Intensity Variations of the Soft X-ray Background: the Boundary Structure of the Local Hot Bubble at Low Galactic Latitudes

S. Park¹, J.P. Finley¹, and S.L. Snowden^{2,3}

² NASA/Goddard Space Flight Center, Code 662, Greenbelt, MD. 20771, USA

³ Universities Space Research Association, USA

Abstract. 42 ROSAT PSPC pointed observations in the Galactic plane ($l \sim 4^{\circ} - 26^{\circ}$) are mosaicked in order to study the spatial structure of the X-ray emitting gas in the Local Hot Bubble (LHB). Degree scale X-ray intensity variations are detected at the $\pm 10\%$ level in the $\frac{1}{4}$ keV band, which imply a likely influence from a clumpy boundary shell of the LHB in the observed $\frac{1}{4}$ keV band X-ray background. The possible origins of such a clumpy boundary structure of the LHB are discussed.

1 Introduction

In the Galactic plane, the $\frac{1}{4}$ keV band soft X-ray diffuse background (SXRB) is expected to originate within the LHB due to the substantial absorption cross-section of the ISM (e.g., $\tau \sim 1$ at ~ 30 pc, assuming n(H) ~ 1 cm⁻³). This "isolation" from the contribution of any flux of a more distant Galactic origin allows for the study of the detailed structure of the LHB by searching for the $\frac{1}{4}$ keV band X-ray intensity variations at various angular scales. Here we report detection of degree scale variations of the $\frac{1}{4}$ keV band SXRB in the Galactic plane ($l \sim 4^{\circ} - 26^{\circ}$), which implies an influence by a shell-like boundary structure of the LHB on the observed $\frac{1}{4}$ keV band SXRB.

2 Data

An R1L and R2 band (Snowden et al. 1994) mosaic of 42 *ROSAT* PSPC pointed observations are used in this study. All identified non-cosmic backgrounds (~22% of the total counts) are modeled and subtracted from the data as described in Snowden et al. (1994). The detected point sources and possible enhancements by SNRs and X-ray binaries are removed and the relative offsets between overlapping pointings are corrected (~9%). The final mosaic (Figure 1) covers ~60 degree² ($l\sim4^{\circ} - 26^{\circ}$, $b\sim-3^{\circ} - +2^{\circ}$) with an average exposure of ~8 ks. With a 10' binning, an average of 6% statistics per pixel is achieved in the R1L+R2 band (Park, Finley, & Snowden 1997 for a detailed description of the data).

¹ Department of Physics, Purdue University, 1396 Physics Building, West Lafayette, IN. 47907, USA

Fig. 1. The $\frac{1}{4}$ keV band (R1L+R2) mosaic of the 42 *ROSAT* PSPC pointings in the Galactic plane. The pixel size is 10' and the data have been smoothed. The gray-scale ranges $0 - 800 \times 10^{-6}$ counts s⁻¹ arcmin⁻².

3 Analysis and Results

In order to search for X-ray intensity variations along the Galacticplane, the data are first integrated across the plane in Galactic latitude, b, to create 10' columns, typically within $\pm 2^{\circ}$ from the plane. With this integrated 1-D binning, the R1L+R2 band intensity variation along the plane is displayed in Figure 2a. The average flux is $\sim 400 \times 10^{-6}$ counts s⁻¹ arcmin⁻². The X-ray intensity is spatially variable (reduced $\chi^2 > 5$ about the mean) at the $\pm 10\%$ level. A spatial Fourier transform reveals degree scale variations with an $\sim 5.5^{\circ}$ scale being the most prominent in all bands (Figure 2b). Sub-degree scale variations are investigated with a 2-D autocorrelation function (ACF). The ACF at angular scales $<3^{\circ}$ is displayed in Figure 3. The ACF in both the R1L and R2 bands indicates little correlation (formal errors include zero) at angular scales of $<3^{\circ}$. The difference of the ACF between the three bands (R1L, R2, and R1L+R2) is not significant and lies within the statistical uncertainties. The average hardness ratio (1.35) of the mosaic implies a plasma temperature of $\sim 10^{6.1}$ K with no absorption which is consistent with that of Snowden et al. (1997) for emission from the LHB.

4 Discussion

Possible origins of the detected variations are discussed below.

4.1 Magnetic Rayleigh-Taylor (R-T) Instability

A SNR in the adiabatic phase is R-T unstable. Assuming an $\sim 10^5$ year old blast wave in a pre-existing local cavity ($n\sim 0.004$ cm⁻³) "reheated" by a SN explosion, the critical wavelength of the magnetic R-T instability, λ , can be estimated (Table 1) with a typical Galactic midplane magnetic field B =

Fig. 2. (a) The $\frac{1}{4}$ keV band intensity along the Galactic plane. Each point presents a 10' column integrated across the plane. The horizontal line is the mean. (b) Spatial Fourier transform of the R1L, R2, and R1L+R2 band X-ray intensities .

Fig. 3. The ACF of the $\frac{1}{4}$ keV band X-ray intensity for angular scales $\leq 3^{\circ}$. The left panel shows the ACF for the R1L, R2, and R1L2 bands. The right panel shows the R1L2 band ACF and its formal uncertainty.

5 μ G, a plasma temperature of the LHB T $\sim 10^{6.1}$ K, and a stored thermal energy $E_{TH} = 1 - 3 \times 10^{50}$ ergs (see Park, Finley, & Snowden [1997] for the detailed calculation). The range of λ is remarkably consistent with the detected $\sim 5.5^{\circ}$ scale variation given the inaccuracies embedded in the simple spherical blast wave model. With this model the detected $\pm 10\%$ variation at $\sim 5.5^{\circ}$ scale can be attributed to the path-length variation of the wave-like boundary structure due to the magnetic R-T instability.

4.2 Inhomogeneous ISM

If the blast wave of the LHB is in the radiative phase ($\tau \gtrsim 10^6$ yr), the boundary shell can become clumpy due to inhomogeneities in the ISM. For

R_{LHB} (pc)	$E_{TH} (10^{50}$	erg) λ (pc) C	bservable angular size (°)
50	1.0	1.9	2.2
	2.0	4.1	4.7
	3.0	5.8	6.6
75	1.0	0.8	0.9
	2.0	1.7	2.0
	3.0	2.5	2.9

Table 1. Modeled λ of a magnetic R-T instability at the boundary of the LHB

example, absorption by typical interstellar cloudlets (angular size 2-5 pc, internal density 1-3 cm⁻³, Heiles 1967) are reasonable to produce detected $\leq 5.5^{\circ}$ scale variation at $\pm 10\%$ level.

4.3 Emission Variations at the Boundary Layer

The emission variation at the LHB boundary such as electron density fluctuation (Phillips & Clegg 1992) may also produce the observed intensity variations.

4.4 The Local Fluff (LF) and Embedded Clouds

Due to the low $N_{\rm H}$ ($\leq 3 \times 10^{18}$ cm⁻²), the LF is unlikely to be the source of the $\pm 10\%$ variation (required $N_{\rm H} \sim 10^{19}$ cm⁻²). Observations of local interstellar clouds with $N_{\rm H} \gtrsim 10^{19}$ cm⁻² inside of the LHB (e.g., Kerp, Herbstmeier, & Mebold 1993) may indicate that the detected variations can be due to absorption by embedded clouds.

5 Conclusions

Degree scale intensity variations (at $\pm 10\%$ level) in the $\frac{1}{4}$ keV SXRB are detected in the Galactic plane. The origin of these small-scale variations is most likely the presence of R-T instability and/or clumpy cooler ISM at the boundary of the LHB. Variations due to absorption by embedded clouds cannot, however, be ruled out.

References

Heiles, C. 1967, ApJS, 15, 97
Kerp, J., Herbstmeier, U., & Mebold, U. 1993, A&A, 268L, L21
Park, S., Finley, J. P., & Snowden, S. L. 1997, ApJ, 491, in press
Phillips, J. A. & Clegg, A. W. 1992, Nature, 360, 137
Snowden, S. L. et al. 1994, ApJ, 424,714
Snowden, S. L. et al. 1997, ApJ, submitted