ON A THEOREM OF HALMOS CONCERNING UNBIASED ESTIMATION OF MOMENTS

H. S. KONIJN

(received 11 August 1963)

1. Introduction

In [4] Halmos considers the following situation. Let \mathscr{D} be a class of distribution functions over a given (Borel) subset E of the real line, and F a function over \mathscr{D} . He investigates which functions F admit estimates that are unbiased over \mathscr{D} and what are all possible such estimates for any given F. In particular he shows that on the basis of a sample (of size n) one can always obtain an estimate of the first moment which is unbiased in \mathscr{D} and that the central moments F_m of order $m \ge 2$ have estimates which are unbiased in \mathscr{D} if and only if $n \ge m$, provided \mathscr{D} satisfies the following properties: F_m exists and is finite for all distributions in \mathscr{D} and \mathscr{D} includes all distributions which assign probability one to a finite number of points of E. Halmos also finds that symmetric estimates which are unbiased on \mathscr{D} are unique ¹ and have smaller variances on \mathscr{D} than unsymmetric unbiased estimates.

He recognizes that his assumptions are too restrictive for most applications and mentions in particular the case where \mathscr{D} is the class of all normal distributions. The present paper addresses itself to that case.

2. Statement of results

If \mathscr{D} is the class of all nondegenerate univariate normal distributions, then, on the basis of a sample (of size n), an estimate of the first moment which is unbiased over \mathscr{D} exists (and is unique when n = 1); and a central moment of order $2r \ge 2$ has estimates which are unbiased over \mathscr{D} if and only if $n \ge 2$, and has a unique symmetric unbiased estimate when n = 2, but not when n > 2.

Specifically, this means the following:

Let z_1, \dots, z_n be a sample from a normal distribution with mean ν and variance $\omega^2 > 0$. Let $\bar{z} = n^{-1} \sum z_i$, $S^2 = \sum (z_i - \bar{z})^2$. Recall that the even

¹ It will be convenient to call a function on a k-dimensional Euclidean space the unique function satisfying a certain property if any other function on this space satisfying the property may differ from it only on a set of k-dimensional Lebesgue measure zero.

central moments \bar{F}_{2r} equal $\omega^{2r} 2^{-r} (2r)!/r!$ and the odd ones vanish.

(a) If n = 1, \bar{z} is the unique unbiased estimate of ν , and no unbiased estimate of \bar{F}_{2r} exists for $r = 1, 2, \cdots^2$ In [5] this seemingly uninteresting fact turns out to be the key to a quite practical question.

(b) If $n \ge 2$,

$$\bar{f}_{2r} = \frac{\{(n-3)/2\}!(2r)!}{\{(n+2r-3)/2\}!r!} (S/2)^{2r}$$

is an unbiased estimate of \overline{F}_{2r} $(r = 1, 2, \cdots)$, and is the unique symmetric unbiased estimate if n = 2, but not if n > 2. It then follows from [6] that \overline{z} and \overline{f}_{2r}

(c) are the unique unbiased estimates of ν and \vec{F}_{2r} , respectively, which depend only on the sufficient statistic (\bar{z}, S^2) and

(d) have the smallest variance among all unbiased estimates.

Note that \bar{z} and S^2 are symmetric functions of the observations. The usual symmetric estimate f'_{2r} for \bar{F}_{2r} , which is unbiased for all distribution functions for which \bar{F}_{2r} exists, is defined only when $n \ge 2r$. When r = 1 it coincides with \bar{f}_2 , when r = 2 it equals [2, 27.6]

$$\tilde{f}'_4 = (n!)^{-1}(n-4)! \{n(n^2-2n+3) \sum (z_i-\bar{z})^4 - 3(2n-3)S^4\} \quad (n \ge 4).$$

For any family \mathscr{D} as first mentioned in the introduction or mentioned in the final section \tilde{f}'_{2r} is the only symmetric estimate which is unbiased for all distributions of \mathscr{D} . But, if for \mathscr{D} we take the class of nondegenerate univariate normal distributions, our results imply that the symmetric estimate \tilde{f}_{2r} is also unbiased over this class and has a smaller variance than \tilde{f}'_{2r} for r > 1.

In the next two sections we prove the parts of (a) and (b) which are not immediate.

3. Nonexistence of an unbiased estimate of \bar{F}_{2*} in a sample of one

In this section denote z_1 by z. If h(z) is an unbiased estimate of F_{2r} then

$$\int_{-\infty}^{\infty} \{h(z+\nu) - z^{2r}\} \exp((-\frac{1}{2}z^2 \omega^{-2})) dz$$

should vanish for all ν and all $\omega > 0$. This integral can be written as an

230

² It has been remarked that it is obvious that from a sample of one it is not possible to obtain an unbiased estimate of two independent parameters (that is, two functions F_1 and F_2 on a class of distributions such that there exists no function g in the plane with $g\{F_1(D), F_2(D)\} = 0$ for all distributions D in the class). That this is not so is easily shown by an example. Let $\theta^2 = \nu^2 + \omega^2$, where ν and ω^2 , the mean and variance, are independent parameters when, e.g., the class is the normal class. Then ν and θ^2 are also independent parameters over that class with unbiased estimates z_1 and z_1^2 .

integral over the positive axis and then we can make the substitution $u = z^{\frac{1}{2}}$ and obtain, setting $\omega' = (2\omega^2)^{-1}$, that

$$\int_{0}^{\infty} \{h(-u^{\frac{1}{2}}+v)+h(u^{\frac{1}{2}}+v)-2u^{r}\}u^{-\frac{1}{2}}\exp(-u\omega')\,du$$

is zero for all ν and all $\omega' > 0$. This being a Laplace transform of $u^{-\frac{1}{2}}$ times the expression in brackets, it follows that

$$h(-z+\nu)+h(z+\nu)-2z^{2r}=0$$

for all ν and almost all positive z. For all ν there is a set S_{ν} on the positive z axis such that the Lebesgue measure l of the positive points z not in S_{ν} is zero and such that the above equality holds on S_{ν} . Denote $\bigcap_{k=1,2,4,5} S_{c+ak/2}$ by T.

It is easily shown³ that there exists a pair of points a and $\frac{1}{2}a$ in T. Choosing v = a and 2a respectively gives for z = a

$$h(0)+h(2a) = 2a^{2r}, \quad h(a)+h(3a) = 2a^{2r},$$

so that

$$h(0)+h(a)+h(2a)+h(3a) = 4a^{2r}$$

Choosing $v = \frac{1}{2}a$ and $2\frac{1}{2}a$ respectively gives for $z = \frac{1}{2}a$

$$h(0)+h(a) = a^{2r}/2^{2r-1}, \qquad h(2a)+h(3a) = a^{2r}/2^{2r-1},$$

so that

$$h(0)+h(a)+h(2a)+h(3a) = a^{2r}/2^{2r-2}.$$

Since $a \neq 0$, this is a contradiction.

4. Uniqueness of the unbiased symmetric estimate of \vec{F}_{2r} in a sample of two and nonuniqueness in a larger sample

For $n \ge 2$ (so that S^2 is not identically zero) the sufficiency of the statistic (\bar{z}, S^2) and the completeness of its distribution imply that f_{2r} is the unique unbiased estimate of its expectation \bar{F}_{2r} among unbiased estimates depending on (\bar{z}, S^2) only [5]. Now if n = 2, (\bar{z}, S^2) determines the set $\{z_1, z_2\}$ of observations, but not their order. Therefore \bar{f}_{2r} is also the unique unbiased estimate of \bar{F}_{2r} among unbiased estimates which are symmetric in the observations.

In general, when n > 2, for any $a \neq 0$,

* Let a' be in T and let 0 < b < a'. Define the disjoint intervals I_i from ia' to i(a'+b) for i = 1, 2, which have $l(I_iT) = ib$. Denote by $p_i(I_iT)$ the set of points x in I_iT such that ix/j is in I_iT ; $l\{p_i(I_iT)\} = jb$. Now let

$$T_2 = T p_2(I_1 T), \qquad T_1 = p_1(I_2 T_2);$$

then, since the T_i are subsets of T of measure ib, there exists a > 0 such that $\frac{1}{2}ia$ is in T_i for i=1 and 2. In fact, there exist c such that, for almost all a in T, $\frac{1}{2}a$ is in T. For brevity use c=0.

$$f_{2\tau} + a\{n(n+1)\sum (z_i - \bar{z})^4 - 3(n-1)S^4\}$$

will be an unbiased symmetric estimate of F_{2r} different from \overline{f}_{2r} , since the mean of $\sum (z_i - \overline{z})^4$ is $3n^{-1}(n-1)^2 \omega^4$ and the mean of S^4 is $(n-1)(n+1)\omega^4$, and since for n > 2 the bracket is not identically equal to zero. For example, if n = 3, $1\frac{1}{2} \sum (z_i - \overline{z})^4$ has mean $\overline{F}_4 + 3\overline{F}_2^2$ and, in the normal case, S^4 has mean $8\overline{F}_2^2$, so that $1\frac{1}{2} \{\sum (z_i - \overline{z})^4 - S^4/4\}$ and $\frac{3}{4} \sum (z_i - \overline{z})^4$ are unbiased estimates of \overline{F}_4 different from $\overline{f}_4 = 3S^4/8$.

5. Remarks

One could similarly discuss unbiased estimation of other functions over the class of normal distributions.

Fraser [3] adapts Halmos' argument to cases where \mathscr{D} is a certain class of distributions that have a density. Some cases of this kind have been found by Lehmann and Scheffé; see [1].

The writer is much indebted to T. C. Koopmans and T. N. Srinivasan for helpful suggestions.

References

- Bell, C. B., Blackwell, D., and Breiman, L., On the Completeness of Order Statistics. Ann. Math. Statist., 31, (1960), 794-7.
- [2] Cramér, H. Mathematical Methods of Statistics. Princeton University Press, Princeton, (1946).
- [3] Fraser, D. A. S., Completeness of Order Statistics. Canad. J. of Math., 6, (1954), 42-5.
- [4] Halmos, P. R., The Theory of Unbiased Estimation. Ann. Math. Statist., 17, (1946), 34-43.
- [5] Konijn, H. S., Non-Existence of Consistent Estimator Sequences and Unbiased Estimators: A Practical Example. (To appear)
- [6] Lehmann, E. L., and Scheffé, H., Completeness, Similar Regions, and Unbiased Estimation. Sankhya, 10 (1950) 305-40; 15, (1955) 219-36.

Department of Economics, The City College, New York, and Cowles Foundation.

 $\mathbf{232}$

[4]