows one to considerably simplify the
selection and changing of the reference frame. This is due to the fact
that the variable y is defined to be additive under successive Lorentz
transformations along the same direction, as we shall see in Eq. (5.14):
it can be understood as the ‘angle’ of the (hyperbolic) rotation in (3 +
1)-dimensional space. The ‘angle’ y is defined in terms of energy and
momentum by the equations

E = m⊥ cosh y, pL = m⊥ sinh y, (5.4)

where m⊥ is the transverse ‘mass’:

m⊥ =
√
m2 + /p 2⊥. (5.5)

We note that Eqs. (5.4) and (5.5) are consistent with the relativistic
dispersion relation (energy–momentum relation):

E =
√
m2

⊥ + p2L =
√
m2 + /p 2⊥ + p2L. (5.6)

The variable y (and m⊥ ≥ m) replaces pL (and |/p⊥|), which are usually
defining the momentum of a particle. The azimuthal angle ϕ of the vector
/p⊥, see Fig. 5.6, is the third variable required in the complete definition
of /p.
The relation between velocity and rapidity is obtained from Eq. (5.4):

vL ≡ cpL
E
= c tanh y. (5.7)

Thus, in the non-relativistic limit, vL → cy.§ Equation (5.7) also implies
that

cosh y =
1√
1− v2L

≡ γL, sinh y = γL vL, (5.8)

where γL is the (longitudinal) Lorentz contraction factor. Since

tanh−1 z =
1
2
ln
(
1 + z

1− z

)
, (5.9)

§ Even though we like to work with units that do not explicitly introduce the velocity of
light c, whenever the non-relativistic limit is discussed, it is convenient to reintroduce
c explicitly into the equations, as shown above.
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we obtain from Eq. (5.7)

y =
1
2
ln
(
1 + vL
1− vL

)
=
1
2
ln
(
E + pL
E − pL

)
= ln
(
E + pL
m⊥

)
. (5.10)

Lorentz ‘boosts’ are the Lorentz transformations with one of the three
(x, y, z) Cartesian coordinate directions employed as the reference axis for
the transformation. To verify the additivity of rapidity under a sequence
of Lorentz boosts mentioned earlier, we consider the transformation of
the momentum vector under a change of the reference frame along the
collision axis. Under such a transformation, the transverse momentum
and the transverse massm⊥ are not changed. The energy and longitudinal
component of momentum transform according to

E′ = γc(E + vc pL), p′L = γc(pL + vcE). (5.11)

Here and below, the ‘primed’ quantities are seen by an observer in the
laboratory system which moves with the velocity vc with respect to the
CM frame of reference, in which the energy E and momentum pL are
measured. Noting that the rapidity yc of the transformation satisfies
Eq. (5.8), we obtain

cosh yc = γc, sinh yc = γc vc, (5.12)

and, upon introducing Eq. (5.4), we find for Eq. (5.11)

E′ = m⊥ cosh(y + yc), p′L = m⊥ sinh(y + yc). (5.13)

It is now evident that the rapidity y′ seen in the laboratory system is
given in terms of the CM rapidity y by

y′ = y + yc. (5.14)

It is this simple result which gives the rapidity variable its importance as
a tool in the analysis of particle-production data. For example, in fixed-
target experiments, we can study particle spectra using y as a variable
without an explicit transformation to the CM frame of reference, and
deduce from the rapidity spectra the point of symmetry corresponding to
the CM rapidity. In symmetric collisions with fixed targets, the CM frame
has to be in the middle between the rapidities of projectile and target;
the CM rapidity is half of the rapidity of the projectile yCM = yp/2. In
this case, the particle-rapidity spectrum must be symmetric around yCM.
This allows one to complement measured particle spectra: if these are
available for, e.g., y ≥ yCM, a reflection at the symmetry point yCM gives
us the part of the spectrum with y ≤ yCM, or vice-versa.
Understanding the actual value of yCM is of particular interest in ‘asym-

metric’ collisions of heavy ions, i.e., those involving two different nuclei,

https://doi.org/10.1017/9781009290753.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.008


84 Experiments and analysis tools

which we continue calling ‘projectile and target’, though such a distinction
is irrelevant in our following argument, since the result will be symmet-
ric between the two colliding nuclei. We recollect that, considering the
definition Eq. (5.4), we also have

E ± pL = m⊥e±y. (5.15)

The total energy and momentum of the colliding system is obtained
from the total energy and momentum of colliding nuclei:

E = Ep + Et, pL = pp + pt. (5.16)

Using Eq. (5.10) for these values of E and pL, we obtain the rapidity
of the frame of reference in which the combined longitudinal momentum
vanishes. For collinear collisions, the transverse momentum also vanishes,
and this is the rapidity of the CM frame. Using Eq. (5.10),

yCM =
1
2
ln
(

Ep + Et + pp + pt

Ep + Et − (pp + pt)

)
. (5.17)

We use now Eq. (5.15) for the rapidities of projectile and target and obtain
a manifestly projectile–target-symmetric expression:

yCM =
1
2
ln
(
mpe

+yp +mte
+yt

mpe−yp +mte−yt

)
. (5.18)

We now consider the asymmetric collisions both for collider and for
fixed-target experiments: another way to write Eq. (5.18) offers immediate
understanding of the physics involved. We take the factor eyp in the
numerator and the factor e−yt in the denominator out of the logarithm
and obtain

yCM =
yp + yt
2

+
1
2
ln

(
mp +mte

−(yp−yt)

mt +mpe−(yp−yt)

)
. (5.19)

In most cases of interest, we have yp − yt � 0 and thus

yCM � yp + yt
2

− 1
2
ln
(
mt

mp

)
+
m2
t −m2

p

2mpmt
e−(yp−yt) + · · · . (5.20)

In general, the first two terms largely suffice. In the way we wrote
Eq. (5.20), we chose the usual convention to call the more massive nucleus
the ‘target’. Two cases of explicit interest in Eq. (5.20) are the collider
mode yp = −yt, and a stationary target yt = 0 (up to Fermi motion in
the stationary target nucleus).
For asymmetric collisions, the precise magnitude of mt is determined

in part by the value of the impact parameter, see Fig. 5.4. Hence the
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CM rapidity, Eq. (5.20), becomes dependent on the impact parameter.
The magnitude of the shift in asymmetry of rapidity arising can be easily
estimated: in collisions in which the projectile with AP emerges fully in
the target AT, all of the projectile nucleons participate: Ap = AP < AT,
while the number of target participants At is

At ∝ A2/3p A
1/3
T . (5.21)

Thus,

yCM � yp + yt
2

− 1
6
ln
(
AT
AP

)
. (5.22)

For light-on-heavy-ion collisions such as of S on Pb, the expected and
observed shift in mass asymmetry of rapidity (the last term in Eq. (5.22))
is noticeable (0.3 units).

5.4 Pseudorapidity and quasirapidity

In the study of production of charged hadrons, e.g., in section 9.2, we will
see that observed particles are often not identified, and hence we do not
know their masses, which are required in order to determine the rapidity
of particles Eq. (5.10), given the momentum measured by deflection of
particles within a magnetic field. On the other hand, mass can be negligi-
ble compared with the momenta carried by the particles, especially so in
fixed-target experiments. Consequently, we now consider what happens
with the rapidity spectra when the mass of a particle is small relative
to the momentum, and the momentum alone determines the energy of a
particle, e.g.,

E =
√
p2 +m2 → p. (5.23)

In analogy to Eq. (5.4), a simpler variable, the ‘pseudorapidity’ η of a
particle is introduced,

p = p⊥ cosh η, pL = p⊥ sinh η, (5.24)

which, with Eq. (5.10), leads to

η =
1
2
ln
(
p+ pL
p− pL

)
=
1
2
ln
(
1 + cos θ
1− cos θ

)
= ln
(
cot

θ

2

)
. (5.25)

Here, θ is the particle-emission angle relative to the beam axis, see Fig. 5.6.
In Fig. 5.7, we see for the range of pseudorapidity of interest to us (up

to η = 9, the maximum value seen in Fig. 5.1) how the angle θ varies with
the pseudorapidity. A massless particle emitted transversely at η = y = 0
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Fig. 5.7. The emission angle θ in radians as a function of the pseudorapidity η.

has θ = π/2; η = 3 corresponds to θ = 0.1 rad, (≡0.1 × 180o/π = 5.7o).
The projectile–target fragmentation region at the LHC, where η � 8.5,
corresponds to θ = ±4.5× 10−4 rad (≡ ±0.025o).
From Eqs. (5.4) and (5.24), we obtain the implicit relations between

pseudorapidity and rapidity:

m⊥ sinh y = p⊥ sinh η, E tanh y = p tanh η. (5.26)

We see from these relations that the pseudorapidity is always greater than
the rapidity:

sinh η
sinh y

=
m⊥
p⊥

=

√
1+

m2

p2⊥
> 1,

tanh η
tanh y

=
E

p
=

√
1+

m2

p2
> 1. (5.27)

More massive particles that have not been identified appear in a pseu-
dorapidity particle spectrum at greater values of η than do the lighter
pions.
In order to establish a precise relation between pseudorapidity and

rapidity, we replace in Eq. (5.25) the (longitudinal) momentum using
Eqs. (5.4) and (5.6) to obtain

η =
1
2
ln


√
m2

⊥ cosh
2 y −m2 +m⊥ sinh y√

m2
⊥ cosh

2 y −m2 −m⊥ sinh y

. (5.28)

https://doi.org/10.1017/9781009290753.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.008


5 Nuclei in collision 87

Similarly, to determine rapidity in terms of pseudorapidity, we simply re-
place the momenta in the definition of rapidity, Eq. (5.10), using definition
Eq. (5.24):

y =
1
2
ln


√
m2 + p2⊥ cosh

2 η + p⊥ sinh η√
m2 + p2⊥ cosh

2 η − p⊥ sinh η

. (5.29)

Taking the logarithm of the first expression in Eq. (5.27), we obtain the
shift in pseudorapidity relative to rapidity:

δη ≡ η − y =
1
2
ln
(
1 +

m2

p2⊥

)
+ ln
(
1− e−2y

1− e−2η

)
. (5.30)

The leading term is the only term remaining for large η and it establishes
an upper limit for the shift δη. The difference δη = η − y between the
pseudorapidity and the rapidity, as a function of pseudorapidity, is shown
in Fig. 5.8, which was obtained by inserting Eq. (5.29) into Eq. (5.30).
Thick lines are for p⊥ = 0.3 GeV, thin lines for p⊥ = 0.5 GeV; solid
lines are for nucleons, chain lines for kaons, and dashed lines for pions.
We see that, when η ≥ 3, the first term in Eq. (5.30) in fact suffices
to approximate the ‘shift’ in pseudorapidity which approaches a fixed
maximum.
For sufficiently large p⊥ > m, when a particle’s rest mass can be ne-

glected, the shift δη becomes negligible. For pions the error associated
with considering the pseudorapidity instead of rapidity in hadronic re-
actions can often be ignored since the mass is usually smaller than the
typical momentum cut – and thus δη < 0.1 is seen at pseudorapidity η = 3
for p⊥ > 0.3 GeV. Moreover, the use of pion-quasirapidity yπ, which we
discuss next, eliminates this shift completely. On the other hand, use of
pseudorapidity seems not to be advisable for situations in which contribu-
tions from more massive particles are of importance, unless, as Eq. (5.30)
suggests, the p⊥ cut is well above the mass of the particle. We see, in
Fig. 5.8, that, for nucleons, taking the transverse momentum cut at 0.3
GeV, one encounters a shift of more than one rapidity unit at η = 3, the
SPS value.
Since, in the upper SPS energy range (see table 5.1), the pion abun-

dance dominates the hadron abundance, it has become common practice
to show the distribution of hadrons as a function of pion-quasirapidity yπ,
presuming that all hadrons observed are pions, as is done in Fig. 9.6 on
page 166. One assumes, in lieu of the correct definition for each particle,
the expression as if this particle had the mass of a pion:

pL = p⊥ sinh η → pL =
√
p2⊥ +m2

π sinh yπ. (5.31)

https://doi.org/10.1017/9781009290753.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.008


88 Experiments and analysis tools

Fig. 5.8. The difference between pseudorapidity and pion-quasirapidity π

(dashed lines), kaons K (chain lines), and nucleons N (solid lines) as a func-
tion of pseudorapidity η, for p⊥= 0.3 GeV (thick lines) and p⊥= 0.5 GeV (thin
lines).

Following the derivation of Eq. (5.30), we obtain

δy ≡ yπ − y =
1
2
ln
(
1 +

m2 −m2
π

p2⊥ +m2
π

)
+ ln
(
1− e−2y

1− e−2yπ

)
. (5.32)

In Fig. 5.9, we see the solution of the above equation as a function of
the pion-quasirapidity. Lines are for p⊥ = 0.5 GeV(bottom line, smallest
shift), p⊥ = 0.3 GeV (middle line), and for p⊥ = 0.1 GeV(top, largest
shift); solid lines are for nucleons and chain lines for kaons. Again, when
δy ≥ 3, the first term in Eq. (5.32) nearly suffices to approximate the
‘shift’ in rapidity for pions as shown in Fig. 5.9 for increasing yπ, it ap-
proaches a fixed value, which for p⊥ < mπ is significant. The quasirapid-
ity distribution for nucleons experiences a widening by ±1.9, and that for
kaons widens by ±1.3 units of rapidity.
As we see in Figs. 5.8 and 5.9 and Eqs. (5.30) and (5.32), the error in

measurement of rapidity grows with decreasing p⊥ of the particle. For
kaons and nucleons, in the range of p⊥ within which the pseudorapidity is
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Fig. 5.9. The difference between pion-quasirapidity and rapidity as a function
of quasirapidity yπ for kaons K (chain lines), and nucleons N (solid lines), from
bottom to top for p⊥ = 0.5 GeV, p⊥ = 0.3 GeV, and p⊥ = 0.1 GeV.

failing to be a good variable, the number of particles produced increases
with decreasing p⊥. Thus, in fact, use of pseudorapidity or quasirapidity
can be significantly misleading when one wants to understand both the
spectral shape and the hadron yield.
In this context, we recall that a study of the distribution of heavy

particles (nucleons and kaons) can be based on the difference between
the distributions of positively and negatively charged particles, which is
relatively easy to measure:

d(N+ −N−)
dyπ

=
d(π+ − π−)

dyπ
+
d(p− p̄)
dyπ

+
d(K+ −K−)

dyπ
. (5.33)

The physics, in Eq. (5.33), is that the yield of pions is nearly charge sym-
metric (this has been observed at the SPS for p⊥ > 0.3 GeV [77]) and
the first term cancels out. In the remainder, we have an initial measure
of the quasirapidity distribution of protons and kaons. At the SPS, both
protons and kaons contribute in Eq. (5.33). At the RHIC, the abundance
of charged kaons is the dominating contribution, but only at the level of
1%–3% of all charged particles. As noted above, at the SPS, the canceling
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out of charged-pion yield is not exact at low p⊥ < 0.25 GeV, as a direct
measurement has shown [77]: in the Pb–Pb collision system, we have 20%
(n− p)/(n + p) asymmetry in the number of protons and neutrons. This
charge asymmetry translates into a relatively strong π+/π− asymmetry
at small p⊥, but disappears for p⊥ > 0.2 GeV.

5.5 Stages of evolution of dense matter

Since hadronic interactions are strong, we can hope and expect that local
equilibrium conditions can be approached in experiments involving heavy
ions. This is in particular the case if we characterize the essential physical
properties of elementary matter in term of local, position-dependent pa-
rameters. The local average energy of each particle characterizes the local
temperature T . (Local) chemical potentials µi need to be introduced in
order to regulate the average particle and/or quark-flavor density.
These parameters express different equilibration processes in the fire-

ball, and in general there is a considerable difference between thermal and
chemical equilibrium.

• In order to establish thermal equilibrium, equipartition of energy among
the different particles present has to occur in the collisional processes
which lead to the statistical energy distribution. It is important to
note that (local) thermal equilibrium can be achieved solely by elastic
scattering. We will call the time scale on which these processes occur
τth. The use of temperature T as a parameter presupposes that thermal
equilibrium has (nearly) been established.

• Chemical equilibration requires reactions that change numbers of par-
ticles, and it is more difficult and thus slower to become established.
There are also two quite different types of chemical equilibria.

— Relative chemical equilibration, just like the commonly known case
in chemistry, involves reactions that distribute a certain already exis-
tent element/property among different accessible compounds. Use of
chemical potentials µi presupposes, in general, that the particular rela-
tive chemical equilibrium is being considered. We call the relevant time
scale τ relchem.
— In relativistic reactions, particles can be made as energy is converted
into matter. Therefore, we can expect to approach (more slowly) the
absolute chemical equilibrium. We call the relevant time scale τabschem.
We characterize the approach to absolute chemical equilibrium by a
fugacity factor γi for particle ‘i’. We often study the evolution of γi in
the collision as a function of time, since absolute chemical equilibrium
cannot generally be assumed to occur.

https://doi.org/10.1017/9781009290753.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.008


5 Nuclei in collision 91

Some authors introduce separate chemical potentials for particles and
antiparticles, µ±

i = ±µi + T ln γi, [188, 189]. This is equivalent to our
approach. However, it is still common to see in the literature that a equi-
librium is assumed, γi = 1, with particles ‘instantaneously’ reaching their
absolute chemical-equilibrium abundances. Such an approach cannot in
general be justified. We see this on considering the relation between the
relaxation times,

10−22 s > τ exp � τabschem > τ relchem > τth, (5.34)

where τ exp is the life span of the expanding fireball of dense matter, which
is of the same magnitude as the time light needs to traverse the largest
nuclei. In such a rapidly evolving system, we cannot assume that absolute
chemical equilibrium, γi = 1, has been attained.
In order to illustrate the difference between absolute and relative chem-

ical equilibrium better, let us consider some examples.
• We consider the baryon number, the globally conserved property of
dense hadronic matter. Locally, the global conservation implies a balance
of inflow against outflow, viz., there are no sources or sinks of baryon
number. Generally, one always associates a conserved quantity with the
presence of a chemical potential, here the chemical potential µb which con-
trols the difference in number of all baryons and antibaryons. A change
in the energy of the system, according to the first law of thermodynamics,
is then given by

dE = −P dV + T dS + µb db. (5.35)

However, the addition of a baryon–antibaryon pair to the system will not
be noted in Eq. (5.35), since the baryon number b remains unchanged!
At this point, we are not at liberty to add or remove a pair: in writing

down Eq. (5.35), we implicitly assumed what we have above called abso-
lute chemical equilibrium – there is a bath of baryon number in which
our system is immersed, and hence a full phase-space occupancy of all
available phase-space cells, and there is no place for an extra pair. By
changing the chemical potential µb, we can regulate the difference in
number of baryons and antibaryons present in the system, but densities
of baryons and antibaryons move together, absolute equilibrium is as-
sumed while relative chemical equilibrium controls the relative number of
particles by virtue of the value of the chemical potential. If we change
the baryon number by one at fixed volume and entropy, then according
to Eq. (5.35), there is a change in energy by µb.
• Next, we look at the abundance of strangeness in the baryon-rich HG
phase. There is no strangeness ‘bath’ and, initially, we have no stran-
geness, therefore we will be making pairs of s and s̄ quarks; there is
plenty of phase space available to fill, and we are far from absolute
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chemical-strangeness equilibrium. To make ss̄ pairs in a HG, there are
many possible reactions, section 18.2, classified usually as the direct- and
associate-production processes. In the associate-production process, a
pair of strange quarks is shared between two existent hadrons, of which
one is a baryon, typically a nucleon N, which becomes a hyperon Y:

π+N↔ K+Y.

In a direct-production process, a pair of strangeness-carrying particles is
formed directly via annihilation of two mesons, akin to our Gedankenex-
periment in which we are adding a pair to the system:

π+ π ↔ K+K.

Here, a pair of strange particles is made in the form of a pair of kaons,
K+K−. With these two reaction types alone it could be that popula-
tions of strange mesons and baryons evolve differently. However, the
meson carrier of the s quark, K−, can exchange this quark rather fast, via
exothermic reaction with a nucleon, forming a hyperon:

K− +N↔ π+Y.

This reaction establishes relative chemical equilibrium by being able to
move the strange quark between the two different carriers, sq̄ mesons and
sqq baryons.
Reactions establishing the redistribution of existent flavor, or the abun-

dance of some other conserved quantity, play a different role from the
reactions that actually contribute to the formation of this flavor, or other
quantum number, and facilitate the approach to absolute chemical equi-
librium. Accordingly, the time constants for relaxation are different, since
different types of reaction are involved.
Apart from the different relaxation times associated with the different

types of thermal and chemical equilibria, there are different time scales
associated with the different fundamental interactions involved. For ex-
ample, the electro-magnetic interactions are considerably slower at reach-
ing equilibrium than are the strong interactions governing the evolution of
dense hadronic fireballs created in ultra-relativistic heavy-ion collisions.
All the important time constants for relaxation in heavy-ion collisions
arise from differences in mechanisms operating within the realm of strong
interactions. Therefore, the separation of time scales is not as sharp as
that between the different interactions, though a clear hierarchy arises,
as we noted in Eq. (5.34).
Under weak interactions, there is, in comparison, an extremely slow

transmutation of quark (and lepton) flavors, involving a much longer
electro-weak equilibration time. Such long times are not available in the
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micro-bang process, in contrast to the big-bang case. We considered these
electro-weak degrees of freedom in section 1.3, since the life span of the
Universe at the time of the hadronic phase transition exceeds all typical
relaxation times for the weak interaction.
The chemical equilibration, and hence the chemical composition of the

fireball, evolve along with the temperature of the fireball. The following
stages occur in heavy-ion collision.
1. The initial quantum stage.
The formation of a thermalized state within τth is most difficult to
understand, and is subject to intense current theoretical investigation.
During the pre-thermal time, 0 ≤ t < τth, the properties of the collision
system require the study both of quantum transport and of decoher-
ence phenomena, a subject reaching today far beyond the scope of this
volume. We assume, in this book, that the thermal shape of a (qu-
ark, gluon) particle-momentum distribution is reached instantaneously
compared with the time scales for chemical equilibration in Eq. (5.34).
This allows us to sidestep questions regarding the dynamics occurring
in the first moments of the heavy-ion interactions, and we explore pri-
marily what happens after a time¶ τ0 ≡ τth � 0.25–1 fm/c. The value
of τ0 decreases as the density of the pre-thermal initial state increases,
e.g., as the collision energy increases. At τ0 gluons g are, due to their
greater reactivity, at or near to the local chemical equilibrium.

2. The subsequent chemical equilibration time.
During the inter-penetration of the projectile and the target lasting no
less than ∼1.5 fm/c, diverse particle-production reactions occur, allow-
ing the approach to chemical equilibrium by light non-strange quarks
q = u, d. As the energy is redistributed among an increasing number
of accessed degrees of freedom, the temperature drops rapidly.

3. The strangeness chemical equilibration.
A third time period, lasting up to�5 fm/c, during which the production
and chemical equilibration of strange quarks takes place. There is a
reduction of temperature now mainly due to the expansion flow, though
the excitation of the strange quark degree of freedom also introduces a
non-negligible cooling effect.

4. The hadronization/freeze-out.
The fireball of dense matter expands and decomposes into the final-
state hadrons, possibly in an (explosive) process that does not allow
re-equilibration of the final-state particles. The dynamics is strongly
dependent on the size of the initial state and on the nature of the
equations of state.

¶ The time τth is often called τ0 in the literature, and we will use this notation as well,
though the subscript ‘th’ is more specific about the evolution step considered.
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Throughout these stages, a local thermal equilibrium is rapidly estab-
lished and, as noted, the local temperature evolves in time to accom-
modate change in the internal structure as is appropriate for an isolated
physical system. We have a temperature evolution that passes through
these series of stages:

Tth the temperature associated with the initial thermal equilibrium,
↓ evolution dominated mainly by production of q and q̄;
Tch chemical equilibrium of non-strange quarks and gluons,
↓ evolution dominated by expansion and production of s and s̄;
Ts condition of chemical equilibrium of u,d and s quark flavors,
↓ expansion, dissociation by particle radiation;
Tf temperature at hadron-abundance freeze-out,
↓ hadron rescattering, reequilibration; and
Ttf temperature at thermal freeze-out, T = T (τ exp).

We encounter a considerable decrease in temperature. The entropy con-
tent of an evolving isolated system must increase, and this is initially
related to the increase in the number of particles within the fireball and
later also due to the increase in volume. However, in the later stages
dominated by flow, the practical absence of viscosities in the quark–gluon
fluid implies that there is little additional production of entropy. The final
entropy content is close to the entropy content established in the earliest
thermal stage of the collision at t < τ0, despite a drop in temperature by
as much as a factor of two (under current experimental RHIC conditions)
during the evolution of the fireball.
Except for the unlikely scenario of a fireball not expanding, but sud-

denly disintegrating, none of the temperatures discussed above corre-
sponds to the temperature one would read off the (inverse) slopes of
particle spectra. In principle, the freeze-out temperature determines the
shape of emission and multiplicity of emitted particles. However, the
freeze-out occurs within a local flow field of expanding matter and the
thermal spectrum is to be folded with the flow which imposes a Doppler-
like shift of Ttf : we observe a higher temperature than is actually locally
present when particles decouple from flowing matter (kinetic or thermal
freeze-out). The observable temperature T⊥ is related to the intrinsic
temperature of the source:

T⊥ � 1 + /n · /vtf√
1− /v 2f

Ttf →
√
1 + vtf
1− vtf

Ttf . (5.36)

This relation must be used with caution, since it does not apply in the
same fashion to all particles and has a precision rarely better than ±10%.
We study the shape of m⊥-spectra in section 8.5.
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5.6 Approach to local kinetic equilibrium

In the above discussion, the formation of a space–time-localized fireball
of dense matter is the first key physics input. The question we wish to
address now is that of how this fireball can possibly arise from a rather
short sequence of individual reactions that occur when two, rather small,
gas clouds of partons, clustered in nucleons, bound in the nucleus, collide.
Indeed, at first sight, one would be led to believe that the small clouds
comprising point-like objects would mutually disperse in the collision,
and no localized, dense state of hadronic matter should be formed. At
best, it was suggested in some early work, the two colliding ‘eggs’ should
emerge from the high-energy interaction slightly ‘warmed’, but still largely
‘unbroken’.
Two remarkable properties of hadronic interactions are responsible for

just the opposite, deeply inelastic, behavior:
• the multiparticle production in hadron–hadron collisions; and
• the effective size of all hadrons expressed in term of their reaction cross
sections.

What appears to be a thin system of point-like constituents is effectively
already a volume-filling nucleon liquid, which will undergo, in a colli-
sion, a rapid self-multiplication with particle density rising and individ-
ual scattering times becoming progressively much shorter than the overall
collision time.
Ultimately, as the energy available in collision is increased, the hadron

particle/energy density will reach values at which the dissolution of the
hadronic constituents into a common deconfined domain will become pos-
sible, and indeed must occur according to our knowledge about strong
interactions. While we do not really know whether deconfinement of had-
rons is not a general mechanism operating already at AGS energies, see
table 5.1, there is today no experimental evidence that this low-energy
range suffices. In contradistinction, a significant number of results ob-
tained at the SPS energy range can be most naturally interpreted in
terms of the formation of a deconfined space–time domain, section 1.6.
We note that, per participant, there are as many as 7–10 further hadrons
produced at SPS energies. This implies that there are thousands of quarks
and gluons in the space–time domain of interest, and hence consideration
of a ‘local’ (in space–time) equilibrium makes good sense.
There are many ways to estimate the particle number. We can use the

number of final-state hadrons and evaluate the numbers of constituent
quarks and antiquarks, or we can take the available energy content and
divide it by the estimated energy per particle (quark, gluon). Both pro-
cedures give O(10 000) particles for the case of Pb–Pb collisions at 158A-
GeV (

√
sNN = 17.2 GeV). Of these, not all particles can be causally
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connected, i.e., not all these particles can influence each other in classical
dynamics, and local equilibrium is a feature obviously involving a causally
connected region only.
A suitable measure of the causally connected size is offered by the initial

decoherence time τ0, which also determines the size of the decoherence
volume, R0 � τ0. This has to be scaled up by the ensuing expansion
factor, see the discussion below Eq. (6.35). For τ0 = 0.5 fm, we can expect
about 5%–10% of all particles (500–1000) to be causally connected, which
implies that the causal ‘range’ of rapidity is an interval ∆y � 1. ∆y arises
on considering the final-state rapidity distribution, see Fig. 9.6 on page 166
and Fig. 9.19 on page 184. In any case, the concept of a local equilibrium
makes good sense.
When we are talking about thermal equilibria, we must first establish

more precisely what these words mean. We will implicitly always refer to
‘local’ equilibrium. The thermalization of the momentum distributions is
driven by all scattering processes, elastic as well as inelastic, because all
of them are associated with transfer of momentum and energy between
particles. The scattering time scale, for particles of species i, is given in
terms of the collision length l by

τi,scatt =
〈
l

v

〉
i

=
1∑

j〈σijvij〉ρj
, (5.37)

where the sum in the denominator is over all particle species (with den-
sities ρj) available, σij and vij are the (energy-dependent) total cross
sections and relative velocities, for a process scattering particles i and j,
and the average is to be taken over the momentum distributions of the
particle considered.
It is not hard to ‘guestimate’ the time scale governing the kinetic equi-

libration in the QGP. The typical particle-collision time (the inverse of
the collision frequency) is obtained from Eq. (5.37) above. Given the par-
ticle densities and soft reaction cross sections, with the relative velocity
of these essentially massless components being the velocity of light c, we
find for the QGP scattering time,

τQGPi = 0.2–2 fm, with ρi = 2–10 fm−3, σi = 2–5mb, (5.38)

as a range for different particles of type i, with the shorter time applying
to the early high-density stage. This is about an order of magnitude
shorter than the time scale for evolution of the fireball, which is derived
from the spatial size of the colliding system: for the largest nuclei, in
particular the Pb–Pb or Au–Au collisions, over a wide range of energy,
we expect

τ exp � RA
c

� 5–8 fm/c. (5.39)
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The achievement of kinetic equilibrium must be visible in the energy
spectra of the particles produced, as we shall discuss below in section 8.1.
This behavior, as we argue, can be understood in qualitative terms for
the case of nuclear collisions. However, it remains to date a mystery
why in some important aspects thermal models succeed for the case of
p–p reactions. In particular, the exponential fall off of particle spectra,
suggesting thermal equilibrium, has been noted with trepidation for a
considerable time.
Hagedorn evaluated this behavior in the experimental data some 35

years ago [140, 145] and he developed the statistical bootstrap model
(chapter 12), which assumes a statistical phase-space distribution (sec-
tion 12.2). Hagedorn called it preestablished or preformed equilibrium:
particles are produced in an elementary interaction with a probability
characterized by a universal temperature. We can today only speculate
about the physical mechanisms.
For example, it has been proposed that vacuum-structure fluctuations

lead to color-string tension fluctuation, and thus the resulting string-
breaking produces thermal hadrons [65]. Another informally discussed
possibility is the presence of intrinsic chaotic dynamics capable of rapidly
establishing kinetic equilibrium. We cannot pursue further in this book
these ideas about the process of initial thermal equilibration.
Sometimes, the fact that we do not fully understand thermalization in

the p–p case is raised as an argument against the possibility of conven-
tional equilibration in nuclear collisions. We do not think so. In fact, if
the p–p case leads to thermal hadrons, we should have a yet better ther-
malization in the A–A case. Thus, a microscopic model that is adopted
to extrapolate from p–p to A–A collisions should respect the concept of
the hadronic preestablished equilibrium, else it is not going to be fully
successful, see section 6.1.

5.7 The approach to chemical equilibrium

The approach to chemical equilibrium is, in comparison with the thermal
case, better understood. Firstly, we must consider which particles can be
expected to have reached equilibrium and which not, and this requires
a kinetic description. Though, in general, one is tempted to think of a
build-up of chemical abundance of different quark flavors, the approach to
absolute chemical equilibrium need not always occur from ‘below’, and/or
the measured quark yields can be in excess of chemical equilibrium; sec-
tion 19.4.
At the collision energies available at the RHIC and LHC, the more

massive charm c and bottom b quarks (see table 1.1) are produced in
the initial interaction, reaching and even exceeding the yield expected in
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absolute chemical equilibrium in thermalized deconfined matter. In QGP
the chemical equilibration of these flavors occurs exceedingly slowly, and
a significant excess of abundance is expected. A similar situation can
arise with strangeness in presence of rapid cooling, from T > 250 MeV
to T � 150 MeV, which preserves the high initial thermal yield. In
the early Universe, the well-known example of chemical nonequilibrium
occurring, despite thermal equilibrium being established, is the freeze-out
of abundances of light nuclear isotopes.
Of particular interest, in the physics of QGP, is that the saturation

(‘absolute’ chemical equilibration) of the phase space of strange particles
requires just the life span of the QGP. This is, in part, due to the rela-
tively large threshold for the production of strange quarks and, in part,
because for practical purposes most strangeness needs to be produced in
thermal energy collisions – direct initial-state production of strangeness
is of course quite prevalent but at the level of 10%–30% of the final-state
equilibrium yield of strangeness, as long as only the normal processes of
hadron collisions contribute to direct production of strangeness.
In the QGP phase, there is no need to redistribute strange quarks

among different carriers and relative chemical equilibrium is automati-
cally established. More generally, in the HG phase the relative chemical
equilibrium is more easily attained than is the ‘absolute’ chemical equi-
librium, due to the strangeness-exchange cross sections being greater than
cross sections for its production.
The population master equation,

2τ ichem
ρeqi

dρi
dt
= 1−

(
ρi
ρeqi

)2
, (5.40)

describes the population evolution of strangeness (and charm, etc.) within
the scattering theory; chapter 17. τ ichem is the time constant for chemical
relaxation. The quadratic term on the right-hand side, in Eq. (5.40),
arises from, e.g., annihilation of strangeness, ss̄ → XX, which rate is
established by detailed balance consideration of two-body reactions. In
the first instance, one has not ρ2i but ρiρ̄i, where ρ̄i is the s̄ density.
However, since in heavy-ion collisions only hadronic reactions produce
strangeness, we maintain the condition ρi = ρ̄i and Eq. (5.40) follows. The
solution of Eq. (5.40) approaches equilibrium exponentially for t → ∞:

ρi = ρeqi tanh[t/(2τ ichem)]→ (1− e−t/τ
i
chem)ρeqi . (5.41)

The chemical equilibration (relaxation) time constant τ ichem, for particle
species i, is computed as an inverse of the invariant reaction rate per unit
volume Ri:

τ ichem =
ρeqi
2Ri

. (5.42)
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In Eq. (5.42), ρeqi is the chemical-equilibrium density. Ri is the rate at
which the system ‘chases’ ρeqi ; the ratio is a characteristic time when
the chase is over. The factor 2 in Eq. (5.42) is introduced to assure that
the approach to equilibrium due to two-body reactions is governed by an
exponential function with the time-decay parameter τ ichem, as is seen on
the right-hand side of Eq. (5.41).
In terms of the reaction cross section, the invariant reaction rate per

unit of time and volume is obtained from (see section 17.1)

Ri(x)=
∑
a,b,X

∫ ∞

(mi+mX)2
2λ2(s) ds

∫
d3ka

(2π)32Ea

∫
d3kb

(2π)32Eb

× fa(ka, x)fb(kb, x) σ̄ab→iX(
√
s) δ[s− (ka + kb)2]. (5.43)

where, see Eq. (17.10),

λ2(s) =
[
s− (ma +mb)2

][
s− (ma −mb)2

]
.

In Eq. (5.43), we are neglecting Pauli or Bose quantum effects (suppression
or stimulated-emission factors) in the initial and final states. Considered
here, is the inelastic production process a + b → i + X. fa(ka, x) and
fb(kb, x) are the phase-space distributions of the colliding particles, and
σ̄ab→iX(

√
s) is the energy-dependent cross section for this inelastic chan-

nel. The ‘bar’ indicates that the dependence on transfer of momentum
(scattering angle) is averaged over.
We will further study this integral for thermal distributions in sec-

tion 17.1. However, given the importance of the final result Eq. (17.16),
we record it here for the simplest case of a relativistic Boltzmann momen-
tum distribution,

Ri(x) =

∑
a,b,X

∫∞
w0

dw λ2σ̄ab→iX(w)K1(w/T )

4Tm2
am

2
bK2(ma/T )K2(mb/T )

, (5.44)

where w =
√
s is the CM energy and w0 = mi + mX is the reaction

threshold. This formula is presented in this form in [164], Eq. (5.7); it is
stated there for the special case in which the reacting particles a and b
are identical bosons, which, to avoid double counting of indistinguishable
pairs of particles, requires an extra factor 1

2 , which is not included in
Eq. (5.44). The interesting ma,b → 0 limit follows considering Fig. 10.1
and Eq. (10.47). It is implemented with a replacement of each factor
m2K2(m/T ) by 2T 2 in Eq. (5.44), and λ2 → s, which reduces Eq. (5.44)
to the result presented in [226], Eq. (2); [67] lacks the factor 1/T .
We see explicitly, in Eq. (5.44), the mass threshold in the s-integration

occurring for inelastic (particle-producing) rates. A high threshold com-
bines with the exponentially small K1 Bessel function, see Eq. (8.7), to
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reduce the strength of inelastic hadronic particle-production rates, which
are usually much smaller than the total rates of reaction (scattering).
For this reason, the time scale of chemical equilibration is, in general,
considerably longer than the thermal one.

6 Understanding collision dynamics

6.1 Cascades of particles

The principal shortcomings of the near-statistical-equilibrium method,
combined with ideal flow of hadronic fluid in the study of heavy-ion col-
lisions, are the following:
• we do not have a long-lived, large region of hot hadronic matter to look
at, and some features of the collision are certainly not well equilibrated;

• we need to establish the physical conditions at the initial time τ0; and
• the system considered is subject to rapid evolution and all thermal
properties are actually fields, i.e., we have a position-dependent local
temperature T (/x), etc.

Hence, a lot of effort continues to be committed to the development of
a better understanding of the initial interaction dynamics, and its sub-
sequent description within microscopic kinetic-scattering models. The
research field of the study of computer-code ‘event generators’ is vast and
undergoing development. Consequently, in this book, we will enter into
discussion of kinetic models only as matters of example and/or principle.
We survey the rapidly developing field in order to offer an entry point for
further study.
For a novice in this very rapidly changing panorama, the best next step

is to look at the progress of the working group which has been monitor-
ing the development of the computer codes with the objective of ensuring
that reasonable quality control is attained.

OSCAR (Open Standard Codes and Routines)‖. OSCAR begun in June
1997 to resolve the lack of common standards, documentation, version
control, and accessibility in many transport codes. These transport codes
for relativistic heavy-ion collisions differ from computer codes in other
areas of physics, where numerical methods are only technical tools used
to solve specific equations that define the physics. The source code of
a nuclear-collision transport model often implements extra physical as-
sumptions and dynamic mechanisms that go beyond the equations used
to motivate its design. These algorithms often undergo evolution with
time, and the very large number of phenomenological parameters also

‖ See: http://www-cunuke.phys.columbia.edu/people/molnard/mirror-OSCAR/oscar.
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