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NONLINEAR MODEL REFERENCE ADAPTIVE CONTROL
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Abstract

The known linear model reference adaptive control (MRAC) technique is extended to
cover nonlinear and nonlinearizable systems (several equilibria, etc) and used to stabilize
the system about a model. The method proposed applies the same Liapunov Design
Technique but avoids the classical error equation. Instead it operates in the product of the
state spaces of plant and model, aiming at convergence to a diagonal set. Control
program, Liapunov functions and adaptive law are specified. The case is illustrated on a
two-degrees of freedom robotic manipulator.

1. Introduction

The range of applications of the model reference adaptive control (MRAC)
widens steadily: from autopilots in the sixties, cf. [9], particularly VTOL, up to
recent uses in biology, cf. [12], and robotics, cf. [3], [1]. Consequently the
literature on MRAC is vast, see for review [6]. The broadest avenue of research
bases on the so-called Liapunov Design Technique or Liapunov Synthesis meth-
ods, cf. [5], [13]. Unfortunately, in spite of the fact that the real world is
nonlinear, and in spite of the known nonlinear capabilities of the Liapunov
theory, the existing results refer, with very few exceptions, to linear or linearizable
systems. The technique used is that of subtracting the state equations of the plant
from those of the model, thus producing the so-called error equation. Then the
asymptotic stability of its trivial solution (zero-error) secures the convergence of
both states and parameters of the plant and the model. For nonlinearizable
systems, such a subtraction is not possible in explicit terms. Thus we propose to
abandon the error equation, and instead to achieve the required convergence by
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securing the asymptotic stability, or/and its finite-time counterpart, of a diagonal
set in the Cartesian product of the states spaces of plant and model. This
produces the same effect, but allows arbitrary nonlinearity and noncompatible
state-space patterns (several different equilibria, etc) between plant and model.
The method comes close to that proposed in [10], and adopts a similar technique
to that used for identification in [11], [12].

Moreover, the present MRAC theory means model-tracking only, while in
reality one may as often need model-avoidance, cf. [7], [8], as well as many other
variations of the theme, e.g. tracking the avoidance in prespecified time intervals,
tracking one model and avoiding another . . . , etc. With the method discussed
here one should be able to achieve satisfactory results in all such studies.
Obviously for avoidance we have to show divergence rather than convergence to
the diagonal.

2. Linear tracking

It seems useful to begin with a brief outline of the linear technique. Let the
plant be described by the state equations

x = A(t)x + B{t)u, (2.1)

where x(t) = (x^t),..., xN(t))T e R^ is the state vector, t e [t0, oo), t0 is the
initial instant, and A, B are the system and input matrices N X N, N X r,
respectively, while u(t) = (u^t),..., ur{t))T G (/ c R' is the control vector ad-
missible if selected from within the compact set U of constraints on control
values. The selection of u(t) is due to a feedback control program which aims to
stabilize the plant during the tracking. The reference model to be followed is
given as

xm = Amxm + Bnum (2.2)

where xm(t) e R^, t > t0, while Am, Bm are constant N X TV, N X r matrices
and um(t) e U c Rr has been selected to make the model attain some objective
behaviour.

We denote the state error by e{t) = xm{t) — x(t), t > /0, and the parameter
differences by Ae(t) = Am - A(t), Be(t) = Bm - B(t), where A(t), B(t) are
adjustable. Subtracting (2.1) from (2.2) produces the error equation

e = Ame + Ae(t)x + Be(t)u. (2.3)
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The plant follows the model, or more exactly, the plant converges asymptotically
to the model, if

e(t) - 0, Ae(t) - 0, Be(t) -» 0 as / - oo, (2.4)

which thus becomes the tracking objective. As is well known, it may be achieved
via some Liapunov function V(e,Ae,Be) which is positive definite about the
single equilibrium of (2.3) and possesses a negative-definite derivative along the
trajectories of (2.3), while also having a nesting property about the equilibrium.
The obvious candidate is the square form

V(e, Ae, Be) = eTPe + £ E < + E E b2
eik, (2.5)

( = 1 y = l / = 1 yt = l

where P = (ptJ) is a positive-definite symmetric matrix and a •, beik are
components of Ae{t), Be(t), respectively. The only property to check is the
negative derivative, the other two being obviously satisfied. Differentiating (2.5)
and substituting (2.3), we have

V{t) = (Ame + Aex + beu)TPe + eTP(Ame + Aex + Beu)

i j i k

or

V(t) = eT(AT
mP + PAm)e + xTAT

e(P + PT)e

, • aeiJ + 2^ I X * • Klk. (2.6)
i j i k

The negative definiteness of the first term on the right-hand side of (2.6) follows
immediately from the so-called Liapunov Matrix Equation:

AT
mP + PAm = -Q, (2.7)

where Q is a positive-definite matrix, which however need not be determined, if a
stable reference model was chosen. Granted the above, it suffices to reduce the
other terms of (2.6) to zero. Simple calculation shows that the latter happens if
the adaptive laws

K,x= ~2Uk E (Pia

(2.8)
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hold. Note that since Am, Bm are constant, we have deiJ = atJ, beix = blk. It is
then obvious that suitable solutions to (2.8) provide the negative-definite V(t),
which implies the required asymptotic stability (2.4).

3. Nonlinear tracking

We let now the plant take the general form

x=f(x,u;\), (3.1)

where / = {f\,--.,fN)T is the N-vector of functions /•(*, u, X), i = 1, . . . , N,
suitable for securing the unique solutions through each point x° = x(0) in a given
bounded subset A of R^, provided suitable values of u, X,w are given. The
/-vector parameter X(t) = (X^t), • • • > ^ / (0 ) r £ A c R ' represents the adjustable
parameters of the plant, with their values bounded in a compact set A c R'. We
let / < N. The control vector u(t) = (u^t),..., ur(t))

T e U c Rr is to be chosen
by a feedback and signal adaptable control program u{t) = P{x{t), X(t)), t > tQ,
in order to attain a specified objective for (3.1) apart from the tracking. To focus
attention on the tracking we choose a simple objective of stabilization: Lagrange
stability in some region enclosing all the equilibria. The control program is
admissible if it produces u(t) that allows the solutions to (3.1) on A.

Considering our aims, it does not narrow generality to assume that (3.1) has a
finite number of isolated equilibria x(t) = xe = constant, all contained in A.

The reference model is taken again as a nonlinear system

xm = fm(xm,um;Xm), (3.2)

with xm(t) e A c R ,̂ wm(0 e U c W selected by a control program that makes
(3.2) perform a specific task in the state space, possibly done within the scope of
the Liapunov theory, i.e. with a specific Liapunov function. To focus attention on
something definite, let us make um such that (3.2) is asymptotically stable about
the origin, with given Liapunov function Vm(xm) which is positive definite,
nesting about the origin, and has negative definite derivative Vm(xm(t)) along
solutions of (3.2).

A A

Let us now introduce the 2N-vector X(t) = (x(t), xm(t)y in the set A2 = A X A
and denote a(t) = X(t) — Xm, t > t0 ranging in A c R'. Hence also (X(t), a(t))r

ranges in A2 X A c R2Af+/. Then we define the "diagonal"

M = { (X,a)T<= A2X A|JC = xm,a = 0} (3.3)
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and its TJ( > 0)-neighbourhood by

Mv= { ( ^ a ) r e A 2 X A| ||JC - x j | « r,, |a| < TJ} (3.4)

where || • || is any norm in R2N+I.

DEFINITION 3.1. We shall say that the plant (3.1) is stabilized in A and tracks
the model (3.2) with TJ > 0 accuracy, if there is an admissible control program
u(t) = P(x(t), A(O), ' > *o s u c h that

(A) (X° ,a° ) r eA 2 X A =» (X(t),a(t))T e A2 X A,V/> t0;
(B) there are constants 17 > 0, T > 0 such that

0 0 T 2 ( t ) ) T e M n , \ / t > T.

4. Sufficient conditions

Let ^T[9(A2 X A)] be a neighbourhood of the boundary 3(A2 X A) of theg
region A2 X A and define Ne = jq3(A2 X A)] n A2 X A, CM^ = (A2 x A) -

Mv, S(open) 3 CMV and such that S n M = 0. Furthermore introduce two
functions Vs: Ne -» R, Vv: S -> R with

i f { F ( ^ ) | ( ^ )

1;,- = inf {Vv( X,a)\(X,a)^dMrin'CM'v},

) e 3(A2 XA)fl

THEOREM 4.1. Definition 3.1 holds if, given A, A, -q there is an admissible
P{x,\) and a pair of functions Vs, Vv such that for all X,a in their domains we
have

(ii) V VS(X, a) • [f(x, u, X), fm(xm, um, Xm),af_< 0;
(iii) 0 < K,( X, a) < i> +, u* > 0, V( X, a) e CMV,

(v) there is a constant c > 0 such that for all (X, a) €
V VV(X, a) • [f(x, u, X), fm(xm, Xm, uj, a]T < -c.

PROOF. NO motion (X(t), a(t))T = (x(t),xm(t),a(t))T, where x(t), xm(t) are
solutions of (3.1), (3.2) respectively, leaves A2 X A unless passing through Ne, so
we consider (X°,a°) e J/~t and suppose the corresponding motion crosses 3(A2

X A). Then there is tx > 0 such that (X(t1),a(tl))
T e 3(A2 X A) and by (i),
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Vs(X{t{), a(/i)) > us ^ VS(X°, a0) contradicting (ii); hence no such motion leaves
A2 X A and the requirement (A) of Definition 3.1 is satisfied.

Next we show that the motions from CMV may not stay there indefinitely.
Indeed, consider arbitrary such motion. By (v), Vv(X(t),«(0) < -c. Integrating
this over [0, /] c R, we obtain the estimate

i (4.1)

Note that by (iii), Vv(X,a) > 0 and Vv(X°,a°) - < < 0 whence Vn(X°,a°) -
FT)(X, a) < v*, allowing us to rewrite (4.1) as t < v +/c. Hence there is T = v*/c,
depending upon the diameter of CMV and nothing else, such that fort^T the
motion leaves CMV. As it must not leave A2 X A, then it must enter M^ and be
there at some tn = T + T, T > 0. There is no return to CMr Indeed, if there were
t2 > tv such that (X(t2),a(t2))

T e dMv, then by (iv) we would have
Vv(X(t2),a(t2)) > v~ > V^X^t^),a(f,,)), contradicting (v). The above secures
(B) of Definition 3.1, thus completing the proof.

Obviously T may be calculated from T = v*/c if Vv(-) and c are given.
Suppose now that an a priori value of / was demanded. We have

COROLLARY 4.1. Definition 3.1 holds effective after a given T, if Theorem 4.1 is
satisfied with the condition (v) replaced by

W7l(X,a)-[f(x,u,X),fm(xm,um>\m)} < -v;/T (4.2)

The proof follows by choosing c = v* /T.

5. Liapunov functions and adaptive laws

We have assumed the Liapunov function Vm(xm) for the asumptotic stability of
the model to be known. The standard asymptotic stability conditions require it to
be positive definite, monotone increasing and nesting about F(0) = 0, while the
derivative satisfies

KM)) < -c (5.i)
We let Vm have these properties. Let us now set up I = N, and propose

Vs(X,a)=Vm(x)+Vm(xm) + a-a (5.2)

and

o, (*,„).«, • (53)
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where a = (signa1;. ...signa^). In view of our assumptions on Vm, the condi-
tions (i), (iii), (iv) hold in an obvious way, and all we have to show is (ii) and (v).

Consider the derivative of (5.2)

Vs(X(t),a(t)) = Vm(x(t)) + Vm(xjt)) + a-&, (5.4)

and form the adaptive law

^ n ^ • /« . (*«. « » ' x « ) . < = 1 > - - ' " . (5-5)
which, in view of (5.1) implies

O'&= Vm(xJ')) < -c, (5.6)

in agreement with our required convergence of a(t). Then let us design the
control program P(x, X) from the following condition

VVjx)-f(x,P(x,\),\) = -c. (5.7)

Note that (5.7) gives as specific a condition as we can get without specifying
Vm(-), / (•) any closer. The latter may be done in case studies, and then P(x, X)
may be determined in an explicit form, calculated from (5.7).

Then, from (5.4) by (5.1), (5.6) and (5.7) we have Vs(X(t),(t)) < 0, thus
satisfying (ii). Now we have to show (v). Let us introduce the sets in A2 — Mv: s/:
KM ' rm(xm) > 0, a: Vm(x) - Vm(xm) < 0, and differentiate (5.3)

On substituting (5.6), (5.1) and (5.7) we conclude

Vjx) = -c,

which satisfies condition (v), thus concluding our investigation.

6. Application to robotic manipulator

A /j-joint manipulator is represen table in terms of a combination of modular
two degrees of freedom units, as displayed in Figure 1. We take the Lagrange (or
joint) coordinates qx = 8, q2 = r as indicated, with rl = const, at the rotary joint
1. Elementary mechanics gives the kinetic energy as

T = \mxrlq\ + \m\q\ + q2ql). (6.1)
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PRISMATIC JOINT

ROTARY
JOINT

We let the gravity be accompanied by the compensating elastic forces in links or
effecting links. To offset the gravity of 9.81m! and 9.81(mx + m2) we set up the
springs S, = axqx + bxqx + cxq\; S2 = a2q2 + b2q\ with "hardening" effect.
Moreover the elastic coupling between the two heavy joints (restoring force for
link 2) S12 = ax2{q2 — rx) is considered proportional to how heavy the joint 1 is:
a12 = 9.Slmx. Obviously S12 = -S21. Hence we have the potential energy

ir= 9.$lmxrx sinqx + 9.8lm2q2sinq1 + X3qx/2 + bxq\/7> + cxqf/4

+ an((l2 ~ r i )?i ~ 1/2 ' 9.%\mxql + 9.%\mlrlq2

+ X4qj/2 + b2q$/4. (6.2)
Then we may calculate the total energy H = T + ~f and the Lagrangian L = T
— y . Assuming the damping in joints to be Ajq'Jgi in joint 1, and X2q\ in joint
2, the Lagrange equations give

2m1q2qxq2

m2q2 - m2q2qx + X2q2 + X4q2 + b2q2 - an(q2 - rx)

+ 9.Slm2sinqx = u2 + K2(t),

where the Kx(t), K2{t) represent external perturbations. Denote
lm2q2qxq2

m2q\

m-
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and

n = 9.%l(mlr1 + m2q2)cosq1 + X3gt + btfl + c^l + au(q2 - rt)
mrf + m2ql

n 2 = 9.81 sin 9 l - ^(q2 - rx) + -^-{Ki2 + b2q\).
Tn 2 Tn 22 Tn 2

l/6 cosq = 1 — q\On letting s in^ = ql — ql/6, cosqx = 1 — q\/1, a12 = 9.81m1; we have

~ 2< m )
m2ql

I ~ T9l ~ Ql + rl "*" ^4^2 + ^2^2 >

and finally

1 ~ 2 , 2 '

»i

"i= —n r

U2 =

which make (6.3) become

i = l ,2. (6.4)

The reference model is taken as

<Lw + $
m,(«m-?m.^,) + nmI-(^(M,Xm(/+1)) = Uml, 1 = 1,2, (6.5)

where $m, = \m,qmi, i = 1,2, Xm/ = const. > 0

~ \im\
1 ml

We let Vm(xm) = Hm(qm,qm) = Tm(qm,qm) + rm(qm) be the total energy of the
model, and require

2

^m\9m( ' ) '9m( ' ) ) = i—i ("mi — ^mitfmi/tfmi ^ ~̂ > (6-6)
1 = 1
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which is attainable with umiqmi < \m,qli or um, = Xm,qmi - k,/qmi, k, > 0,
/' = 1,2. Now we have

Vs = Hm{q,q) + Hm(qm,qm) + a • a,

=

\Hm(q,q)-Hm(q,qm)\ + a-a, on CMV ,

where a = (a l 5 . . . , a4), a, = A, - Xmi, i = 1,. . . , 4, and the adaptive laws (5.5)
are

a, = sign a,
-, ' ' " " I , . . . . 4 ,

where x, = (qi,q2,qi, qi), respectively, producing
a-* = Hm(qm{t),qm(t))^-c.

Then the control program (5.7) becomes
VHm(q,q)(q,F+u-<t>-n) = -c,

which holds if

(6.7)

(6.8)

(6.9)

With the terms f^w = |Jm = f£, /",, 0,, II, substituted, the explicit form for
iii = P,(x, X) is easily obtained. As shown, the above secure the stabilization and
model tracking determined in Definition 3.1. Numerical simulation with the data:
mx = 10kg, m2 = 36kg, rt = 0. 66m, bx = 3, cx = 10, b2 = 2, Xml = 5, Xm2 = 2,
Xm3 = 20, Am4 = I • 9.81, a° = 60, a\ = 40, a^ = 5, a° = 2 confirms the sta-
bilization and convergence, when the joint system of (6.4), (6.5), (6.7) is solved,
subject to umj, «, determined as specified above.
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