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Abstract

We construct an S;-symmetric probability distribution on {(a, b, ¢) € Z’;O . a+b+c = n} such that
its marginal achieves the maximum entropy among all probability distributions on {0, 1, ..., n} with
mean n/3. Existence of such a distribution verifies a conjecture of Kleinberg et al. [‘The growth rate
of tri-colored sum-free sets’, Discrete Anal. (2018), Paper No. 12, arXiv:1607.00047v1], which is
motivated by the study of sum-free sets.

2010 Mathematics Subject Classification: 11B30 (primary); 05D40 (secondary)

1. Introduction

The recent breakthrough by Croot, Lev and Pach [2] and the subsequent
solution of the cap-set problem by Ellenberg and Gijswijt [3] led to a dramatic
improvement of known upper bounds on the size of maximum sum-free sets
in powers of finite groups. Blasiak et al. [1] extended the Ellenberg—Gijswijt
result to multicolored sum-free sets. Even more recently, Kleinberg, Sawin and
Speyer [5] established upper bounds for the multicolored version which are
essentially tight. Let us state the main result of [5], which motivates our work.

Let p be a prime. A tri-colored sum-free set in ) is a collection of triples {(x;,
vi, i)}, of elements of IF'[’, such that x; + y; + zz = Oifand only if i = j = k.
Kleinberg, Sawin and Speyer establish an upper bound m < e"”" on the size of a
tri-colored sum-free set in IF:‘,, where y,, is as follows.

The entropy of a probability distribution p on a finite set [ is defined as

n(w) =Y i) log (i),
iel
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where we interpret 0log0 as 0. Let T = {(a, b, c) € Z;O ca+b+c=p-
1}. Let w be an S3-symmetric probability distribution on 7', and let w(;r) be the
marginal probability distribution of 7 on [0, p — 1] corresponding to the first
coordinate. (We denote the set of consecutive integers {n,n + 1,...,n + k} by
[n,n 4 k].) (As 7 is S3-symmetric, the choice of a coordinate is irrelevant.) Let
¥, be the maximum entropy of 1(77) over S3-symmetric probability distributions
monT.

THEOREM 1 (Kleinberg, Sawin and Speyer [5]). (In the published version of [5],
the upper bound part of the statement of Theorem 1, as well as the examples for
n < 25 referenced later, were removed, as the proofs of Theorem 2 in an earlier
version of this article, and independent work of Pebody [6], showed that they
were unnecessary, but they are still available in the referenced arxiv version.)
All tri-colored sum-free sets in Fﬁ have size at most e’*". Moreover, there exist
tri-colored sum-free sets in F; of size at least """

Every marginal of a symmetric probability distribution on 7" has mean (p—1)/3.
Therefore, y, is at most the maximum entropy of a probability distribution on
[0, p — 1] with this mean. The main result of this paper, which was independently
obtained by Pebody [6], gives a proof of [5, Theorem 4] showing that the equality
holds.

THEOREM 2. For every n = 1, there exists an S;-symmetric probability
distribution w on {(a, b, ¢) € Z;O :a—+ b+ c = n} such that u(mw) achieves the
maximum entropy among probability distributions on [0, n] with mean n/3.

While the definition of y, above already implies that it is a computable
constant, Theorem 2 provides a much simpler description. As noted in [5], a
direct calculation shows that if x has the maximum entropy among probability
distributions on [0, n] with mean n/3, then

pi
l+p+--+p"

w(i) = (D

where p is the unique positive real solution to the equation

PEEDIE @)
i=0 i=0

Further, Theorem 2 confirms that the upper bound in Theorem 1 coincides with
the bounds established for sum-free sets in [3] and three-colored sum-free sets
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in [1]. The value of y, is also of interest as it appears in the tight bound for the
arithmetic triangle removal lemma of Fox and Lovész [4].

We construct a distribution 7 satisfying Theorem 2 explicitly. Examples of the
distributions satisfying Theorem 2 for n < 25 are provided in [5]. Based on these
examples and additional experimentation, we construct a simple S;-symmetric
function of {(a, b, c) € Z;O : a + b + ¢ = n} with the marginal given by (1).
This construction is presented in Section 2 along with the necessary notation.
Unfortunately, the constructed function fails to be nonnegative for n > 28. In
Section 3, we modify via a sequence of ‘local’ changes to establish Theorem 2 in
full generality.

2. Notation and the first attempt

Fix positive integer n for the remainder of the paper. Let T = {(a, b, ¢) € Z;O :
a+b+c = n}. The probabilistic distributions we are interested in form a polytope
in R”, and vectors in R” will be the main object of study in the remainder of the
paper. We use the convention v = (Vupc)@.p.0er, that is, we denote by v, the
component of the vector v corresponding to a triple (a, b,c) € T. Let {e(a, b,
)} a.b.crer be the standard basis of R”. We say that a vector v € R” is symmetric
if Vi\iyiy = Vi,)isise TOT €very permutation o € S;. Let W € R” be the vector
space of symmetric vectors. For (i, i3, i3) € T, define

§(iy, 12, 03) = Z e(iz1), ls2)s lo@3)-

o€S3

The set {s(a, b,c)|(a,b,c) € T,a < b < c} forms a convenient basis of W. For
v e R" and a € [0, n], define

n—a
/’La(v) = Z Vai(n—a—i)»
i=0

and let u : RT — RI*" be defined by
pn(@) = (o(©), 1 (v), ..., 1a(v)).
Note that importantly
pi(s(a, b, c)) =2(8ia + 8ip + 8ic)s 3)

fori € [0, n] and (a, b, ¢) € T, where § is the Kronecker delta.
Let p de defined by (2). Clearly, p < 1. Define

r=(n,np,...,np") € RO
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We say that v € R” is p-marginal if ;1(v) = r. Let R denote the set of symmetric,
p-marginal vectors in R”. Note that R is an affine space and R = v+ (Ker(u)NW)
forany v € R.

It is easy to see that the next theorem is a reformulation of Theorem 3 using the
introduced terminology. (Note that, for convenience, we scaled the target marginal
byn(1+p+---+p".)

THEOREM 3. There exists a nonnegative vector & € R.

We construct an explicit, albeit not particularly elegant, vector & satisfying
Theorem 3. As a first step in this section, we construct an auxiliary vector 8 € R,
which has a compact description and will be the starting point of the general
construction. In Section 3, we finish the construction of & by defining a generating
set of Ker(u) consisting of vectors with small support and adding an appropriate
linear combination of these vectors to .

We now define . Let

Bave = p — "+ p" — p" "+ p¢ = p" 7, )
for (a,b,c) e T,a,b,c > 1, let
a—1
i n—i a—1 a I’l—[l+1 n—a
Buoo-wy = Y (=0 + ")+ ——p" + ———p"", )
i=1
forl <a <n/2,let
Boon = np" (6)

and define the components of B for the remaining triples in 7 by symmetry so
that B is symmetric.

LEMMA 4. The vector B is p-marginal.

Proof. First, let us note that the identity (5) also holds forn/2 < a < n—1. Indeed,
for such i, we have

n—a—1 m—a—1 a+1
/3a0(n7a) — Z (_pl_’_pn_l)_’_Tpn—a_{_ 2 pa
i=1
n—a—1 a
i n—i i n—i n—a—1 n—a a+1 a

_l;(—vap )+i§a(p+p )+ T

a—1 ; n—i a ey n—a-—1 . a+1 ,
=Y (= +p =P +p SR

i=1
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a—1 a+n—a—|—l
3 Y

n—a

> P

a—1
= (' +p"H+
i=1

as desired.
Now we are ready to verify that u,(8) = np* for every a € [0, n]. We have
Un(B) =np" by (6). For 1 <a <n—1, wehave

n—a—1

Ma(ﬂ) Z,Baz(n a—i) — Z (/0 ,0 _,On l+,0" a- '—,0“‘”)

a—1

+2) (=P + ")+ @ = Dpt + (n—a+ Do
i=l

n—a—1

a—1
=(n—a—DE" =p"+2 ) (o' =p")=2) () —p")
i=l1 i=l1

+@—-Dp+m—a+1)p"*
= (n—2)p" + 20" +2(p" — p"*) = np“,

as desired. Finally, we have

Mo(ﬂ) = Z ,BOi(nfi)

< i—-1, n—i+1 .
= 2np" +Z<Z( Pt ")+ " )
i=1

= 2np" + Z(—(n —i—D+G-D+i)p

i=1

=Y @i—-mp'=n+Y Gi—n)p =n,

i=l i=0

where the last equality uses (2). 0

Upon cursory examination, f appears to be a promising candidate for a
nonnegative vector in R. In fact, B is the only vector in R for n < 5. In general,
it is easy to see that 8,,. > O for a, b, ¢ > 1. Unfortunately, § is nonnegative
only for n < 27, whereas Bojn/2jm/21 < 0 for n > 28. Thus, we have to modify
B by adding to it an appropriate vector in Ker(u). This is the goal of the next,
somewhat technical section.
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3. Flattening
Given (a,b,c) € T and x, y € Nsuchthat b > x, c > x4+ y, we define a vector

m*(a,b,c) =—s(a,b,c)+s(a+x,b—x,c)
—s(a+x+y,b—x,c—y)+sa+x+y,b,c—x—y)
—s@a+x,b+y,c—x—y)+s@b+y,c—y).

CLAIM 5. We have m*Y(a, b, c¢) € Ker(u)NW forall (a,b,c) e Tandx,y € N
suchthatb > x,c > x + y.

Proof. Clearly, m*”(a,b,c) € W. Therefore, we only need to show that
wi(m*?(a, b, c)) = 0 for every i € [0, n]. This follows immediately from (3), as
each Kronecker deltas §;; for j e {a,a+x,a+x+y,b,b—x,b+y,c,c—y,
¢ — x — y} will appear the same number of times with positive and negative signs
in the expansion of u; (m*”(a, b, c)) using (3). I

We think of vectors m* ¥ (a, b, ¢) as directions, along which a vector in R can
be shifted to obtain another vector in R differing from the original only in a few
coordinates. In the remainder of the section, we describe a collection of such shifts
which transform § into a nonnegative vector.

We will only use a subset of the vectors defined above of the following form.
mb — a) =m"?72, b, n — b) for2 < b < a < n/2. That is,

m(b — a) = —s(0,b,n — b) +s([b/2], [b/2],n — b)
—s(a—|b/2],b/2),n —a) +s(a— |b/2],b,n —a —[b/2])
—s([b/2],a,n —a — [b/2]) +s(0,a,n — a). (7

We obtain & from B by adding to it a linear combination of vectors m(b — a).
The coefficients of these vectors, which we define next, are chosen so that, in

particular, mo,(n—a) = Topm-p) for 2 < a, b < n — 2. (Hence, we think of the
construction of & as ‘flattening B°.) Denote By;—i) by z; for brevity, and let

2 1 n—b—1
cb:n—i—l—Zb(Zb_n—l—Zb 2 Z")

i=bt1
n— n—b—1
_ Zi:: G i1 %
n+1—-2b n—1-2b

Let ¢y = ¢, for2 < b < a < n/2 and let ¢y,2 = 7 for even n.
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We are now ready to define x:

r=B+ Y Y cumb—a) ®)

2<b<n/2—1 b+1<a<n/2

In the remainder of the section, we show that & satisfies Theorem 3. It follows
from Claim 5 that & € R. Thus, it remains to show that 7., > O for (a, b,c) € T.
This is accomplished in the following series of claims.

CLAIM 6. For2 < a < n/2, we have

n
Toan-a) = —— (1 = p" = p"7'/2) > 0. ©)
n—2

Proof. We have my, = np", mo1, = np"~'/2 and po(mw) = n, as 7 is p-marginal.
Thus, to establish (9), it suffices to verify that my,,_, = mop,—p for2 < a, b < n-2.

Define
=8+ Z Z cram(b — a).

i<b<n/2—-1 b+1<a<n/2
We will show by induction on n/2 — b that
n—>b
b _ Dich G
fatn=a) ="y 4 1 —2b

for every b < a < n — b. The identity (10) for » = 2 implies the claim.
The base case b = |n/2] is trivial. For the induction stepand b <a <n — b

(10)

b _ b+l
TrOa(n—a) - 7T0a(nfa) + Cp

b b —b—1
Z?:b Zi n < Zfl:b Zi Z?=b+l i )

“n—1-20 \n+1-20 n—1-2b
_ P
n+1-2b
as desired, as z, = z,_,. Finally,
n—1-2b
ngb(n—b) = ”(I)J/:Erll—m - ch

n—1-2b 1 &
_Zb_n—f—l—Zb(Zb_n—l—ZbiZ Zi)
_ Y
n+1-2p
finishing the proof of the identity in (10).

https://doi.org/10.1017/fms.2019.47 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2019.47

S. Norin 8

It remains to show that p" + p"~'/2 < 1. Using (2), we have

nn+1) ! nn—1
n < n n
— (p + = np' +=——p

<Xn:i,0i :%i,oi < @,
i=0

i=

implying the desired inequality. O

We now proceed to establish the estimates which will allow us to prove the
nonnegativity of . We start with a couple of indirect bounds on p.

CLAIM 7. We have

2
pn/2+l 2 % (11)

Proof. It can be verified by a computer that p"/**! > 1/3 for n < 15. Thus, (11)
holds for n < 15, and we assume n > 16.
Leta =m+2)(1 —p)/p.Then p = (n+2)/(n +2 + «), and
1

n+1 2 n+2 — > 701. 12
p P A+a/nt+2)y2 7~ °¢ (12)

We claim that o < 21og(3e/2). Note that by (12), this claim implies (11).
We start the proof of the claim by multiplying both sides of (2) by (1 — p)?,
expanding and rearranging terms to obtain

n+3)p—n—p""(@2n+3)—2np) =0.
Using (12) to bound p"*! and otherwise expressing p in terms of o, we get

2n(n—|—2)) 50
n+2+a

3 2
w—n—e‘“(2n+3—
n+2+«a
Multiplying the above inequality by n 4+ 2 4 «, we obtain
3n+6—noe—e*“Bn+6+ 2n+3)a) = 0.

Let f(x,n) =3n+6—nx —e*(3Bn+ 6+ (2n + 3)x). We have f(2log(3e/2),
16) = —0.14055.. ., and %(x, n) and %(x, n) are easily seen to be negative for
x = 2log(3e/2) and n > 16. Thus, f(x,n) < 0 for all x > 2log(3e/2) and
n 2> 16. As f(a,n) > 0, we have o < 21log(3e/2), as desired. O

https://doi.org/10.1017/fms.2019.47 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2019.47

A distribution with maximum entropy marginal 9

Define
l—p
ep

S =

CLAIM 8. We have '
(i + 1D —p)p' <86,
foralli > 0.

Proof. By the arithmetic mean—geometric mean inequality, we have
i+1 i+2
P 1
—— l-p)< | —— .
<i + 1 ) (1=¢) (i + 2)

. i+2
(1-p) z—i—l) g(l—p)lz&
P i+2 p e

as desired. OJ

Therefore,

(i + (1 —p)p' <

Next we estimate c¢;,. Define A, = z;, — z,41. Direct calculation shows that
Ay =3B+ Dp" —bp" ' +(n—b—1)p"" = (n—b)p""").
CLAIM 9. We have
A1 <A <A +6
foralll <i<n-—1.

Proof. We have
204 —A) =+ Dp' — Qi +2)p™ + (G + Dp'™?
+n—i—Dp" P2 —i—Dp" T (n—i— Dp"
=1 =p(+Dp +(m—i—1Dp"").

The last term is clearly nonnegative, and it is at most 2§ by Claim 8. Thus, the

claim holds. O
CLAIM 10. We have
d(n—1-=2i)
0< A< — s
for all integers 1 <i < (n —1)/2.
Proof. As z; = z,_;, we have A; = —A,_,_; for all i. Thus, if n is odd, we have

A(n—l)/z = 0. For even n,we have An/2 = _An/Z—l» and An/2 < An/Z—l < An/2+8
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by Claim 9. Thus, 0 < A, > < 6/2. This establishes the claim fori € {(n—1)/2,

n/2 —1}.
The claim for general i follows directly from Claim 9 by induction on |n/2] —i,
with the result of the preceding paragraph used as the base case. (|

CLAIM 11. We have
8(n —2b)
cp < — (13)

for every positive integer 2 < b < n/2 — 1.

Proof. As in Claim 10, the proof is by induction on |n/2]| — b, and the base case
isb=|n/2] —1.

Suppose first that n is even. Then n = 2b+2 in the base case, and ¢, =2A,/3 by
definition. As 0 < A, < §/2 by Claim 10, (13) holds. If n is odd, then n = 2b + 3,
¢, = Ap/2 and 0 < A, < 6 by Claim 10, implying that (13) once again holds.
This finishes the proof of the base case.

For the induction step, note that

m+1-2b)y(n —1—-2b)c,

2
n—b—1
=m—1-2bz—— Y z
i=b+1
n—b—1
= —1-2)A+(n—1=2D)zp01 — ) %
i=b+1
n—b-2
=n—1-2D)A,+(n—1-2b+ Dz — Y &
i=b+2
(n — 1 —2b)(n — 3 — 2b)cyy

=(n—1-2bA, + >

Thus,
. 2Ab + (I’l -3 - 2b)cb+]

Cp =
(n+1—2b)
Using the bounds on A, from Claim 10 and the induction hypothesis applied to
Cp41, WeE obtain

dmn—1-2b)+6(n—-3-2b)(n—2—-2b)/6 &(n—2b)
O<Cb< = ’
n+1-2b 6

as desired. O
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CLAIM 12. We have
p" = p"" > de,

for all positive integers 2 < b < n/2 — 1.

Proof. Let
. aey  28(n—2x)
Fe) = pt = ph =
By Claim 11, it suffices to show that f(x) > 0 for all x < n/2. As f(n/2) =0,
and f”(x) > 0 for x < n/2, it is enough to verify that f'(n/2) < 0, that is,

4 41 —
—2,0”/210g,0 > -5 = (—’0)
3 3ep
As —logp > 1 — p, the above is implied by Claim 7. O

The next claim finishes the proof of Theorem 3.
CLAIM 13. We have ,,, > Ofor (x,y,2) e T,x,y,z > L

Proof. Assume that x < y < z. Suppose that the component corresponding to
(x, y, z) is negative in m(b — a) for some 2 < b < a < n/2. Direct examination
of (7) shows that, if z > n/2, then

(N1) either b € {2x,2x 4+ 1} and a = x + y, in which case (x, y, 7) = ([b/2],
a—|b/2],n —a),or

(N2) b € {2x,2x—1},a = y,in which case (x, y, z) = ([b/2],a,n—a—[b/2]).

If z < n/2, then

(N2) eitherb € {2x,2x — 1} anda =y, (x,y,2) = ([b/2],a,n —a — [b/2]) as
before or

(N3) b € {2x,2x —1},a = z,in which case (x, y, z) = ([b/2],n—a—[b/2], a).

If z = n/2, then any of the above cases can potentially occur, but in cases (N1)
and (N3), the component of m(b — a) corresponding to (x, y, z) is equal to ¢, /2
rather than cy.

Suppose first that x < y < z. By the above analysis, the total negative
contribution to m,,, of vectors m(b — a) for 2 < b < a < n/2 is at most
4max{cy, Coxi1, Cox_1} < p* — p"7*, where the last inequality holds by Claim 12.
Thus,

Tay: 2 PBrye —p = p" 7 Z(p°=p" )+ (p" —p"°) >0,

as desired.
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Finally, suppose that x < y < z, and one of these inequalities is nonstrict. Then
a vector m(b — a) can only contribute negatively to . if x <y =z and (x, y,
z) =([b/2],a,n—a—T[b/2]). Note that in this case, the component of m(b — a)
corresponding to (x, y, z) is equal to 2¢,, rather than ¢;, but the bound 4 max{c,,,
Car+1, C2x—1} On the total negative contribution established in the previous case
still holds. O
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