SOME EXPLICIT GENERATORS FOR $S L\left(3,3^{n}\right), S U\left(3,3^{n}\right)$, $S p\left(4,3^{n}\right)$ AND $S L\left(4,3^{n}\right)$

C. Y. HO

1. Introduction. This is a generalization of the results in [3, § 5]. Some of the proofs presented here are actually the original proofs presented in [3]. Although we can find alternate proofs in the case $p=3$, since [3] will not be published for a while yet, we feel that it is worthwhile to present the proof in [3] whenever it carries over in the case $p=3$. The results in this paper will be used in the investigation of the quadratic pairs for the prime 3 .
We will show here some explicit generators for $\operatorname{SL}\left(3,3^{n}\right)$ and $S U\left(3,3^{n}\right)$. Together with the results in [3], we complete the situation for the case of odd characteristic.

Some authors use the notation $\operatorname{SU}\left(3, q^{2}\right)$; here we adopt the notation $S U(3, q)$ for the special unitary group.

2.

Lemma 2.1. Suppose $q=3^{n}, n \geqq 1$, and K is a field with $|K|=q$. Then $\operatorname{SL}(3, q)$ is generated by

$$
\begin{aligned}
& X_{12}(t)=\left[\begin{array}{lll}
1 & t & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], X_{21}(t)=\left[\begin{array}{lll}
1 & 0 & 0 \\
t & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text {, and } \\
& \xi=\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \text {, where } t \text { ranges over } K .
\end{aligned}
$$

Proof. Let $S=\left\langle X_{12}(1), X_{21}(-1), \xi\right\rangle$ and let $S_{1}=\left\langle X_{12}(1), X_{21}(-1)\right\rangle$. Then S_{1} is isomorphic to $S L(2,3)$. Set

$$
\omega=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Since $\omega \in S_{1}$, we get $\xi \xi^{\omega} \in S$. As $\operatorname{tr}\left(\xi \xi^{\omega}\right)=-1 \neq 0,\left\langle\xi, \xi^{\omega}\right\rangle$ is not a 3 -group by Sylow's theorem. Thus $\xi \notin O_{3}(S)$. We claim S contains a four group. Since $S \subset S L(3,3)$ if $13||S|$, then $| S L(3,3): S \mid \leqq 6$. But this implies $S=S L(3,3)$. So we may assume $13 \nmid S \mid$. Hence S is a $\{2,3\}$ group. Thus $O(S)=O_{3}(S)$. Since $\xi \notin O_{3}(S)$, we get $\xi \notin O(S)$. Let i be the unique involu-

Received May 17, 1973.
tion of S_{1}. If $\langle i, O(S)\rangle \triangleleft S$, then $\xi^{2}=i \xi^{-1} i \xi=[i, \xi] \in\langle i, O(S)\rangle$ which in turn forces $\xi^{2} \in O(S)$. Since this is false, we cannot have $\langle i, O(S)\rangle \triangleleft S$. By a Brauer-Suzuki theorem [2, p. 527], Sylow 2 -subgroups of S are not quaternion. This establishes our claim. Let j be any involution of S which centralizes i. Then $j=\left[\begin{array}{ll}A & \\ & a\end{array}\right]$, where $A \in G L(2,3)$ and $A^{2}=I_{2}, a^{2}=1$. Since $j \notin S_{1}$, $a=-1$. Hence $\operatorname{det} A=-1$, and the stability subgroup of the negative space of i in S induces $G L(2,3)$ on the negative space of i. Therefore we may assume $j_{0}=\operatorname{diag}[-1,1,-1]$. Now

$$
\xi \xi^{j_{0}}=\left[\begin{array}{rrr}
1 & -1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and S contains

$$
Z=X_{12}(1)\left(\xi \xi^{j_{0}}\right)=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Let $h(t)=\operatorname{diag}\left[t^{-1}, t, 1\right]$ where $t \in K^{\times}$, and let N be the group generated by the matrices in the statement of our lemma. Then $h(t) \in N$, and N contains

$$
Z^{h(t)}=\left[\begin{array}{rrr}
1 & 0 & -t \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], t \in K^{\times} .
$$

Since

$$
\xi X_{12}(1) Z=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \in N, N \text { contains }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & t & 1
\end{array}\right], t \in K
$$

From here it is straightforward to verify $N=S L(3, q)$.
Lemma 2.2. Assume the notation for $X_{12}(t), X_{21}(t), K$ as in Lemma 2.1. Let $y \in K^{\times}$. Then $S L(3, q)$ is generated by

$$
X_{12}(t), X_{21}(t) \text { and } \xi=\left[\begin{array}{ccc}
1 & y & 1 \\
0 & 1 & 0 \\
0 & 2 y & 1
\end{array}\right]
$$

Proof. Let N be the subgroup of $S L(3, q)$ which is generated by the matrices in the statement of Lemma 2.2. We claim N is irreducible on the 3 -dimensional underlying space V. Suppose not.

Case (1). There is a one-dimensional irreducible N-submodule M_{0} of V : Since N is generated by 3 -elements, $N \mid M_{0}=$ id. Since V is a complete reducible $S_{1}=\left\langle X_{12}(t), X_{21}(t)\right\rangle$ module, $V=M_{1} \oplus M_{0}$ where M_{1} is a 2-dimensional standard module for S_{1}. We can choose a basis of M_{1} together with a vector in M_{0} to form a basis B of V such that with respect to this basis $X_{12}(t)$
is represented by

$$
\left[\begin{array}{ccc}
1 & \sigma(t) & \\
& 1 & \\
& & 1
\end{array}\right]
$$

where $\sigma(t)$ ranges over K as t ranges over K. Since M_{0} is an N-module, ξ is represented by

$$
\left[\begin{array}{lll}
& & \alpha \\
& A & \\
0 & & \beta \\
0 & 0 & 1
\end{array}\right]
$$

with respect to B. Here A is a 2×2 matrix over K. Since $\left[\xi, X_{12}(t)\right]=1$, ξ must be represented by a matrix of the form

$$
\left[\begin{array}{lll}
1 & \delta & \epsilon \\
0 & 1 & 0 \\
0 & \eta & 1
\end{array}\right] .
$$

But then $\eta=0$, and $(\xi-1)^{2}=0$ which is false. Therefore Case (1) cannot occur.

Case (2). V has a 2 -dimensional irreducible N-submodule M_{1} : Since V is a complete reducible $S_{1}=\left\langle X_{12}(t), X_{21}(t)\right\rangle$ module, $V=M_{1} \oplus M_{0}$ where M_{0} is a 1 -dimensional S_{1} module. In particular $S_{1} \mid M_{0}=\mathrm{id}$, and N induces identity on V / M_{1}. We can choose a basis for M_{1} together with a vector from M_{0} to form a basis B for V such that with respect to $B, X_{12}(t)$ is represented by

$$
\left[\begin{array}{ccc}
1 & \sigma(t) & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

where $\sigma(t)$ ranges over K when t ranges over K. Since $\left[\xi, X_{12}(t)\right]=1$, we get with respect to B, ξ is represented by

$$
\left[\begin{array}{lll}
1 & \gamma & \alpha \\
0 & 1 & 0 \\
0 & \beta & 1
\end{array}\right]
$$

Since M_{1} is an N-submodule, $\alpha=0$. But then $(\xi-1)^{2}=0$, a contradiction to $y \in K^{\times}$. Therefore Case (2) cannot arise either. Hence we conclude that N is irreducible on V. In particular, we get $O_{3}(N)=1$. Since $|K|=3^{n}$, we have $P S L_{3}(q)=S L(3, q)$. By Lemma 1 we may assume $y \neq-1$. A similar argument in the proof of Lemma 1 will enable us to assume $y \neq 1$. Hence we may assume $n>1$. In [1, Theorem 7.1] the cases (4) and (5) are out as $O_{3}(N)=1$. The case (3) is also out by $O_{3}(N)=1$ and the Sylow 3 -subgroups of N have order $>q$. Since $n>1, S_{1}=\left\langle X_{12}(t), X_{21}(t)\right\rangle$ is perfect. If we were in Case (2) of [1, Theorem 7.1], then S_{1} must lie inside the diagonal normal subgroup stated there. But then S_{1} would be solvable which is false. So this
case cannot arise. If N contains a cyclic normal subgroup, then S_{1} induces the identity on it. Let this cyclic group be generated by Z. Then $\left[S_{1}, Z\right]=1$ and

$$
Z=\left[\begin{array}{lll}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & b
\end{array}\right]
$$

Since $\operatorname{det} Z=1, b=a^{-2}$. But

$$
\xi^{-1} Z \xi=\left[\begin{array}{rrr}
1 & y & -1 \\
0 & 1 & 0 \\
0 & -2 y & 1
\end{array}\right] Z\left[\begin{array}{ccc}
1 & y & 1 \\
& 1 & 0 \\
& 2 y & 1
\end{array}\right]=\left[\begin{array}{ccc}
a & * & a-b \\
0 & a & 0 \\
0 & * & b
\end{array}\right] .
$$

Since $a-b \neq 0, \xi$ does not normalize Z. Hence Case (1) of [1, Theorem 7.1] can not occur. Since $n>1$ and $q=3^{n}$ and Sylow 3 -subgroups have order $>q$, the cases $(l), 3 \leqq l \leqq 9$ of [1, Theorem 1.1] cannot occur. Therefore N always contains a four-group. A similar argument as in the proof of Lemma 2.1 completes the proof of Lemma 2.2.

Lemma 2.3. Suppose A is a quadratic extension field of K with odd characteristic p and H is a subgroup of $S L(2, A)$ such that $S L(2, K) \subseteq H \subseteq S L(2, A)$. Then either $S L(2, K) \triangleleft K$ or $H=S L(2, A)$ unless $|K|=3$. The normalizer of $S L(2, K)$ in $G L(2, A)$ is $S L(2, K) \cdot D$ where

$$
D=\left\{\left.\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \right\rvert\, a, b \in A^{\times}, a^{-1} b \in K^{\times}\right\} .
$$

Proof. Let V be the 2-dimensional underlying space over A. Since $S L(2, K)$ is irreducible on $V, O_{p}(H)=1$. Let $S \in \operatorname{Syl}_{p}(S L(2, K))$. Then $[V, S, S]=0$. Since $S \cdot O(H)$ is p-solvable, by Theorem (B) of Hall-Higman, we get $[S, O(H)]=1$. Hence $S \subset C(O(H))$. Since this is true for all

$$
S \in \operatorname{Syl}_{p}(S L(2, K))
$$

we get $O(H)=1$. The Sylow 2 -subgroups of H are generalized quaternion; the theorem of Gorenstein-Walter [2, p. 462] or Hauptsatz 8.27 of Huppert's Endliche Gruppen completes the proof of the first part.

Since $S L(2, K)$ is 2 -transitive on its Sylow p-subgroups, the normalizer of $S L(2, K)$ in $G L(2, A)$ is $S L(2, K) \cdot D$, where D is a group of diagonal matrices. Let $d=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right] \in D$, so that

$$
d^{-1}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] d=\left[\begin{array}{cc}
1 & a^{-1} b \\
& 1
\end{array}\right] \in S L(2, K)
$$

and so $a^{-1} b \in K$. The proof is complete.
Remark. In the case when $|K|=3$, we do have a counter-example of Lemma 2.3, namely, $S L(2,3) \subset S L(2,5) \subset S L(2,9)$.

Lemma 2.4. Suppose A is a quadratic extension field of K with odd characteristic p, j is an involution of $G L(2, A)$ of determinant $-1, j$ normalizes $S L(2, K)$, and $H=\langle S L(2, K), j\rangle$. Then either $\operatorname{diag}(-1,1) \in H$, or $\operatorname{diag}\left(a,-a^{-1}\right) \in H$ where $a \in A \backslash K$ and $a^{2} \in K$.

Proof. By Lemma $2.3 j=j_{0} d$, where $j_{0} \in S L(2, K)$ and $d=\operatorname{diag}(a, b)$ with $a^{-1} b \in K^{\times}$. Since $\operatorname{det} j=-1$, we have $a b=-1$. If $a \in K^{\times}$, then $d=\operatorname{diag}\left(a,-a^{-1}\right) \in H$ as well as $\operatorname{diag}\left(-a^{-1},-a\right) \in H$, so we get $\operatorname{diag}(-1,1) \in H$. If $a \notin K^{\times}$, then the second possibility occurs.

Theorem 2.1. Suppose A is a quadratic extension field of $K,|K|=3^{n}=q$, $y \in A$. Then $N=\left\langle X_{12}(t), X_{21}(t), \xi\right\rangle$ is isomorphic to $S L(3, A)$ or $S U_{3}(K)$, where $t \in K$, and

$$
\xi=\left[\begin{array}{ccc}
1 & y & 1 \\
0 & 1 & 0 \\
0 & 2 y & 1
\end{array}\right]
$$

N is isomorphic to $S U_{3}(K)$ provided $y^{q}=-y$.
Proof. As in the proof of Lemma 2.2 we get N irreducible on the 3 -dimensional space V over A, and $O_{3}(N)=1$. Thus, Cases (4), (5) of [1, Theorem 7.1] cannot arise. Case (2) of that theorem can easily be seen not to arise. The argument in the proof of Lemma 2.2 also rules out the Case (1) of [1 , Theorem 7.1]. If we were in the case (3) of that theorem, then the involution of $\left\langle X_{12}(1), X_{21}(-1)\right\rangle$ would be central. But then ξ has to act quadratically on V which is false. Hence this case cannot arise either.

If $q=3$, then $q \neq 1$ or 19 (30). If $q>3$, then the Sylow 3 -subgroups of N have order >9. Therefore Case (9) of [1, Theorem 1.1] cannot arise. Similar arguments rule out the Cases (5), (6), (7) of that theorem. Certainly Cases (3), (4), (8) of that theorem cannot arise. Hence $N / N \cap Z(S L(3, A))$ is isomorphic to either $\operatorname{PSL}\left(3,3^{\beta}\right)$ with $\beta \mid 2 n$ or $\operatorname{PSU}\left(3,3^{\beta}\right)$ with $2 \beta \mid 2 n$. Hence N always contains a four group. Suppose $d=\operatorname{diag}(-1,1,-1) \in N$. Then

$$
\eta=\left[\xi, \xi^{d}\right]=\left[\begin{array}{ccc}
1 & -4 y & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \in N
$$

Since $\operatorname{diag}\left(t^{-1}, t, 1\right) \in H$ for all $t \in K^{\times}$, we get $X_{12}\left(-4 y t^{2}\right) \in N$ for all $t \in K^{\times}$. Since $A=K+K y$, we get $X_{12}(t) \in N$ for all $t \in A$. Since

$$
\omega=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \in N
$$

we get $X_{2_{1}}(t) \in N$ for all $t \in A$. By Lemma 2.2 we have $N=S L(3, A)$.

So we may assume that $\operatorname{diag}(-1,1,-1) \notin N$. Let j be an involution of N which centralizes i. Then $j=\left[\begin{array}{ll}J & 0 \\ 0 & a\end{array}\right]$ where $j \in G L(2, A)$, and $a \in A^{\times}$. Since $j \notin\left\langle X_{12}(t), X_{21}(t) \mid t \in K^{\times}\right\rangle=S_{1}, a \neq 1$. Thus $(a=-1$, and $\operatorname{det} J=-1$.

Case (1). $|K|=3$: Then $|A|=3^{2}$. Since $\operatorname{diag}(-1,1,-1) \notin N, N$ is not isomorphic to $S L\left(3,3^{\beta}\right)$. Hence $N / N \cap Z(S L(3, A))$ is isomorphic to $\operatorname{PSU}\left(3,3^{\beta}\right)$ with $2 \beta \mid 2$. This implies N is isomorphic to $S U(3,3)$.

Case (2). $|K|>3$: Set

$$
H=N \cap\left\{\left.\left[\begin{array}{ll}
L & 0 \\
0 & 1
\end{array}\right] \right\rvert\, L \in S L(2, A)\right\}
$$

If we let H_{0} be the set of such L, then $S L(2, K) \subset H_{0} \subset S L(2, A)$. If $H_{0}=$ $S L(2, A)$, Lemma 2.1 implies that $N=S L(3, A)$ which is not the case since $\operatorname{diag}(-1,1,-1) \notin N$; whence by Lemma 2.3 we get $S L(2, K) \triangleleft H_{0}$. By the same lemma we have $S L(2, K)$ char H_{0}. Since $\left|\left\langle S_{1}, j\right\rangle: H\right|=2$, then j normalizes S_{1}. By Lemma 2.4, we get $\delta=\operatorname{diag}\left(a,-a^{-1},-1\right) \in N$, where $a \in A \backslash K$ and $a^{2} \in K$. Since $q=3^{n}, q-1$ is even. Thus $a^{q-1}=c \in K^{\times}$. Since $a^{q^{2}-1}=1, c^{q+1}=1$. But $c^{q}=c$ as $c \in K$. Therefore $c^{2}=1$. If $c=1$, then $a^{q}=a \cdot a^{q-1}=a$ forces $a \in K$. This is false, so $c=-1, a^{q}=-a$. Now we get

$$
\delta \xi \delta^{-1}=\left[\begin{array}{ccr}
1 & -a^{2} y & a \\
0 & 1 & 0 \\
0 & -2 a y & -1
\end{array}\right]
$$

and so

$$
\left[\delta \xi \delta^{-1}, \xi\right]=\left[\begin{array}{ccc}
1 & a y & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

If $a y \notin K$, then N contains $X_{12}(t), t \in A$, and so contains $X_{21}(t)$ with $t \in A$. By Lemma 2.2 we get $N=S L(3, A)$ which is not the case. Hence $a y=k \in K$. Thus $(a y)^{q}=a y=a^{q} y^{q}=-a y^{q}$, and so $-y=y^{4}$. Let $k_{1}=-a^{-1} y=-a^{2} \cdot a y$. Then $k_{1} \in K$, and so N contains $\delta \operatorname{diag}\left(k_{1}, k_{1}^{-1}, 1\right)=$ $\operatorname{diag}\left(-y, y^{-1},-1\right)$. Let $\xi_{t}=h(t)^{-1} \xi h(t)$ with $h(t)=\operatorname{diag}\left(t^{-1}, t, 1\right)\left(t \in K^{\times}\right)$, and let

$$
\xi_{t}^{\prime}=\pi^{-1} \xi_{t} \pi=\left[\begin{array}{ccc}
1 & -t^{2} y & y^{-1} t \\
0 & 1 & 0 \\
0 & -2 t & 1
\end{array}\right] .
$$

Set $U=\left\langle\xi_{t}, \xi_{t}{ }^{\prime} \mid t \in K^{\times}\right\rangle$. Then $|U|=q^{3}$. Since $N / N \cap Z(S L(3, A))$ is isomorphic to $\operatorname{PSU}\left(3,3^{\beta}\right)$ with $\beta \mid n$, we get $\beta=n$. Hence $N=S U(3, q)$.

With the aid of the above results we get Lemma 5.6, Lemmas 6.1, 6.2, 6.3 of [3] in the case $p=3$. The proof is essentially the proof presented in [3].

Lemma 2.5. Suppose $A=K[y]$ is a commutative ring, $|K|=3^{s}, y \notin K$,
$y^{2}=m^{2}, m \in K^{\times}$and S is the subgroup of $\operatorname{SL}(3, A)$ generated by $X_{12}(t), X_{21}(t)$, where t ranges over K and

$$
\xi=\left[\begin{array}{ccc}
1 & y & 1 \\
0 & 1 & 0 \\
0 & 2 y & 1
\end{array}\right]
$$

Let $e_{1}=\left(1+m^{-1} y\right) / 2, e_{2}=1-e_{1}$. Then $A=K e_{1} \oplus K e_{2}$ and there is an automorphism α of A of order 2 such that $e_{1}{ }^{\alpha}=e_{2}$ and such that α fixes K elementwise. Let α be the automorphism of $S L(3, A)$ induced by α, let Ω be the automorphism given by

$$
x^{\Omega}=\omega^{-1} x \omega, \text { with } \omega=\left[\begin{array}{rcc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1 / 2 y
\end{array}\right]
$$

and let Φ be the automorphism $x^{\Phi}={ }^{t} x^{-1}$. Finally let $\pi=\alpha \Phi \Omega$. Then S is the set of fixed points of π on $S L(3, A)$ and $S \cong S L(3, K)$.

Proof. Let L be the set of the fixed points of π on $S L(3, A)$. We check that $S \subset L$. Since $y=m e_{1}-m e_{2}, y^{\alpha}=-y$. We have $e_{1}+e_{2}=1, e_{1} e_{2}=0$, and $e_{i}{ }^{2}=e_{i}, i=1,2$.

Let $L_{i}=\left\{x \in S L(3, A) \mid x \equiv 1\left(A e_{i}\right)\right\}$. Since $0 \rightarrow A e_{j} \rightarrow A \rightarrow A e_{i} \rightarrow 0, i \neq j$ is exact, $1 \rightarrow L_{j} \rightarrow S L(3, A) \rightarrow S L\left(3, A e_{i}\right) \rightarrow 1$ is also exact. Thus

$$
L_{j} \triangleleft S L(3, A) .
$$

Since $K e_{i} \cong K$, we get $L_{i} \cong S L(3, K)$ and $S L(3, A)=L_{1} \times L_{2}$. Since $L_{1}{ }^{\pi}=L_{2}, L=\left\{x \cdot x^{\pi} \mid x \in L_{1}\right\} \cong S L(3, K)$. Let $\widetilde{L}_{1}=\left\{x \in L_{1} \mid x^{-1} z \in L_{2}\right.$ for some $z \in S\}$. Since $S \subset L$, we get $z=a \cdot a^{\pi}$ with $a \in L_{1}, a^{\pi} \in L_{2}$. Hence $\left(x^{-1} a\right)\left(a^{\pi}\right) \in L_{2}$, which implies $x=a$, and $z=x \cdot x^{\pi}$. Thus

$$
\tilde{L}_{1}=\left\{x \in L_{1} \mid x \cdot x^{\pi} \in S\right\}
$$

For $t \in K$, we have

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & t e_{1} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]^{\pi}=\left[\begin{array}{ccc}
1 & t e_{2} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]^{\Phi \Omega}=} \\
& {\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -2 y
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-t e_{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rcc}
1 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1 / 2 y
\end{array}\right]=\left[\begin{array}{ccc}
1 & t e_{2} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \text { and }} \\
& {\left[\begin{array}{ccc}
1 & t e_{1} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]^{2}\left[\begin{array}{ccc}
1 & t e_{1} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]^{\pi}=\left[\begin{array}{lcc}
1 & t & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \in S .}
\end{aligned}
$$

Hence

$$
\left[\begin{array}{ccc}
1 & t e_{1} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \in \tilde{L}_{1} .
$$

A similar argument shows

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
t e_{1} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \in \tilde{L}_{1} .
$$

Let

$$
\xi_{1}=\left[\begin{array}{ccc}
1 & m e_{1} & e_{1} \\
0 & 1 & 0 \\
0 & 2 m e_{1} & 1
\end{array}\right] .
$$

Then

$$
\xi_{1}{ }^{\pi}=\left[\begin{array}{ccc}
1 & -m e_{2} & -m e_{2} / y \\
0 & 1 & 0 \\
0 & 2 y e_{2} & 1
\end{array}\right], \quad \text { so } \xi_{1} \xi_{1} \pi=\left[\begin{array}{ccc}
1 & y & 1 \\
0 & 1 & 0 \\
0 & 2 y & 1
\end{array}\right] \in S .
$$

Therefore \tilde{L}_{1} contains ξ_{1}. The mapping which sends $X=e_{2} I_{3}+X_{1} \in \widetilde{L}_{1}$ with $X_{1} \in M_{K e_{1}}(3,3)$ to X_{1} is an isomorphism of \widetilde{L}_{1} to

$$
\left\{\left[\begin{array}{ccc}
e_{1} & t e_{1} & 0 \\
0 & e_{1} & 0 \\
0 & 0 & e_{1}
\end{array}\right],\left[\begin{array}{ccc}
e_{1} & 0 & 0 \\
t e_{1} & e_{1} & 0 \\
0 & 0 & e_{1}
\end{array}\right], \left.\left[\begin{array}{ccc}
e_{1} & m e_{1} & e_{1} \\
0 & e_{1} & 0 \\
0 & 2 m e_{1} & e_{1}
\end{array}\right] \right\rvert\, t \in K\right\} .
$$

The latter is isomorphic to $S L\left(3, K e_{1}\right) \cong S L(3, K)$ by Lemma 2.2 as $m \in K$. Since $\tilde{L}_{1} \subset L_{1} \cong S L(3, K)$ we get $\tilde{L}_{1}=L_{1}$. But $|S| \geqq\left|\tilde{L}_{1}\right|$, and $S \subset L \cong$ $S L(3, K)$ forces $S=L$. This completes the proof of Lemma 2.i).
3. $S L_{4}$. Suppose K is a field with $q=3^{n}$, and $A=K[y]$ is a commutative algebra over K generated by an element y with $y^{2} \in K$. We allow the possibility that $y \in K$. Let $e_{i j}$ be the matrix units, $i \neq j, 1 \leqq i, j \leqq 4$ and $X_{i j}(t)=$ $1+t e_{i j}, X_{i j}(R)=\left\{X_{i j}(t) \mid t \in R\right\}$ for some sul)ring R of A. Let

$$
\omega=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],
$$

and

$$
S=\left\langle X_{12}(K), X_{21}(K), X_{13}(t) X_{42}(t), X_{14}(-t) X_{32}(t), X_{43}(K) \mid t \in K\right\rangle
$$

Then $\omega \in S$.
Lemma 3.1. $S \cong S p(4, K)$.

Proof. Let $V=K v_{1} \oplus \ldots \oplus K v_{4}$ be a 4 -space over K. Define a skewsymmetric form f on V by

$$
\begin{array}{ll}
f\left(v_{1} v_{2}\right)=1, & f\left(V_{1}, V_{3}\right)=0, \\
f\left(V_{2}, V_{3}\right)=0, & f\left(V_{1}, V_{4}\right)=0 \\
& f\left(V_{2}, V_{4}\right)=0 \\
& f\left(V_{3}, V_{4}\right)=-1 .
\end{array}
$$

Thus, V is the direct sum of two hyperplanes, $P_{1}=K V_{1} \oplus K V_{2}$ and $P_{2}=K v_{3} \oplus K v_{4}$. Using $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ as a basis for V, we see that $S \subset S p(4, K)$ as f is non-singular.

Let

$$
P=\left\langle X_{12}(t), X_{13}(t) X_{42}(t), X_{43}(t), X_{14}(-t) X_{32}(t) \mid t \in K\right\rangle,
$$

so that $|P|=q^{4} ; P$ is a Sylow p-subgroup of $S p(4, K)$. Let $X_{b}(t)=$ $\left(X_{13}(t) X_{42}(t)\right)^{\omega}=X_{23}(t) X_{42}(-t)$ so that $X_{b}(t) \in S$ for all $t \in K$. Let $X_{-b}(t)=X_{14}(-t) X_{32}(t)$ so that $X_{-b}(t) \in S$. Let

$$
\omega_{b}=X_{b}(1) X_{-b}(-1) X_{b}(1)=\left[\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right] .
$$

$h(t)=\operatorname{diag}\left(t^{-1}, t, 1,1\right) \in S$. So $S \supset H=\left\langle h(t), h(t)^{\omega} b \mid t \in K^{\times}\right\rangle$and $H \subset N(P)$. (Note $X_{12}(K)^{\omega b}=X_{43}(K)$ and $X_{43}(K)^{\omega b}=X_{12}(K)$.) Since

$$
\omega^{2}=\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \omega_{b}{ }^{2}=\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \in H
$$

and

$$
\omega \omega_{b}=\left[\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right] \text { has order } 4 \bmod H
$$

so that $W=\left\langle\omega, \omega_{b}\right\rangle$ normalizes H and $W / W \cap H$ is dihedral of order 8 . The lemma follows from the well-known properties of the Bruhat decomposition.

Let

$$
\xi=\left[\begin{array}{rrrr}
1 & 0 & y & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -y & 0 & 1
\end{array}\right] \text {, and } L=\langle S, \xi\rangle .
$$

Lemma 3.2. If $y \in K^{\times}$then $L=S L(4, K)$.
Proof. Since $\xi X_{13}(y) X_{42}(y) \in L, L$ contains $X_{13}(2 y)$. Hence L contains $X_{13}(K), X_{23}(K)=X_{13}(K)^{\omega}$. Since $\xi X_{13}(-y)=X_{42}(-y), L$ contains $X_{42}(K)$,
$X_{42}(K)^{\omega}=X_{41}(K)$. Since $X_{12}(K)^{\omega b}=X_{43}(K), L$ contains $X_{13}(K)$. Since $X_{21}(K)^{\omega b}=X_{34}(K), L$ contains $X_{34}(K)$. Let

$$
\omega_{1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right] .
$$

Then $\omega_{1} \in\left\langle X_{34}(K), X_{43}(K)\right\rangle \subset L$. Hence L contains $X_{13}{ }^{\omega_{1}}(K)=X_{14}(K)$, $X_{41}(K)^{\omega_{1}}=X_{31}(K), \quad X_{42}(K)^{\omega_{1}}=X_{32}(K), \quad X_{23}(K)^{\omega_{1}}=X_{2+}(K)$. Therefore $L=S L(4, K)$.

Suppose $y^{2}=m^{2}$, for some $m \in K^{\times}$but $y \notin K$. Then $A=K e_{1}+K e_{2}$, where $e_{1}=\left(1+m^{-1} y\right) / 2, \quad e_{2}=1-e_{1}$ are idempotents of A, and $y=m e_{1}-m e_{2}$. The automorphism α of A defined by $e_{1}{ }^{\alpha}=e_{2}$ fixes K elementwise and induces an automorphism α of $S L(4, A)$. Let

$$
\sigma=\left[\begin{array}{rrrr}
0 & 1 & & \\
-1 & 0 & & \\
& & 0 & -1 \\
& & 1 & 0
\end{array}\right]
$$

and let Ω be the inner automorphism of $S L(4, A)$ induced by σ. Let Φ be the automorphism $X={ }^{t} X^{-1}$. Finally, let $\pi=\alpha \Omega \Phi$.

Lemma 3.3. L is the fixed point of α, and $L \cong S L(4, K)$.
Proof. We use the same argument as in the proof of Lemma 2.5 with the aid of Lemma 3.2.

Remark. It was pointed out to the author by Professor Hering that there is a uniform argument which will prove Lemma 2.1 and Lemma 2.2 in all characteristics as expected. The idea is the following: Consider the 3 -dimensional special linear group S acting on the projective plane. Let the images of the subspaces of V, which are represented $b y\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$, and $(0,0,1)$ respectively, be A and B respectively. Suppose $\xi \in S$ does not fix both A and B. Then $\left\langle X_{12}(t), X_{21}(t), \xi\right\rangle=S$.

The author would like to take the opportunity to express his thanks to Professor Hering for his suggestions.

References

1. D. M. Bloom, The subgroups of $P S L_{3}(q)$ for odd q, Trans. Amer. Math. Soc. 127 (1967), 150-178.
2. D. Gorenstein, Finite groups (Harper and Row, New York, 1968).
3. J. G. Thompson, Quadratic pairs (to appear).

Universidade de Brasilia, Brasilia, Brasil

