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Abstract

Hemorrhagic fever with renal syndrome (HFRS) caused by hantaviruses is a serious public
health problem in China, accounting for 90% of HFRS cases reported globally. In this
study, we applied geographical information system (GIS), spatial autocorrelation analyses
and a seasonal autoregressive-integrated moving average (SARIMA) model to describe and
predict HFRS epidemic with the objective of monitoring and forecasting HFRS in mainland
China. Chinese HFRS data from 2004 to 2016 were obtained from National Infectious
Diseases Reporting System (NIDRS) database and Chinese Centre for Disease Control and
Prevention (CDC). GIS maps were produced to detect the spatial distribution of HFRS
cases. The Moran’s I was adopted in spatial global autocorrelation analysis to identify the inte-
gral spatiotemporal pattern of HFRS outbreaks, while the local Moran’s Ii was performed to
identify ‘hotspot’ regions of HFRS at province level. A fittest SARIMA model was developed to
forecast HFRS incidence in the year 2016, which was selected by Akaike information criterion
and Ljung–Box test. During 2004–2015, a total of 165 710 HFRS cases were reported with the
average annual incidence at province level ranged from 0 to 13.05 per 100 000 persons. Global
Moran’s I analysis showed that the HFRS outbreaks presented spatially clustered distribution,
with the degree of cluster gradually decreasing from 2004 to 2009, then turned out to be ran-
domly distributed and reached lowest point in 2012. Local Moran’s Ii identified that four pro-
vinces in northeast China contributed to a ‘high–high’ cluster as a traditional epidemic centre,
and Shaanxi became another HFRS ‘hotspot’ region since 2011. The monthly incidence of
HFRS decreased sharply from 2004 to 2009 in mainland China, then increased markedly
from 2010 to 2012, and decreased again since 2013, with obvious seasonal fluctuations.
The SARIMA ((0,1,3) × (1,0,1)12) model was the most fittest forecasting model for the dataset
of HFRS in mainland China. The spatiotemporal distribution of HFRS in mainland China
varied in recent years; together with the SARIMA forecasting model, this study provided
several potential decision supportive tools for the control and risk-management plan of
HFRS in China.

Introduction

Hantaviruses cause two rodent-borne infectious diseases in human, hemorrhagic fever with
renal syndrome (HFRS) in Europe and Asia and hantavirus cardiopulmonary syndrome in
Americas. HFRS is endemic in all over China with exception of Taiwan province [1, 2], caused
mainly by two types of hantaviruses, Hantaan virus and Seoul virus, and characterised by
fever, bleeding and acute kidney injury [3]. In recent decades, China has the highest incidence
of HFRS, accounted for nearly 90% of global HFRS cases [1].

Hantaviruses are unexpectedly stable in air and can survive for more than 10 days at room
temperature [4], mainly carried by rodents, insectivores and bats, transmitted to human
mainly via inhalation of virus-contaminated aerosols of excreta and secreta, and virus-
contaminated food [5]. Generally speaking, HFRS emergence in human depends on reservoir
host density, level of exposure to infectious viruses and frequency of contact between human
and rodent populations, which could be influenced by temperature, rainfall, relative humidity,
urbanisation, living and working conditions of local residents [6, 7]. All of the above factors
result in the seasonal and regional variations of HFRS outbreaks. To better understand the
changing trend of HFRS in China, it is necessary to identify its epidemiological distribution
in the past and predict its spatiotemporal trend in the future.

Previous studies have been performed to analyse the spatiotemporal distribution of HFRS and
to forecast HFRS epidemic in several provinces of China [8–11]. Few studies have investigated
the spatiotemporal variation of HFRS outbreak all over China. In this study, we described the
spatiotemporal characteristics of HFRS from January 2004 to December 2016. Furthermore,
based on these historical data, we developed a seasonal autoregressive-integrated moving average
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(SARIMA) model to forecast the seasonal trend of HFRS incidence
in mainland China. This study could provide valuable information
for the hygiene authorities to design and implement effective mea-
sures for the control and prevention of HFRS.

Methods

Data sources and collection

The data of confirmed HFRS cases from January 2004 to
December 2016 were obtained from the National Infectious
Diseases Reporting System (NIDRS) database and Chinese
Centre for Disease Control and Prevention (CDC). HFRS cases
were first diagnosed according to clinical symptoms, then blood
samples were collected in the hospital and serological identifica-
tion was performed in the laboratory of each provincial CDC to
confirm the clinical diagnosis. All serologically confirmed cases
were collected and reported to China CDC [3]. There were no sur-
veillance data of HFRS cases obtained from Hong Kong, Macao
and Taiwan. The data from HFRS surveillance system were aggre-
gated as secondary data without personal information, thus
informed consent was not required. This study was reviewed by
the research institutional review board of the Xuzhou Central
Hospital, Southeast University. The review board concluded that
the utilisation of disease surveillance data did not require over-
sight by an ethics committee.

Geographical information system mapping

To conduct a geographical information system (GIS)-based ana-
lysis of the spatial distribution of HFRS, a province-level polygon
map at 1:1 000 000 scale was obtained by the National Geomatics
Centre of China, on which the province-level point layer that con-
tained information regarding latitudes and longitudes of central
points of each province was created. To lessen variations, the
annual incidence of HFRS per 100 000 persons in each province
was calculated. The annual incidence of HFRS in each province
was mapped using a GIS technique in software ArcGIS (version
10.3, ESRI, Redlands, CA, USA). According to the annual average
incidence, all provinces were grouped into six categories: no data
areas; very low endemic areas with annual average incidence be-
tween 0 and 0.01/100 000 persons; low endemic areas with annual
average incidence between 0.01 and 0.5/100 000 persons; medium
endemic areas with incidence between 0.5 and 1.0/100 000; high
endemic areas with incidence between 1.0 and 5.0/100 000; and
very high endemic areas with incidence >5.0/100 000. The six
types of categories were colour-coded on the maps.

Spatial autocorrelation analysis

Spatial autocorrelation is characterised by a correlation in a signal
among nearby locations in space. Spatial autocorrelation is more
complex than one-dimensional autocorrelation because spatial
correlation is multi-dimensional and multi-directional. Moran’s
I is both the leading measure of and leading test on spatial auto-
correlation [12]. Spatial autocorrelation measures and tests can be
differentiated by the scope or scale of analysis. Traditionally, they
are separated into ‘global’ and ‘local’ categories.

Global indicators of spatial association (GISA)
Global indicators of spatial association (GISA) is calculated to
evaluate the spatial relationships between the regions in a

whole dataset. As a global statistic, Moran’s I indicates not
only the existence of spatial autocorrelation (positive or nega-
tive) but also the degree of spatial autocorrelation [13, 14].
GISA describes the associations of all spatial units, using
Moran’s I as a principal parameter. Moran’s I is defined in
equation (1) [15]:

I = n∑n
i=1

∑n
j=1 wij

∑n
i=1

∑n
j=1 wij yi − �y

( )
yj − �y
( )

∑n
1 yi − �y
( )2 i = j,

(1)

where n is the number of spatial units indexed by i and j; yi and
yj are the variables of interest at points i and j (with i ≠ j); �y is
the mean of y; wij is an element of the weight matrix (n × n),
which is defined as follows: when location i is contiguous to
location j, the weight wij is given the weight of 1, otherwise
the wij is given the weight of 0. If I∈(0,1], there is a positive
autocorrelation; if I = 0, the spatial distribution is random. If
I∈[−1,0), there is a negative autocorrelation. In this study, n
referred to 31, the number of province-level regions in mainland
China; yj referred to the incidence of HFRS in province i; and �y
was the average value of HFRS incidence in 31 province-level
regions in mainland China.

Local indicators of spatial association
Local indicators of spatial association (LISA) statistics is created
by Anselin (1995), whose motivation is to decompose global sta-
tistics such as Moran’s I into their local components for the pur-
pose of identifying influential observations and outliers. Anselin
local Moran’s Ii is defined as equation (2) [16]:

Ii = yi − �y

(1/n) ∑n
i=1 yi − �y

( )2
∑n

j=1

wij yi − yj
( )

i = j,

for j within d of i,

(2)

where j is within d (distance) of i, Ii refers to the value of local
Moran’s I at points i. Meanwhile, the parameters yi, yj, �y and
wij have the same meaning as they are in equation (1).

LISA describes the spatial associations among a studied spa-
tial unit and its contiguous spatial units. The analysis of LISA
provides a better method to identify hotspots all over the stud-
ied areas by identifying clustering pairs of neighbouring values
[17]. In our study, a positive local Moran’s Ii implied that the
HFRS incidence at province i had a similarly value with its
neighbours; in other words, these spatial units were in a spatial
cluster. There were two types of spatial clusters, ‘high–high’ cluster
and ‘low–low’ cluster. If the province i and its contiguous provinces
all had high values of HFRS incidence, they were in ‘high–high’
cluster, otherwise they were in ‘low–low’ cluster. A negative
local Moran’s Ii value suggested that the HFRS incidence at prov-
ince i had a very different value with its neighbours; in other
words, these spatial units were in a spatial outlier. There were
two types of spatial outliers, ‘high–low’ outlier and ‘low–high’
outlier. If the province i had a high value of HFRS incidence
and its contiguous provinces all had low values, they were in
‘high–low’ outlier, otherwise they were in ‘low–high’ outlier.
The calculation of spatial analysis was performed using the soft-
ware GeoDa (version 1.10, Spatial Analysis Laboratory, Urbana,
IL, USA).
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SARIMA model construction

Several statistical models have been used in the forecasting of
infectious diseases [8–11, 18–20]. SARIMA model is a traditional
method to study the time-series dataset, and is powerful in apply-
ing reference data to study the control, prevention and forecast of
seasonal infectious diseases [20, 21]. In China, the outbreaks of
HFRS on record have strong seasonality trends; therefore, we
aimed to construct a SARIMA ( p, d, q) × (P, D, Q)S model to pre-
dict the HFRS incidence accurately in future. The notation ( p, d,
q) × (P, D, Q)S describes the composition of temporal patterns
considered for forecasting: these include autocorrelation over a
maximum of p months or over P periods, each of length S = 12

months in our dataset; differencing over d adjacent months or
D periods; and moving averages sustained over q months or Q
periods. If the series is not stationary, it can be converted into a
stationary series through differencing [22]. The SARIMA model
is defined as equation (3), which comprises non-seasonality and
seasonality components as equations (4) and (5) [18]:

F Bs( )f B( ) xt − m
( ) = Q Bs( )u B( )1t . (3)

The non-seasonality components are:

∅ B( ) = 1− ∅1B− ∅2B2 − · · · − ∅pBp
( )

,

Fig. 1. Yearly distribution of HFRS incidence in mainland China, 2004–2015.
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u B( ) = 1− u1B− u2B
2 − · · · − uqB

q
( )

. (4)

The seasonality components are:

F Bs( ) = 1−F1B
s −F2B

2s − · · · −FPB
Ps

( )
,

Q Bs( ) = 1−Q1B
v −Q2B

2s − · · · −QQB
Qs

( )
. (5)

In these equations, B represents the backward shift operator,
s is the rotation period and the rest of the cases. εt stands for esti-
mated residual error at t, and xt represents the observed values at t
(t = 1, 2, …, k). In this study, the dataset of annual HFRS inci-
dence was split into a training period and a validation period,
the latter was used to test the predictive ability of models and
select out the fittest one, using the R statistical package (version
3.4.3) and Akaike’s information criterion (AIC) [18]. The
Ljung–Box test was used to examine the distribution of the resi-
duals from the selected SARIMA model to validate the goodness
of fit of the model [23, 24].

Results

Spatial distribution of HFRS incidence in mainland China,
2004–2015

From 2004 to 2015, there were a total of 165710 HFRS cases in
mainland China, all cases had been confirmed by the laboratories
of Chinese CDC, then reported to the NIDRS database. The
annual average incidence at province level ranged from 0 to
13.05 per 100 000. During 2004–2015, the HFRS incidence varied
among these provinces (Fig. 1). Tibet was non-endemic since
2005. Xinjiang remained non-endemic, with the exception of
2009, in which year its HFRS incidence was 0.01/100 000. Tibet
and Xinjiang altogether cover 29.94% of the total land and
1.96% of the total population in China. In 2004, Heilongjiang,
Jilin, Liaoning presented the highest incidence (covering 8.17%
of the total land and 7.99% of the total population), and Inner
Mongolia, Hebei, Shandong, Shaanxi, Zhejiang and Jiangxi took
the second place (covering 20.72% of the total land and 24.57%
of the total population); the HFRS incidence of these provinces
all had a declined trend since 2005, except for Shaanxi. From
2010 to 2012, Shaanxi surpassed Heilongjiang and became the
province with highest HFRS incidence. Since 2013, the annual
HFRS incidence in all provinces had not exceeded 5.0/100 000
persons, and HFRS incidence in Heilongjiang rose to the first
place again, followed by Shaanxi, Liaoning and Jilin. The original
time-series data were presented in File S1.

GISA analysis for HFRS incidence

The spatial autocorrelation was analysed based on annual average
province-level incidence of HFRS in mainland China. The statistic
was defined to be significant for Moran’s I at significance level of
P < 0.01. The statistical significance of Moran’s I represented the
spatial cluster of HFRS outbreaks. GISA analysis (Table 1) showed
that the HFRS outbreaks presented spatially clustered distribution
with Z-score >2.81 and P-value <0.01, and the clustering degree of
HFRS cases was gradually decreased from 2004 to 2009. Except
2014, HFRS outbreaks turned out to be randomly distributed
since 2010, and reached to its lowest point with a high discrete

pattern in 2012 (Moran’s I =−0.034 with Z-score = −0.037 and
P-value = 0.970).

LISA analysis for HFRS incidence

The LISA statistic was performed to identify the spatial clusters of
HFRS epidemic. High values of LISA indicated that the features
inside the fixed neighbourhood were homogeneous; otherwise,
the features inside the fixed neighbourhood were heterogeneous.
The yearly LISA cluster maps of HFRS incidence (Fig. 2) demon-
strated that Jilin, Liaoning and Inner Mongolia constituted a
‘high–high’ cluster in 2004; Heilongjiang, Jilin, Liaoning and
Inner Mongolia constituted a ‘high–high’ cluster in 2005. Since
2006, Inner Mongolia became a ‘low–high’ zone with the excep-
tion of 2014. Shaanxi used to be not different from its surround-
ing provinces, then it became an HFRS ‘hotspot’ and an obvious
‘high–low’ zone since 2011.

SARIMA model building for HFRS forecasting

The monthly HFRS incidence in mainland China were calculated
and plotted to show seasonal fluctuations (Fig. 3a). The results
showed that the monthly incidence of HFRS decreased sharply
from 2004 to 2009, then increased markedly from 2010 to 2012,
and have decreased again since 2013. The HFRS outbreaks were
found to vary seasonally, most cases occurred in the winter
(November to January) and early summer (May to July), and usu-
ally peaked in June and November.

HFRS incidence data from January 2004 to December 2016
were used to construct a fittest SARIMA model. The dataset
was split into a training period (January 2005 to December
2015), used as a platform for creating the SARIMA models, and
a validation period (January 2016 to December 2016), used to
test the models’ predictive ability. Autocorrelation function
(ACF) plots and partial autocorrelation function (PACF) plots
were used to determine the key parameters ( p, P, d, D, q, Q) of
SARIMA models. If all plots of ACF are close to zero, then this
dataset should be in a white noise series [25]. Figs 3b and c
showed that the monthly HFRS incidence was not white noise.

Table 1. The Global Moran’s I analysis for HFRS incidence

Year Moran’s I Z-score P Pattern

2004 0.388 3.896 <0.001 Cluster

2005 0.528 5.113 <0.001 Cluster

2006 0.468 4.949 <0.001 Cluster

2007 0.296 3.601 <0.001 Cluster

2008 0.225 2.390 0.017 Cluster

2009 0.275 2.810 0.005 Cluster

2010 0.056 0.886 0.376 NS

2011 0.014 0.455 0.649 NS

2012 −0.034 −0.037 0.970 NS

2013 0.172 1.797 0.072 NS

2014 0.297 2.975 0.003 Cluster

2015 0.162 1.712 0.087 NS

NS, not significant.
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Fig. 2. Yearly LISA cluster maps of HFRS at province level in mainland China, 2004–2015. *Per 100 000 persons.

Fig. 3. Temporal distribution of HFRS in mainland China from January 2004 to December 2016. (a) The values of monthly HFRS incidence; ACF plots (b) and PACF
plots (c) for monthly HFRS incidence.
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Then we performed one-order trend differencing, seasonal differ-
encing and augmented Dickey–Fuller test, which were necessary
to stabilise the variance of HFRS incidence. Figure 4a described
the temporal distribution of HFRS incidence in mainland China
from 2004 to 2015 after one-order trend differencing and seasonal
differencing. Figs 4b and c showed the ACF plots and PACF
plots for seasonality-adjusted monthly HFRS incidence after
differencing.

Concerning each parameter between zero and five (P, p, Q, q =
0, 1, 2, 3, 4, 5), various models were constructed and tested. The
SARIMA ((0,1,3) × (1,0,1)12) was selected to be the best-fit model,
which had the lowest value of AIC (AIC =−702.35) of all con-
structed models. The coefficients and standard errors of the para-
meters in SARIMA ((0,1,3) × (1,0,1)12) model were listed in
Table 2.

The Ljung–Box test was performed to examine the distribution
of the residuals, which were the differences between the observed
values from dataset and predicted values from the SARIMA
((0,1,3) × (1,0,1)12) model (Fig. 5a). All spikes in the ACF plots
of residuals were in significance limits (Fig. 5b). Figure 5c indi-
cated that the residuals had no autocorrelations and distributed
independently (P > 0.05). Figure 5 validated that these residuals
were white noise, which was desirable. Therefore, the fittest
SARIMA model appeared, which passed all the required checks
and was ready for prediction. Using this SARIMA ((0,1,3) ×
(1,0,1)12) model, we predicted the values of monthly HFRS inci-
dence from 2016 to 2020, then compared the predicted values
with the observed values in 2016. As shown in Figure 6, the
line of observed values almost coincided with the line of predicted
values. The SARIMA prediction model always has a relatively
wide 95% confidence interval, which is statistically acceptable
[26, 27].

Discussion

HFRS is a kind of highly fatal infectious disease with murine
being the major source of infection, and has caused severe influ-
ences worldwide. HFRS has been recognised as a serious public
health problem in mainland China since it remains one of the
top 10 communicable diseases for decades [28]. The incidence
of HFRS is highly variable at province level. In this study, the
application of GIS and spatial autocorrelation analysis provided

Fig. 4. Temporal distribution of HFRS in mainland China adjusted by first differencing and seasonal differencing, 2004–2016. (a) The values of adjusted monthly
HFRS incidence; ACF plots (b) and PACF plots (c) for adjusted monthly HFRS incidence.

Table 2. Coefficients and standard errors of the parameters in SARIMA
((0,1,3) × (1,0,1)12) model

Coefficient Standard error

MA1 −0.3289 0.0851

MA2 −0.1115 0.0980

MA3 −0.3418 0.0926

Seasonal AR1 0.9310 0.0309

Seasonal MA1 −0.1694 0.1196
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ways to quantify HFRS outbreaks and to further identify geo-
graphical risk factors for the disease.

Using GIS-based spatial statistics, we investigated the spatial
distribution of HFRS cases and identified provinces with high
endemic HFRS and clustering patterns. From 2004 to 2015, the
high endemic areas of HFRS have changed from northeastern
China (traditional epidemic areas) towards the middle and south-
east parts of China. As a whole, HFRS incidence showed an

obviously decreasing trend in most provinces, particularly in
Heilongjiang, Liaoning and Jilin. However, HFRS epidemic pre-
sented a trend of rebound in several provinces, such as Shaanxi,
Shandong and Jiangxi. Meanwhile, there was a decreasing trend
in the Global Moran’s I from 2004 to 2012, which indicated
that the distribution of HFRS outbreaks changed from cluster to
random, and then the Global Moran’s I turned out to increase
from 2012 to 2014, with reappearance of cluster aggregation of

Fig. 5. Standardised residuals from the SARIMA ((0,1,3) × (1,0,1)12) model applied to HFRS incidence, 2004–2015. (a) Values of standardised residuals of monthly
HFRS incidence; (b) ACF plots for standardised residuals in (a); (c) P values for the standardised residuals in (a) by Ljung–Box test.

Fig. 6. Forecasted counts of HFRS incidence in 2016 according to the SARIMA ((0,1,3) × (1,0,1)12) model. The solid red line represented the observed values; the solid
green line followed by blue line indicated the forecasted curve; the grey area showed the upper and lower 95% confidence limits for the forecasted counts.
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HFRS in 2014. This phenomenon could possibly be explained by
several factors. First, hantaviruses were mainly carried and trans-
mitted by rodents; the population density and types of rodent spe-
cies significantly impact on the occurrence of HFRS [6, 7, 29].
Previous reports demonstrated that the mice-positive rate
dropped from 2005 to 2011, but suddenly rose in 2012 in main-
land China [7, 11], which might be influenced by the changes of
climatic factors [30]. Second, effective vaccination programmes
have been conducted in traditional epidemic areas, such as
Heilongjiang, Liaoning and Jilin, and reduced the proportion of
infections resulting in HFRS in these traditional epidemic pro-
vinces [31–33]. Third, the ratio of rural population over total
population is decreasing year-by-year in mainland China. The
human migration (from rural areas to cities), urbanisation,
improvement of housing and workplace conditions could all
reduce the risk of human exposing to rodent excreta [3]. These
may also affect the incidence of HFRS as a decreased trend in
the whole period.

LISA detected spatial clusters of HFRS with high–high pattern.
The clusters with the high–high pattern were recognised as ‘hot-
spots’. Figure 2 showed that the northeast three provinces, Inner
Mongolia and Shaanxi were high-risk areas of HFRS epidemic,
closely correlated with meteorological factors including tempera-
ture, relative humidity, precipitation, vegetation type, land use and
multivariate El Niño Southern Oscillation (ENSO) [8, 34, 35]. We
assumed that the above meteorological factors could affect rodent
density and activity as well as infectivity of hantaviruses.
Moreover, socio-economic status may also contribute to high inci-
dence. Compared with provinces with similar high population
density in eastern and southern China, these areas have poorer
living conditions and sanitation, which increased the frequency
of contact between the human and rodent populations. Efficient
allocation of health resources for HFRS control and intervention
requires accurate information on its geographical distribution.
The LISA cluster maps suggested that the targeted policies for
prevention and control of HFRS should be made, particularly in
the regions of ‘high–high’ cluster and ‘high–low’ zone.

There is no universal model applicable to any environment
due to the inherent complexity of a time-series dataset in the
real world [36]. In our study, the model was designed to improve
the forecasting accuracy from the data driven by incorporating the
intrinsic characteristics of the historical time-series data on HFRS
incidence in mainland China. Due to the seasonal variations in
HFRS epidemic, a seasonal ARIMA model can adequately simu-
late the HFRS. We applied SARIMA (( p, d, q) × (P, D, Q)S) mod-
els to analyse the surveillance data of HFRS in mainland China.
After adjusting for these trends in HFRS incidence, the best fit
to the dataset was a SARIMA ((0,1,3) × (10,1)12) model, with
the lowest value of AIC, which indicated that the number of
monthly HFRS incidence can be estimated from the incidence
occurring 12 months before, including differencing over 1 adja-
cent month. Again, the moving average parameters indicated a
drop-in magnitude of average HFRS incidence in a given
month compared with 3 and 12 months before. HFRS control
in China follows the principle of ‘three-early and one-in-place’,
namely, early discovery, early rest, early treatment and in-place
isolation treatment, which renders great progress in the preven-
tion of HFRS [37]. In accordance with the previous studies
[14, 38], our time-series analytic results showed a decreasing
trend of HFRS incidence since 2004, indicated that the epidemic
trend of HFRS in China was under control and the control strat-
egies had attained certain achievements. With the utilisation of

a SARIMA model, the short-term predicting results expected
that HFRS incidence would continue to decline over the next
year, which implied that the national monitoring programme
would continue to operate effectively in HFRS control in the
near future.

Our research has some advantages in terms of study and pre-
vent HFRS epidemic. Our study focused on the spatial and tem-
poral epidemiology of HFRS in mainland China; the dataset was
large and accurate. Several studies have been done on the spatio-
temporal epidemiology of HFRS in specific provinces of China,
but regarding to nationwide data, few research could be found.
With the help of a SARIMA model, it is reasonable for the gov-
ernment to allocate health resources to control HFRS epidemic
efficiently. If the forecasted values continue to rise, the govern-
ment should allocate more resources into health interventions
in advance. It can also be useful to evaluate the effectiveness of
currently used intervention strategies by the change of forecasting
trend of HFRS incidence. We confirm that our study is able to
assist public health officials in HFRS controlling, epidemics pre-
diction and medical service sources disposition.

Limitations of this study should also be acknowledged. In add-
ition to the inherent features of time series, time-series data on
other influencing factors were not mentioned, such as economic
factors and human activities; it was difficult to further uncover
the probable causes and shifts of HFRS outbreaks. Future
researches are warranted to focus on the risk factors of HFRS to
modify the ARIMA model, such as rodent population density,
human activities, socio-economic and environmental factors, par-
ticularly in the ‘hotspot’ provinces.

Conclusions

This study explored the spatiotemporal features of HFRS from
2004 to 2015 in mainland China, using GIS, GISA and LISA ana-
lyses. A SARIMA model was constructed to monitor and predict
the trends of HFRS outbreaks. Our results provided latest data
and decision support tools for the hygiene authorities to design
and implement effective measures for the control and prevention
of HFRS in China.

Supplementary materials. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268818002030

File S1. The data on the HFRS incidence in mainland China.
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