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Abstract

We construct an S3-symmetric probability distribution on {(a, b, c) ∈ Z3
>0 : a+b+c = n} such that

its marginal achieves the maximum entropy among all probability distributions on {0, 1, . . . , n}with
mean n/3. Existence of such a distribution verifies a conjecture of Kleinberg et al. [‘The growth rate
of tri-colored sum-free sets’, Discrete Anal. (2018), Paper No. 12, arXiv:1607.00047v1], which is
motivated by the study of sum-free sets.

2010 Mathematics Subject Classification: 11B30 (primary); 05D40 (secondary)

1. Introduction

The recent breakthrough by Croot, Lev and Pach [2] and the subsequent
solution of the cap-set problem by Ellenberg and Gijswijt [3] led to a dramatic
improvement of known upper bounds on the size of maximum sum-free sets
in powers of finite groups. Blasiak et al. [1] extended the Ellenberg–Gijswijt
result to multicolored sum-free sets. Even more recently, Kleinberg, Sawin and
Speyer [5] established upper bounds for the multicolored version which are
essentially tight. Let us state the main result of [5], which motivates our work.

Let p be a prime. A tri-colored sum-free set in Fn
p is a collection of triples {(xi ,

yi , zi)}
m
i=1 of elements of Fn

p such that xi + y j + zk = 0 if and only if i = j = k.
Kleinberg, Sawin and Speyer establish an upper bound m 6 eγpn on the size of a
tri-colored sum-free set in Fn

p, where γp is as follows.
The entropy of a probability distribution µ on a finite set I is defined as

η(µ) =
∑
i∈I

µ(i) logµ(i),
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where we interpret 0 log 0 as 0. Let T = {(a, b, c) ∈ Z3
>0 : a + b + c = p −

1}. Let π be an S3-symmetric probability distribution on T , and let µ(π) be the
marginal probability distribution of π on [0, p − 1] corresponding to the first
coordinate. (We denote the set of consecutive integers {n, n + 1, . . . , n + k} by
[n, n + k].) (As π is S3-symmetric, the choice of a coordinate is irrelevant.) Let
γp be the maximum entropy of µ(π) over S3-symmetric probability distributions
π on T .

THEOREM 1 (Kleinberg, Sawin and Speyer [5]). (In the published version of [5],
the upper bound part of the statement of Theorem 1, as well as the examples for
n 6 25 referenced later, were removed, as the proofs of Theorem 2 in an earlier
version of this article, and independent work of Pebody [6], showed that they
were unnecessary, but they are still available in the referenced arxiv version.)
All tri-colored sum-free sets in Fn

p have size at most eγpn . Moreover, there exist
tri-colored sum-free sets in Fn

p of size at least eγpn−o(n).

Every marginal of a symmetric probability distribution on T has mean (p−1)/3.
Therefore, γp is at most the maximum entropy of a probability distribution on
[0, p−1] with this mean. The main result of this paper, which was independently
obtained by Pebody [6], gives a proof of [5, Theorem 4] showing that the equality
holds.

THEOREM 2. For every n > 1, there exists an S3-symmetric probability
distribution π on {(a, b, c) ∈ Z3

>0 : a + b + c = n} such that µ(π) achieves the
maximum entropy among probability distributions on [0, n] with mean n/3.

While the definition of γp above already implies that it is a computable
constant, Theorem 2 provides a much simpler description. As noted in [5], a
direct calculation shows that if µ has the maximum entropy among probability
distributions on [0, n] with mean n/3, then

µ(i) =
ρ i

1+ ρ + · · · + ρn
, (1)

where ρ is the unique positive real solution to the equation

n∑
i=0

iρ i
=

n
3

n∑
i=0

ρ i . (2)

Further, Theorem 2 confirms that the upper bound in Theorem 1 coincides with
the bounds established for sum-free sets in [3] and three-colored sum-free sets
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A distribution with maximum entropy marginal 3

in [1]. The value of γp is also of interest as it appears in the tight bound for the
arithmetic triangle removal lemma of Fox and Lovász [4].

We construct a distribution π satisfying Theorem 2 explicitly. Examples of the
distributions satisfying Theorem 2 for n 6 25 are provided in [5]. Based on these
examples and additional experimentation, we construct a simple S3-symmetric
function of {(a, b, c) ∈ Z3

>0 : a + b + c = n} with the marginal given by (1).
This construction is presented in Section 2 along with the necessary notation.
Unfortunately, the constructed function fails to be nonnegative for n > 28. In
Section 3, we modify via a sequence of ‘local’ changes to establish Theorem 2 in
full generality.

2. Notation and the first attempt

Fix positive integer n for the remainder of the paper. Let T = {(a, b, c) ∈ Z3
>0 :

a+b+c = n}. The probabilistic distributions we are interested in form a polytope
in RT , and vectors in RT will be the main object of study in the remainder of the
paper. We use the convention v = (vabc)(a,b,c)∈T , that is, we denote by vabc the
component of the vector v corresponding to a triple (a, b, c) ∈ T . Let {e(a, b,
c)}(a,b,c)∈T be the standard basis of RT . We say that a vector v ∈ RT is symmetric
if vi1i2i3 = viσ(1)iσ(2)iσ(3) for every permutation σ ∈ S3. Let W ⊆ RT be the vector
space of symmetric vectors. For (i1, i2, i3) ∈ T , define

s(i1, i2, i3) =
∑
σ∈S3

e(iσ(1), iσ(2), iσ(3)).

The set {s(a, b, c) | (a, b, c) ∈ T, a 6 b 6 c} forms a convenient basis of W . For
v ∈ RT and a ∈ [0, n], define

µa(v) =

n−a∑
i=0

vai(n−a−i),

and let µ : RT
→ R[0,n] be defined by

µ(v) = (µ0(v), µ1(v), . . . , µn(v)).

Note that importantly

µi(s(a, b, c)) = 2(δia + δib + δic), (3)

for i ∈ [0, n] and (a, b, c) ∈ T , where δ is the Kronecker delta.
Let ρ de defined by (2). Clearly, ρ < 1. Define

r = (n, nρ, . . . , nρn) ∈ R[0,n].
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We say that v ∈ RT is ρ-marginal if µ(v) = r . Let R denote the set of symmetric,
ρ-marginal vectors in RT . Note that R is an affine space and R = v+(Ker(µ)∩W )

for any v ∈ R.
It is easy to see that the next theorem is a reformulation of Theorem 3 using the

introduced terminology. (Note that, for convenience, we scaled the target marginal
by n(1+ ρ + · · · + ρn).)

THEOREM 3. There exists a nonnegative vector π ∈ R.

We construct an explicit, albeit not particularly elegant, vector π satisfying
Theorem 3. As a first step in this section, we construct an auxiliary vector β ∈ R,
which has a compact description and will be the starting point of the general
construction. In Section 3, we finish the construction of π by defining a generating
set of Ker(µ) consisting of vectors with small support and adding an appropriate
linear combination of these vectors to β.

We now define β. Let

βabc = ρ
a
− ρn−a

+ ρb
− ρn−b

+ ρc
− ρn−c, (4)

for (a, b, c) ∈ T , a, b, c > 1, let

βa0(n−a) =

a−1∑
i=1

(−ρ i
+ ρn−i)+

a − 1
2

ρa
+

n − a + 1
2

ρn−a, (5)

for 1 6 a 6 n/2, let
β00n = nρn (6)

and define the components of β for the remaining triples in T by symmetry so
that β is symmetric.

LEMMA 4. The vector β is ρ-marginal.

Proof. First, let us note that the identity (5) also holds for n/2< a 6 n−1. Indeed,
for such i , we have

βa0(n−a) =

n−a−1∑
i=1

(−ρ i
+ ρn−i)+

n − a − 1
2

ρn−a
+

a + 1
2

ρa

=

n−a−1∑
i=1

(−ρ i
+ ρn−i)+

a∑
i=n−a

(−ρ i
+ ρn−i)+

n − a − 1
2

ρn−a
+

a + 1
2

ρa

=

a−1∑
i=1

(−ρ i
+ ρn−i)− ρa

+ ρn−a
+

n − a − 1
2

ρn−a
+

a + 1
2

ρa
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=

a−1∑
i=1

(−ρ i
+ ρn−i)+

a − 1
2

ρa
+

n − a + 1
2

ρn−a,

as desired.
Now we are ready to verify that µa(β) = nρa for every a ∈ [0, n]. We have

µn(β) = nρn by (6). For 1 6 a 6 n − 1, we have

µa(β) =

n−a∑
i=0

βai(n−a−i) =

n−a−1∑
i=1

(ρa
− ρn−a

+ ρ i
− ρn−i

+ ρn−a−i
− ρa+i)

+ 2
a−1∑
i=1

(−ρ i
+ ρn−i)+ (a − 1)ρa

+ (n − a + 1)ρn−a

= (n − a − 1)(ρa
− ρn−a)+ 2

n−a−1∑
i=1

(ρ i
− ρn−i)− 2

a−1∑
i=1

(ρ i
− ρn−i)

+ (a − 1)ρa
+ (n − a + 1)ρn−a

= (n − 2)ρa
+ 2ρn−a

+ 2(ρa
− ρn−a) = nρa,

as desired. Finally, we have

µ0(β) =

n∑
i=0

β0i(n−i)

= 2nρn
+

n−1∑
i=1

( i−1∑
j=1

(−ρ j
+ ρn− j)+

i − 1
2

ρ i
+

n − i + 1
2

ρn−i

)

= 2nρn
+

n−1∑
i=1

(−(n − i − 1)+ (i − 1)+ i)ρ i

=

n∑
i=1

(3i − n)ρ i
= n +

n∑
i=0

(3i − n)ρ i
= n,

where the last equality uses (2).

Upon cursory examination, β appears to be a promising candidate for a
nonnegative vector in R. In fact, β is the only vector in R for n 6 5. In general,
it is easy to see that βabc > 0 for a, b, c > 1. Unfortunately, β is nonnegative
only for n 6 27, whereas β0bn/2cdn/2e < 0 for n > 28. Thus, we have to modify
β by adding to it an appropriate vector in Ker(µ). This is the goal of the next,
somewhat technical section.
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3. Flattening β

Given (a, b, c) ∈ T and x, y ∈ N such that b > x , c > x+ y, we define a vector

mx,y(a, b, c) = −s(a, b, c)+ s(a + x, b − x, c)
− s(a + x + y, b − x, c − y)+ s(a + x + y, b, c − x − y)
− s(a + x, b + y, c − x − y)+ s(a, b + y, c − y).

CLAIM 5. We have mx,y(a, b, c) ∈ Ker(µ)∩W for all (a, b, c) ∈ T and x, y ∈ N
such that b > x , c > x + y.

Proof. Clearly, mx,y(a, b, c) ∈ W . Therefore, we only need to show that
µi(mx,y(a, b, c)) = 0 for every i ∈ [0, n]. This follows immediately from (3), as
each Kronecker deltas δi j for j ∈ {a, a + x, a + x + y, b, b− x, b+ y, c, c− y,
c− x − y} will appear the same number of times with positive and negative signs
in the expansion of µi(mx,y(a, b, c)) using (3).

We think of vectors mx,y(a, b, c) as directions, along which a vector in R can
be shifted to obtain another vector in R differing from the original only in a few
coordinates. In the remainder of the section, we describe a collection of such shifts
which transform β into a nonnegative vector.

We will only use a subset of the vectors defined above of the following form.
m(b→ a) = mdb/2e,a−b(0, b, n − b) for 2 6 b < a 6 n/2. That is,

m(b→ a) = −s(0, b, n − b)+ s(db/2e, bb/2c, n − b)
− s(a − bb/2c, bb/2c, n − a)+ s(a − bb/2c, b, n − a − db/2e)
− s(db/2e, a, n − a − db/2e)+ s(0, a, n − a). (7)

We obtain π from β by adding to it a linear combination of vectors m(b→ a).
The coefficients of these vectors, which we define next, are chosen so that, in
particular, π0a(n−a) = π0b(n−b) for 2 6 a, b 6 n − 2. (Hence, we think of the
construction of π as ‘flattening β’.) Denote β0i(n−i) by zi for brevity, and let

cb =
2

n + 1− 2b

(
zb −

1
n − 1− 2b

n−b−1∑
i=b+1

zi

)

=

∑n−b
i=b zi

n + 1− 2b
−

∑n−b−1
i=b+1 zi

n − 1− 2b
.

Let cba = cb for 2 6 b < a < n/2 and let cb(n/2) =
cb
2 for even n.
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We are now ready to define π :

π = β +
∑

26b6n/2−1

∑
b+16a6n/2

cba m(b→ a) (8)

In the remainder of the section, we show that π satisfies Theorem 3. It follows
from Claim 5 that π ∈ R. Thus, it remains to show that πabc > 0 for (a, b, c) ∈ T .
This is accomplished in the following series of claims.

CLAIM 6. For 2 6 a 6 n/2, we have

π0a(n−a) =
n

n − 2
(1− ρn

− ρn−1/2) > 0. (9)

Proof. We have π00n = nρn , π01n = nρn−1/2 and µ0(π) = n, as π is ρ-marginal.
Thus, to establish (9), it suffices to verify that π0an−a = π0bn−b for 2 6 a, b 6 n−2.
Define

π i
= β +

∑
i6b6n/2−1

∑
b+16a6n/2

cba m(b→ a).

We will show by induction on n/2− b that

π b
0a(n−a) =

∑n−b
i=b zi

n + 1− 2b
(10)

for every b 6 a 6 n − b. The identity (10) for b = 2 implies the claim.
The base case b = bn/2c is trivial. For the induction step and b < a < n − b

π b
0a(n−a) = π

b+1
0a(n−a) + cb

=

∑n−b
i=b zi

n − 1− 2b
+

( ∑n−b
i=b zi

n + 1− 2b
−

∑n−b−1
i=b+1 zi

n − 1− 2b

)
=

∑n−b
i=b zi

n + 1− 2b
,

as desired, as zb = zn−b. Finally,

π b
0b(n−b) = π

b+1
0b(n−b) −

n − 1− 2b
2

cb

= zb −
n − 1− 2b
n + 1− 2b

(
zb −

1
n − 1− 2b

n−b−1∑
i=b+1

zi

)

=

∑n−b
i=b zi

n + 1− 2b
,

finishing the proof of the identity in (10).
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It remains to show that ρn
+ ρn−1/2 6 1. Using (2), we have

n(n + 1)
3

(
ρn
+
ρn−1

2

)
6 nρn

+
n(n − 1)

2
ρn−1

6
n∑

i=0

iρ i
=

n
3

n∑
i=0

ρ i 6
n(n + 1)

3
,

implying the desired inequality.

We now proceed to establish the estimates which will allow us to prove the
nonnegativity of π . We start with a couple of indirect bounds on ρ.

CLAIM 7. We have

ρn/2+1 >
2
3e
. (11)

Proof. It can be verified by a computer that ρn/2+1 > 1/3 for n 6 15. Thus, (11)
holds for n 6 15, and we assume n > 16.

Let α = (n + 2)(1− ρ)/ρ. Then ρ = (n + 2)/(n + 2+ α), and

ρn+1 > ρn+2
=

1
(1+ α/(n + 2))n+2

> e−α. (12)

We claim that α 6 2 log(3e/2). Note that by (12), this claim implies (11).
We start the proof of the claim by multiplying both sides of (2) by (1 − ρ)2,

expanding and rearranging terms to obtain

(n + 3)ρ − n − ρn+1((2n + 3)− 2nρ) = 0.

Using (12) to bound ρn+1 and otherwise expressing ρ in terms of α, we get

(n + 3)(n + 2)
n + 2+ α

− n − e−α
(

2n + 3−
2n(n + 2)
n + 2+ α

)
> 0.

Multiplying the above inequality by n + 2+ α, we obtain

3n + 6− nα − e−α(3n + 6+ (2n + 3)α) > 0.

Let f (x, n) = 3n + 6− nx − e−x(3n + 6+ (2n + 3)x). We have f (2 log(3e/2),
16) = −0.14055 . . ., and ∂ f

∂x (x, n) and ∂ f
∂n (x, n) are easily seen to be negative for

x > 2 log(3e/2) and n > 16. Thus, f (x, n) < 0 for all x > 2 log(3e/2) and
n > 16. As f (α, n) > 0, we have α < 2 log(3e/2), as desired.
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Define
δ =

1− ρ
eρ

.

CLAIM 8. We have
(i + 1)(1− ρ)2ρ i 6 δ,

for all i > 0.

Proof. By the arithmetic mean–geometric mean inequality, we have(
ρ

i + 1

)i+1

(1− ρ) 6
(

1
i + 2

)i+2

.

Therefore,

(i + 1)(1− ρ)2ρ i 6
(1− ρ)
ρ

(
i + 1
i + 2

)i+2

6
(1− ρ)
ρ

1
e
= δ,

as desired.

Next we estimate cb. Define ∆b = zb − zb+1. Direct calculation shows that

∆b =
1
2 ((b + 1)ρb

− bρb+1
+ (n − b − 1)ρn−b

− (n − b)ρn−b−1).

CLAIM 9. We have
∆i+1 6 ∆i 6 ∆i+1 + δ

for all 1 6 i 6 n − 1.

Proof. We have

2(∆i −∆i+1) = (i + 1)ρ i
− (2i + 2)ρ i+1

+ (i + 1)ρ i+2

+ (n − i − 1)ρn−i−2
− 2(n − i − 1)ρn−i−1

+ (n − i − 1)ρn−i

= (1− ρ)2((i + 1)ρ i
+ (n − i − 1)ρn−i−2).

The last term is clearly nonnegative, and it is at most 2δ by Claim 8. Thus, the
claim holds.

CLAIM 10. We have
0 6 ∆i 6

δ(n − 1− 2i)
2

,

for all integers 1 6 i 6 (n − 1)/2.

Proof. As zi = zn−i , we have ∆i = −∆n−1−i for all i . Thus, if n is odd, we have
∆(n−1)/2 = 0. For even n, we have∆n/2 = −∆n/2−1, and∆n/2 6 ∆n/2−1 6 ∆n/2+δ
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by Claim 9. Thus, 0 6∆n/2−1 6 δ/2. This establishes the claim for i ∈ {(n−1)/2,
n/2− 1}.

The claim for general i follows directly from Claim 9 by induction on bn/2c−i ,
with the result of the preceding paragraph used as the base case.

CLAIM 11. We have
cb 6

δ(n − 2b)
6

(13)

for every positive integer 2 6 b 6 n/2− 1.

Proof. As in Claim 10, the proof is by induction on bn/2c − b, and the base case
is b = bn/2c − 1.

Suppose first that n is even. Then n = 2b+2 in the base case, and cb = 2∆b/3 by
definition. As 0 6 ∆b 6 δ/2 by Claim 10, (13) holds. If n is odd, then n = 2b+3,
cb = ∆b/2 and 0 6 ∆b 6 δ by Claim 10, implying that (13) once again holds.
This finishes the proof of the base case.

For the induction step, note that

(n + 1− 2b)(n − 1− 2b)cb

2

= (n − 1− 2b)zb −−

n−b−1∑
i=b+1

zi

= (n − 1− 2b)∆b + (n − 1− 2b)zb+1 −

n−b−1∑
i=b+1

zi

= (n − 1− 2b)∆b + (n − 1− 2(b + 1))zb+1 −

n−b−2∑
i=b+2

zi

= (n − 1− 2b)∆b +
(n − 1− 2b)(n − 3− 2b)cb+1

2
.

Thus,

cb =
2∆b + (n − 3− 2b)cb+1

(n + 1− 2b)
.

Using the bounds on ∆b from Claim 10 and the induction hypothesis applied to
cb+1, we obtain

0 6 cb 6
δ(n − 1− 2b)+ δ(n − 3− 2b)(n − 2− 2b)/6

n + 1− 2b
=
δ(n − 2b)

6
,

as desired.

https://doi.org/10.1017/fms.2019.47 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.47


A distribution with maximum entropy marginal 11

CLAIM 12. We have
ρb
− ρn−b > 4cb

for all positive integers 2 6 b 6 n/2− 1.

Proof. Let

f (x) = ρx
− ρn−x

−
2δ(n − 2x)

3
.

By Claim 11, it suffices to show that f (x) > 0 for all x 6 n/2. As f (n/2) = 0,
and f ′′(x) > 0 for x 6 n/2, it is enough to verify that f ′(n/2) 6 0, that is,

−2ρn/2 log ρ >
4
3
δ =

4(1− ρ)
3eρ

.

As − log ρ > 1− ρ, the above is implied by Claim 7.

The next claim finishes the proof of Theorem 3.

CLAIM 13. We have πxyz > 0 for (x, y, z) ∈ T , x, y, z > 1.

Proof. Assume that x 6 y 6 z. Suppose that the component corresponding to
(x, y, z) is negative in m(b→ a) for some 2 6 b < a 6 n/2. Direct examination
of (7) shows that, if z > n/2, then

(N1) either b ∈ {2x, 2x + 1} and a = x + y, in which case (x, y, z) = (bb/2c,
a − bb/2c, n − a), or

(N2) b ∈ {2x, 2x−1}, a = y, in which case (x, y, z) = (db/2e, a, n−a−db/2e).

If z < n/2, then

(N2) either b ∈ {2x, 2x − 1} and a = y, (x, y, z) = (db/2e, a, n− a−db/2e) as
before or

(N3) b ∈ {2x, 2x−1}, a = z, in which case (x, y, z) = (db/2e, n−a−db/2e, a).

If z = n/2, then any of the above cases can potentially occur, but in cases (N1)
and (N3), the component of m(b→ a) corresponding to (x, y, z) is equal to cb/2
rather than cb.

Suppose first that x < y < z. By the above analysis, the total negative
contribution to πxyz of vectors m(b → a) for 2 6 b < a 6 n/2 is at most
4 max{c2x , c2x+1, c2x−1} 6 ρx

−ρn−x , where the last inequality holds by Claim 12.
Thus,

πxyz > βxyz − ρ
x
− ρn−x > (ρz

− ρn−y)+ (ρ y
− ρn−z) > 0,

as desired.
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Finally, suppose that x 6 y 6 z, and one of these inequalities is nonstrict. Then
a vector m(b→ a) can only contribute negatively to πxyz if x < y = z and (x, y,
z) = (db/2e, a, n−a−db/2e). Note that in this case, the component of m(b→ a)
corresponding to (x, y, z) is equal to 2cb, rather than cb, but the bound 4 max{c2x ,

c2x+1, c2x−1} on the total negative contribution established in the previous case
still holds.
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