
18

Characteristic problems for the conformal
field equations

This chapter discusses the basic theory of characteristic problems for the

conformal field equations. Characteristic problems have been of great conceptual

value in the development of the modern theory of gravitational radiation. Indeed,

the seminal works by Bondi et al. (1962) and Sachs (1962b), in which the

modern understanding of gravitational waves was established, were carried out

in a setting based on a characteristic initial value problem; see also Sachs

(1962c) and Newman and Penrose (1962). The connection between characteristic

problems and the notion of asymptotic flatness, already present in the seminal

work by Penrose (1963), was further elaborated in Penrose (1965, 1980). From a

mathematical point of view, the realisation that the characteristic initial value

problem for the Einstein field equations leads to a symmetric hyperbolic evolution

system for which the machinery of the theory of partial differential equations

(PDEs) is available was first established in Friedrich (1981b). In Friedrich (1981a,

1982) these ideas were subsequently extended to a situation in which part of

the data is prescribed at null infinity –a so-called asymptotic characteristic

initial value problem, the subject of this chapter. These results established

the local existence of analytic solutions and were later extended to the smooth

case by Kánnár (1996b) using the method of reduction to a standard Cauchy

problem by Rendall (1990); see Section 12.5.3.

There are two basic types of asymptotic characteristic problem for the

conformal Einstein field equations. The first type is the so-called standard

asymptotic characteristic problem – introduced in Friedrich (1981b) – where

initial data are prescribed on null infinity and a null hypersurface intersecting

null infinity in a two-dimensional surface with the topology of a 2-sphere; see

Figure 18.1, left. In the second type – the so-called characteristic problem

on a cone, first discussed in Friedrich (1986c) – one prescribes information on

a null cone down to its vertex; see Figure 18.1, right. For reasons discussed in

Section 12.5, characteristic problems on a cone are more technically involved.

Existence results have been obtained in Chruściel and Paetz (2013).
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478 Characteristic problems for the conformal field equations

Figure 18.1 Two possible asymptotic characteristic problems for the conformal
field equations: on the left, initial data are prescribed on an outgoing null
hypersurface N and null infinity I −; on the right, data are prescribed
on a null cone representing past null infinity I −. The vertex of the cone
corresponds to past timelike infinity, i−.

The standard and characteristic initial value problems have several structural

properties in common. Moreover, the characteristic problem on a cone can be

regarded as a limiting case of the standard characteristic problem. In both

cases, the Einstein field equations on the initial hypersurfaces split into a set

of interior (or intrinsic) equations and a set of transverse equations.

The interior equations split, in turn, into constraint equations which need to

be satisfied only on some subsets of the initial hypersurface (the intersection of

the null hypersurfaces or the vertex of the cone) and transport equations

which propagate information along the generators of the null hypersurfaces.

The transverse equations dictate the evolution off the initial hypersurfaces.

One of the key aspects of the analysis of asymptotic characteristic problems

is the identification of freely specifiable data from which the full data for the

evolution equations can be derived. An appealing feature of this type of setting

is the natural interpretation of the free data in terms of radiation fields so that a

clear-cut connection with the theory of asymptotics as discussed in Chapter 10

can be established.

The discussion in the present chapter is mostly concerned with standard

characteristic problems. Certain aspects of the characteristic problem on a cone

are briefly considered. The existence results discussed are local in nature. That

is, one obtains existence of solutions in a neighbourhood of the intersection of the

null hypersurfaces or the vertex of the initial cone. From the perspective of the

physical spacetime these local neighbourhoods represent unbounded domains in

the asymptotic region.

18.1 Geometric and gauge aspects of the standard characteristic

initial value problem

This section provides a discussion of the geometric setting and the gauge

fixing procedure for the standard asymptotic characteristic problem. Taking into

account the general theory of characteristic problems described in Section 12.5.1

one can consider two possible configurations (see Figure 18.2): (i) that of a
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18.1 Geometric and gauge aspects of the initial value problem 479

Figure 18.2 The two possible standard asymptotic characteristic problems for
the conformal Einstein field equations. Case (i) where data are prescribed on a
future-oriented (outgoing) null hypersurface N ′ and future null infinity I +,
and case (ii) where data are prescribed on a past-oriented (incoming) null
hypersurface N and past null infinity I −.

future-oriented (i.e. outgoing) null hypersurface intersecting future null infinity

or (ii) a past-oriented (i.e. incoming) null hypersurface intersecting past null

infinity. In order to compare with the characteristic problem on a cone, the

present discussion focuses in the latter case. A careful inspection of the setting

discussed here leads to the formulation of case (i).

18.1.1 Geometric setting

In what follows, let (M, g,Ξ) denote a conformal extension of an asymptotically

simple spacetime (M̃, g̃) satisfying Ric[g̃] = 0 which contains past null infinity

I −. Let W denote a region of M with W ≈ R+ × R+ × S2 bounded by an

incoming null hypersurface N and past null infinity I −. It will be assumed

that both N and I − have the topology of R+ × S2. Let Z ≡ N ∩ I − with

Z ≈ S2. One has that W ⊂ J+(Z ). A schematic representation of the geometric

setting can be seen in Figure 18.3.

An adapted coordinate system (xμ) and an associated null tetrad {eAA′}will
be used to describe the geometry of the region W. Let {ωAA′} denote the

associated coframe and require that

g(eAA′ , eBB′) = εABεA′B′ . (18.1)

On Z one considers some coordinate system (xA) where A = 2, 3. The complex

vectors e01′ and e10′ = e01′ of the null tetrad {eAA′} will be chosen so that

they span the tangent bundle T (Z ) – recall that in standard Newman-Penrose

notation the vectors e01′ and e10′ correspond to m and m.

Now, choose e00′ so that, on I −, it is tangent to the null generators of

the conformal boundary – in standard Newman-Penrose notation this vector

corresponds to l. Let v denote an affine parameter of these generators with the

property that v|Z = 0. Thus, one has that e00′ � ∂v where, following the

conventions of Chapter 10, the symbol � denotes equality at I −. The vectors

e01′ and e10′ can be extended to the rest of I − by parallel propagation along

the null generators. Accordingly, one has

∇00′e00′ � 0, ∇00′e01′ � 0, ∇00′e10′ � 0, on I −, (18.2)
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480 Characteristic problems for the conformal field equations

Figure 18.3 Schematic representation of the set up for the standard asymptotic
characteristic problem. The existence results are restricted to a neighbourhood
U of Z in J+(Z ).

where ∇00′ ≡ e00′a∇a is the directional derivative in the direction of e00′ . Given

v• ∈ [0,∞), let Zv• ⊂ I − denote the two-dimensional surfaces given by

Zv• ≡ {p ∈ I − | v(p) = v•}.

As a result of their parallel propagation, the vectors e01′ and e10′ span T (Zv•).

Having fixed the vectors e00′ , e01′ and e10′ on I −, regarding the conformal

boundary as a submanifold of M, and given that the spacetime metric g is

assumed to be known, it follows that at every point p ∈ I −, there exists a unique

future-pointing null vector linearly independent to {e00′ , e01′ , e10′}. This vector
is used to complete the null frame {eAA′} on I − – accordingly, it will be denoted

by e11′ , or n in Newman-Penrose notation. The vector e11′ is fixed by the four

conditions

g(e11′ , eBB′) = ε1Bε1′B′ .

Now, for fixed v•, there exists (at least locally) a unique null hypersurface Nv•

in M satisfying Nv• ∩I − = Zv• such that at Zv• the vector e11′ is tangent to

Nv• – this involves solving the eikonal equation g(dΦ,dΦ) = 0 for some scalar

Φ ∈ X (W) near I − with the appropriate initial conditions; for further details

see, for example, Stewart (1991), section 4.3. By varying v• one thus obtains (at

least locally) a foliation of null hypersurfaces intersecting I −. Thence, the affine

parameter v along the null generators of I − can be used as a coordinate on W.

Accordingly, one sets x0 = v, and has

Nv• ≡ {p ∈ W | v(p) = v•},
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so that the normal to Nv• is given by dv. The vector e11′ can now be extended

into W by requiring it to be tangent to the generators of these hypersurfaces;

that is, one has

e11′ = g�(dx0, ·). (18.3)

Let r denote an affine parameter of the integral curves of e11′ so that one can

write e11′ = ∂r. Without loss of generality one can choose r � 0. The coordinate

system (xμ) on W is then completed by setting x1 = r and by extending the

coordinates (xA) on Zv so that they are constant along the integral curves of

e00′ and e11′ . As a consequence of this construction one has

N ≡ {p ∈ W | x0(p) = 0}, I − ≡ {p ∈ W | x1(p) = 0}.

The vectors e00′ , e01′ and e10′ can be extended off I − by parallel propagation

along the direction of e11′ . Accordingly, one has

∇11′e11′ = 0, ∇11′e01′ = 0, ∇11′e10′ = 0, on W. (18.4)

To obtain an explicit expression for the frame {eAA′} in the coordinates

(xμ) = (v, r, xA), it is observed that from Equation (18.3) – rewritten in the

form g(∂r, ·) = 〈dv, ·〉 – one obtains the pairings

g(∂r,∂v) = 1, g(∂r,∂r) = 0, g(∂r,∂A) = 0. (18.5)

Taking into account the above, the most general form for the frame {eAA′}
consistent with Equations (18.1) and (18.3) is given by

e00′ = ∂v + U∂r +XA∂A,

e11′ = ∂r,

e01′ = ω∂r + ξA∂A,

e10′ = ω̄∂r + ξ̄A∂A,

where U andXA are real functions and ω and ξA are complex functions. Observe,

in particular, that because of the conditions in (18.5), e01′ and e10′ cannot

have a v-component. Using, again, relation (18.1) one finds that the components

gμν = g�(dxμ,dxν) are of the form

(gμν) =

⎛
⎝ 0 1 0

1 g11 g1A

0 gA1 gAB

⎞
⎠ ,

where

g11 = 2(U − ωω̄), g1A = XA − (ξAω̄ + ξ̄Aω), gAB = −
(
ξAξ̄B + ξ̄AξB).
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In particular, one has that U � 0, XA � 0, ω � 0, consistent with the fact that

e11′ is tangent to the generators of null infinity and that v is an affine parameter;

hence, e11′ � ∂v. Observe also that e01′ � ξA∂A. Thus, the pull-back to Zv of

gAB∂A ⊗ ∂B = −
(
ξAξ̄B + ξ̄AξB)∂A ⊗ ∂B,

to be denoted by ς�, corresponds to the two-dimensional (contravariant) metric

of the sections of null infinity. Now, by assumption Zv ≈ S2 so that ς is conformal

to the standard metric of S2.

Finally, combining the propagation conditions (18.2) and (18.4) with the

definition of the spin connection coefficients – see Equations (3.31) and (3.33) –

in the form

ΓAA′BC =
1

2
εBP 〈ωPQ′

,∇AA′eCQ′〉,

one finds

Γ00′10 � 0, Γ00′00 � 0,

and

Γ00′11 = Γ̄10′1′0′ + Γ10′10, Γ01′11 = Γ̄10′1′1′ , Γ11′AB = 0, on W ⊂ M.

The discussion of this section is summarised in the following

Lemma 18.1 (frame gauge conditions for the standard characteristic

problem) Let (M̃, g̃) denote an asymptotically simple spacetime satisfying

Ric[g̃] = 0 and let (M, g,Ξ) with g = Ξ2g̃ be a conformal extension thereof for

which the condition Ξ = 0 describes past null infinity I −. The frame {eAA′}
can be chosen so that, given a null hypersurface N intersecting I − on Z ≈ S2,

one has

Γ00′11 = Γ̄10′1′0′ + Γ10′10,

Γ01′11 = Γ̄10′1′1′ , Γ11′AB = 0, on W ⊂ M.

In addition, one has that

Γ00′01 = Γ00′10 = Γ00′00 = U = XA = ω = 0, on I −.

Remark. The conventions used here for the vectors e00′ and e11′ are the

opposite of those used in Kánnár (1996b). They have been chosen to agree with

the standard conventions in the treatment of asymptotics as given in Penrose

and Rindler (1986) and Stewart (1991) and to ease the comparison with the

characteristic problem on a cone.
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18.1.2 The choice of conformal gauge

The geometric setting discussed in the previous section has an inherent conformal

gauge freedom which can be exploited to simplify the analysis.

As discussed in Section 8.2.5, the Ricci scalar R[g] plays the role of a

conformal gauge source function for the conformal field equations. A

possible choice in the present setting is to fix the conformal factor Ξ linking

the metrics g̃ and g in such a manner that R[g] = 0. To see that this can always

be done, consider first a situation involving a generic conformal factor Ξ for

which R[g] �= 0, and let

g′ ≡ ϑ2g, (18.6)

with ϑ a positive function on W. Defining Ξ′ ≡ ϑΞ one finds that g′ = Ξ′2g̃.

Consistent with the above conformal rescaling one considers the following

transformation behaviour for the g-orthonormal frame {eAA′}:

e′00′ = e00′ , e′11′ = ϑ−2e11′ , e′01′ = ϑ−1e01′ , e′10′ = ϑ−1e10′ .

Using the transformation law under conformal rescalings for the Ricci scalar,

Equation (5.6c), one finds that the requirement R[g′] = 0 is equivalent to the

wave equation

∇a∇aϑ =
1

6
R[g]; (18.7)

see also Equation (8.30). The general theory of the characteristic problem for

wave equations ensures the existence of a unique solution to this equation in

a neighbourhood U of Z in J+(Z ) if some suitable data are prescribed on

N ∪I −; see, for example, Rendall (1990). A natural requirement on the initial

data for Equation (18.7) is to have ω′11′
= dΞ′ on Z where {ω′AA′} denotes

the coframe dual to {e′AA′}. This is equivalent to setting

ω′11′
= ϑdΞ on Z .

By choosing ϑ−1|Z = e11′(Ξ)|Z = 〈dΞ, e11′〉|Z one can, in fact, ensure that

e′11′(Ξ′) = 〈dΞ′, e′11′〉 = 1 on Z .

The principal part of the wave Equation (18.7), expressed in terms of frame

derivatives, is given by

e00′
(
e11′(ϑ)

)
+ e11′

(
e00′(ϑ)

)
− e01′

(
e10′(ϑ)

)
− e10′

(
e01′(ϑ)

)
.

Thus, Equation (18.7) implies an intrinsic propagation equation on N for e00′(ϑ)

if e11′(ϑ) is known on N . Analogously, one has an intrinsic propagation equation

on I − for e11′(ϑ) if e00′(ϑ) is known on I −. The freedom in the specification
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of characteristic data can be exploited by observing that under the conformal

rescaling (18.6) one obtains the transformation rules

Γ′
01′11 = Γ01′11 − ϑ−1e11′(ϑ), Γ′

10′00 = ϑ−2Γ10′00 − ϑ−3e00′(ϑ).

Accordingly, by setting

e11′(ϑ) = ϑΓ01′11, e00′(ϑ) = ϑΓ10′00 on Z ,

one obtains

Γ′
01′11 = 0, Γ′

10′00 = 0, on Z .

To propagate the freely specifiable components of ∇AA′ϑ along N and I − it

is convenient to consider the transformation law under conformal rescalings of

the trace-free part of the Ricci tensor

Φ′
ab − Φab = −2ϑ−1

(
∇a∇bϑ− 2ϑ−1∇aϑ∇bϑ

− 1

4
gab(∇c∇cϑ− 2ϑ−1∇cϑ∇cϑ)

)
. (18.8)

Now, recalling that

ΦAA′BB′ = eAA′aeBB′bΦab, Φ′
AA′BB′ = e′AA′

ae′BB′
bΦ′

ab,

one can consider the propagation equations

e11′
(
e11′(ϑ)

)
− 2ϑ−1

(
e11′(ϑ)

)2
= ϑΦ22 on N , (18.9a)

e00′
(
e00′(ϑ)

)
− 2ϑ−1

(
e00′(ϑ)

)2
= ϑΦ00 on I −. (18.9b)

These two equations can be read as ordinary differential equations along the

generators of N and I − for e11′(ϑ) and e00′(ϑ), respectively. Accordingly,

a solution exists in a neighbourhood of Z on N and, respectively, on I −.

Comparing with Equation (18.8), one sees that these solutions ensure

Φ′
22 = 0 on N , (18.10a)

Φ′
00 = 0 on I −. (18.10b)

Once the solutions e11′(ϑ) and e00′(ϑ) to the propagation conditions (18.9a)

and (18.9b) have been obtained, one can use the intrinsic equations implied by

(18.7) on N ∪ I − to obtain e00′(ϑ) on N and e11′(ϑ) on I −.

The analysis of this section can be summarised in the following:

Lemma 18.2 (conformal gauge conditions for the standard characteris-

tic problem) Let (M̃, g̃) denote an asymptotically simple spacetime satisfying

Ric[g̃] = 0 and let (M, g,Ξ) with g = Ξ2g̃ be a conformal extension thereof

for which the condition Ξ = 0 describes past null infinity I −. Given the frame
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{eAA′} of Lemma 18.1, the conformal factor Ξ can be chosen so that given a

null hypersurface N intersecting I − on Z ≈ S2 one has

R[g] = 0, in a neighbourhood W of Z on J+(Z ).

Moreover, one has the additional gauge conditions

e11′(Ξ) = 1, Γ01′11 = Γ10′00 = 0, on Z ,

Φ22 = 0 on N ,

ΣAA′ = e11′(Ξ)δA
1δA′1

′
, Φ00 = 0, on I −.

Remark. In the gauge given by Lemma 18.2 one has that LAA′BB′ = ΦAA′BB′ .

This fact will be used repeatedly in the following without any further mention.

18.2 The conformal evolution equations in the standard

characteristic initial value problem

This section analyses general aspects of the standard characteristic initial value

problem for the conformal Einstein field equations with data prescribed on

the null hypersurfaces N and I −. The spinorial conformal field equations, as

discussed in Section 8.3.2, will be used to formulate this problem. Accordingly,

on W it will be required that

ΣAA′BB′ = 0, ΞC
DAA′BB′ = 0, (18.11a)

ΞAA′ = 0, ZAA′BB′ = 0, ZAA′ = 0, Z = 0, (18.11b)

ΔCDBB′ = 0, ΛBB′CD = 0, (18.11c)

where, for convenience, one defines

ΞAA′ ≡ ΣAA′ −∇AA′Ξ.

Following the conventions of Chapter 13 let u denote the collection of indepen-

dent components of the unknowns appearing in the conformal field Equations

(18.11a)–(18.11c) and let u� be its value on N ∪ I +.

Strictly speaking, as no hyperbolic reduction procedure has yet been applied

to equations (18.11a)–(18.11c) – that is, the equations do not constitute a

symmetric hyperbolic system – one does not directly obtain a characteristic

problem in the sense described in Section 12.1.2. Nevertheless, the structure of

the conformal evolution equations can be used to obtain a symmetric hyperbolic

system for which the theory of Section 12.5 can be applied. Thus, it is necessary

to analyse the properties of the conformal field equations on the hypersurfaces N

and I +. When evaluated on N ∪I + the system (18.11a)–(18.11c) splits into a

set of interior and a set of transverse equations. As the name suggests, interior

equations contain only derivatives which are intrinsic to the null hypersurfaces.

The interior equations divide, in turn, into transport equations containing the

directional derivative along the generators of the hypersurface and constraint
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equations which do not contain this derivative. In the transverse equations one

deals with the directional derivative transverse to the surface.

To see how this split comes about, it is convenient to recall some aspects of

the hyperbolic reduction procedure for the Equations (18.11a)–(18.11c). Given

a timelike vector τμ and a suitable set of gauge source functions Fa(x) and

FAB(x) on W, one obtains a symmetric hyperbolic system for the independent

components of the various conformal fields. As discussed in Proposition 13.1,

the characteristic polynomial of this system contains factors of the form gμνξμξν .

Accordingly, the combined null hypersurface N ∩I + is a null hypersurface of the

reduced evolution system. Following the discussion of Section 12.1.2, it follows

that the reduced system contains equations which are intrinsic to N ∩I + and

equations which are transverse to the initial hypersurface. In the following, it is

shown how this observation can be extended to the full conformal field equations.

The interior equations on N

The interior equations on the null hypersurface N should contain only the

directional derivatives along the directions given by e11′ , e01′ and e10′ .

Inspection shows that the subset of (18.11a)–(18.11c) with this property is given

by the equations

Ξ11′ = 0, Z11′AA′ = 0, Z11′ = 0, (18.12a)

Σ11′BB′ = 0, ΞC
D11′BB′ = 0, (18.12b)

Δ1DBB′ = 0, ΛB1′CD = 0. (18.12c)

More explicitly, taking into account the gauge conditions given by Lemmas

18.1 and 18.2 one has the equations

e11′(Ξ) = Σ11′ , (18.13a)

e11′(Σ00′) = −ΞΦ11 − s, e11′(Σ01′) = −ΞΦ12, e11′(Σ11′) = 0, (18.13b)

e11′(s) = −Φ11Σ11′ + 2Φ12Σ01′ , (18.13c)

e11′(eBB′μ) = −ΓBB′C1eC1′μ − Γ̄B′B
C′

1′e1C′μ, (18.13d)

e11′(ΓBB′CD) = −ΓF1′CDΓBB′F 1 − Γ1F ′CDΓ̄B′B
F ′

1′

− ΞφBCD1ε1′B′ − ΦC1′DB′ε1B, (18.13e)

e11′(ΦD0′BB′) = ∇10′ΦD1′BB′ −∇D1′Φ10′BB′ +∇D0′Φ11′BB′

− 2Σ1B′φBD01 + 2Σ0B′φBD11, (18.13f)

e11′(φABC0) = ∇01′φABC1, (18.13g)

with the understanding that equations for quantities already determined by

gauge conditions are dropped from the list. Despite their apparent complexity,

the above equations possess a delicate hierarchical structure which allows one to

solve them sequentially from some basic data on Z and N . This structure is

briefly described in the following paragraphs.
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One starts by combining Equation (18.13a) with the third equation in (18.13b)

and then using that e11′ = ∂r to find that ∂2
rΞ = 0. Hence, taking into account

Lemma 18.2 one concludes that Ξ = r along N . Next, one can consider Equation

(18.13e) for Γ01′11 and Γ10′11 (in standard Newman-Penrose (NP) notation γ

and λ) which, in view of the gauge conditions, gives the subsystem

∂rΓ01′11 = −(Γ01′11)
2 − Γ10′11Γ̄1′01′1′ ,

∂rΓ10′11 = −2Γ01′11Γ10′11 + Ξφ4.

The above Riccati system can be solved if φ4 is known along N . With Γ01′11

and Γ10′11 known, one can then make use of Equation (18.13d) for e01′A = ξA

which takes the form

∂rξ
A = −Γ01′11ξ

A − Γ̄1′01′1′ ξ̄A.

This equation together with its complex conjugate constitute a system of

ordinary differential equations for ξA and ξ̄A which can be solved with the

information already available. To determine the frame coefficient ω one considers

Equation (18.13d) for e01′1 = ω so that

∂rω = −Γ01′11ω − Γ̄1′01′1′ ω̄ + Γ01′01 + Γ̄1′00′1′ .

Accordingly, one also needs to consider the equations for Γ01′01 and Γ10′01

(β and α in NP notation), namely,

∂rΓ01′01 = −Γ01′01Γ10′11 − Γ10′01Γ̄1′01′1′ +Φ12,

∂rΓ10′01 = −Γ01′01Γ10′11 − Γ10′01Γ̄0′11′1′ + Ξφ3,

so that, in addition, one requires equations for φ3 and Φ12. These can be found

to be given by

∂rφ3 = ω∂rφ4 + ξA∂Aφ4 − 4Γ01′11φ3 + 4Γ01′01φ4,

∂rΦ12 = Σ01′φ4 − Σ11′φ3.

Thus, to close the system one considers the third equation in (18.13b). The key

observation is that for a given choice of φ4 on N and with the knowledge of

Γ01′11 and Γ10′11 from a previous integration one obtains a system of ordinary

differential equations along the generators of N for the unknowns ω, ξA, Γ01′01,

Γ10′01, φ3, Φ12 and Σ01′ .

At this point, one considers Equation (18.13d) for e11′A. One has

∂rX
A = −Γ00′11ξ

A − Γ̄0′01′1′ ξ̄A.

Recalling the gauge condition Γ00′11 = Γ̄10′1′0′ + Γ10′10 one has enough

information to integrate along the generators of N . Next, one considers the

equations for Γ01′00 and Γ10′00 (σ and ρ in NP notation):

∂rΓ01′00 = −Γ01′00Γ01′11 − Γ10′00Γ̄01′1′1′ +Φ02,

∂rΓ10′00 = −Γ01′00Γ10′11 − Γ10′00Γ̄10′1′1′ + Ξφ2.
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Hence, one has to couple the above to the equations for φ2 and Φ02:

∂rφ2 = ω∂rφ3 + ξA∂Aφ3 + Γ01′00φ4 + 2Γ01′01φ3 − 3Γ01′11φ2,

∂rΦ02 = ∇10′Φ12 +Σ01′φ3 − Σ00′φ4.

Thus, it is then necessary to consider simultaneously the first equation in (18.13b)

and Equation (18.13c) to determine Σ00′ and s – notice that at this stage one

already knows all the frame and connection coefficients appearing in ∇10′ . In

turn, this forces the coupling with the equation for Φ11 obtained from (18.13f):

∂rΦ11 = ∇10′Φ12 − Σ11′φ2 +Σ01′φ3.

Recapitulating, one has obtained a further closed subsystem of ordinary differ-

ential equations along the generators of N for the fields Γ01′00, Γ10′00, φ2, Φ02,

Φ11, s and Σ00′ . With the information obtained from the solution to this system,

one can also solve for the frame coefficient U and the connection coefficient Γ00′01

(ε in NP notation) via the equations

∂rU = −Γ00′11ω − Γ̄0′01′1′ ω̄ + Γ00′01 + Γ̄0′00′1′ ,

∂rΓ00′01 = −Γ01′01Γ00′11 − Γ10′01Γ̄0′01′1′ + Ξφ2 +Φ11.

The integration of the connection coefficients can now be completed with the

equation for Γ00′00 (κ in NP notation) dictated by (18.13e), that is,

∂rΓ00′00 = −Γ01′00Γ00′11 − Γ10′00Γ̄0′01′1′ + Ξφ1 +Φ01,

which needs to be supplemented by the equations for φ1 and Φ01:

∂rφ1 = ∇01′φ2,

∂rΦ01 = ∇10′Φ11 − Σ01′φ2 +Σ00′φ3.

Again, one has a subsystem of ordinary differential equations along the generators

of N . The integration of the interior equations on N is completed by considering

the equation for the rescaled Weyl spinor component φ0

∂rφ0 = ∇01′φ1,

which, too, is an ordinary differential equation, and by that for Φ00:

∂rΦ00 = ∇10′Φ01 −∇01′Φ01 + 2Σ00′φ2 − 2Σ01′φ1 +∇00′Φ11.

This last equation is different from the other ones in the hierarchy as its last term

in the right-hand side (i.e. ∇00′Φ11) contains transverse derivatives. However,

using the evolution equations in Section 18.2.2, this term can be formally

computed on N from the available data.
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The interior equations on I −

On I − the intrinsic equations should contain only the derivatives along the

directions given by e00′ , e10′ and e01′ . The relevant subset of (18.11a)–(18.11c)

is, in this case, given by

ΞAA′ � 0, ZAA′ � 0, ZAA′BB′ � 0, for AA′ �= 11′ , (18.14a)

ΣAA′BB′ � 0, ΞC
DAA′BB′ � 0, for AA′ , BB′ �= 11′ , (18.14b)

Δ0DBB′ � 0, ΛB0′CD � 0. (18.14c)

More explicitly, taking into account the gauge conditions given by Lemmas

18.1 and 18.2 the above equations encode the following transport equations:

e00′(Ξ) � 0, (18.15a)

e00′(Σ11′) � −s, (18.15b)

e00′(s) � −Φ11Σ11′ , (18.15c)

e00′(e01′μ) � Γ00′CC′
01′eCC′μ − Γ01′CC′

00′eCC′μ, (18.15d)

PCD00′BB′ � −ΞφBCD0ε0′B′ − ΦC0′DB′ε0B BB′ �= 11′ , (18.15e)

∇00′φABC1 � ∇10′φABC0, (18.15f)

∇00′ΦD1′BB′ +∇D0′Φ01′BB′ −∇01′ΦD0′BB′

−∇D1′Φ00′BB′ � 2Σ1B′φ0DB1, (18.15g)

where, following the notation of Chapter 8, the field PCDAA′BB′ denotes the

geometric curvature. In addition to the above, Equations (18.14a)–(18.14c) also

contain the constraint equations

e01′(Ξ) � 0, e01′(Σ11′) � 0, e01′(s) � −Φ01Σ11′ , (18.16a)

e01′(e10′μ)− e10′(e01′μ) � Γ01′CC′
10′eCC′μ − Γ10′CC′

01′eCC′μ, (18.16b)

PCD01′10′ � Ξφ1CD0ε1′0′ − ΦC1′D0′ . (18.16c)

If Equations (18.16a)–(18.16c) hold in a certain section of I −, then using an

argument similar to that of the propagation of the constraints in the standard

Cauchy problem, it can be shown that they will hold everywhere else on null

infinity by virtue of the transport Equations (18.15a)–(18.15g). Thus, they need

to be solved only on Z .

In analogy to the transport equations on N , the transport Equations (18.15a)–

(18.15g) can be solved along the generators of I − exploiting a hierarchical

structure if some basic data are provided. Some inspection reveals that the

basic data are given by either the connection coefficient Γ10′11 or the rescaled

Weyl spinor component φ0. The details of this construction will not be further

elaborated.
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18.2.1 The freely specifiable data

The discussion of the hierarchical structure of the interior equations on N ∪I −

allows the identification of the basic reduced initial data set r� from which

the full initial data u� on N ∪ I − for the conformal Einstein field equations

can be computed. As already observed, the choice of reduced initial data sets is

not unique. Two possible ways of specifying the reduced data are given in the

following:

Lemma 18.3 (freely specifiable data for the standard characteristic

problem) Assume that the gauge conditions given by Lemmas 18.1 and 18.2

are satisfied in a neighbourhood U of Z on N ∪ I −. Initial data u� for the

conformal Einstein field equations on N ∪ I − can be computed from either of

the two following reduced initial data sets:

(i) r1� consisting of

Γ10′11 on I −,

φ4 on N ,

φ3, φ2 + φ̄2, ξA, on Z ;

(ii) r2� consisting of

φ0 on I −,

φ4 on N ,

Γ10′11, Φ20, φ3, φ2 + φ̄2, ξA, on Z .

In both cases the field ξA is chosen so that −(ξAξ̄B+ξ̄AξB)∂A⊗∂B is conformal

to the standard (contravariant) metric on S2.

Remark. The reduced set r2� in (ii) has the advantage of being symmetric with

respect to N and I −.

Proof The proof of this lemma follows from the discussion in the previous

subsection. Further discussion can be found in Friedrich (1981a).

18.2.2 The reduced conformal field equations

To apply the theory on the characteristic initial value problem discussed in

Section 12.5 one has to extract a suitable symmetric hyperbolic system out of the

conformal field Equations (18.11a)–(18.11c). Given the split between intrinsic

and transverse equations, a hyperbolic reduction procedure such as the one

discussed in Chapter 13 is not required. Instead, a suitable choice of reduced

conformal field equations is given by the combinations

Ξ11′ = 0, Z11′ = 0, Z11′AB′ = 0, (18.17a)

Σ11′BB′ = 0, ΞC
D11′BB′ = 0, (18.17b)
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−Δ1BC0′ = 0, Δ0BC0′ −Δ1BC1′ = 0, Δ0BC′1′ = 0, (18.17c)

− Λ01′00 = 0, Λ00′BC − Λ11′BC = 0, Λ10′11 = 0. (18.17d)

A more explicit form of the equations is discussed in Section 18.3. From

these expressions, adopting the matricial notation of Chapter 12 and considering

suitable multiples of the equations, the reduced conformal field equations can be

written schematically in the form

Aμ(x,u)∂μu+B(x,u) = 0, (18.18)

with Aμ Hermitian matrices and

Aμ(ω00′
μ + ω11′

μ) positive definite. (18.19)

Thus, one obtains a symmetric hyperbolic system for the components of u.

Using the expressions for the principal part of the system (18.17a)–(18.17d),

a computation shows that the characteristic polynomial of the reduced system

contains factors of the form gμνξμξν so that the null hypersurfaces N and I −

are indeed characteristics of the system. It follows from (18.19) that the surfaces

with normal ω00′
+ ω11′

are spacelike for the symmetric hyperbolic system.

Although the coordinates x0 = v and x1 = r have been constructed so that they

have non-negative values, the reduced Equations (18.17a)–(18.17d) also hold for

negative values of the coordinates. It follows that the hypersurface

S� ≡
{
p ∈ R× R× S2 | x0(p) + x1(p) = 0

}
(18.20)

is spacelike for Equation (18.18) in a neighbourhood of Z .

18.3 A local existence result for characteristic problems

As discussed in Section 12.5, the existence and uniqueness of solutions to a

characteristic initial value problem can be obtained via an auxiliary Cauchy

initial value problem on a spacelike hypersurface – in the present case the

hypersurface S� defined by (18.20). The formulation of this auxiliary Cauchy

problem crucially depends on Whitney’s extension theorem so that initial data

on N ∪I − can be extended to a spacetime neighbourhood U of Z . In turn, the

application of Whitney’s theorem depends on being able to evaluate all (interior

and transverse) derivatives of the initial data on N ∪ I −.

18.3.1 Computation of the formal derivatives on N ∪ I −

To verify that one can compute all derivatives of the initial data on N ∪I − one

needs to inspect the principal part of the reduced Equations (18.17a)–(18.17d).

https://doi.org/10.1017/9781009291347.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.023


492 Characteristic problems for the conformal field equations

Borrowing the notation of Proposition 13.1, the reduced Equations (18.17a)–

(18.17b) take the form

∂rσ = G(σ,Γ,Φ,φ), (18.21a)

∂re = H(e,Γ), (18.21b)

∂rΓ = K(Γ,Φ,φ); (18.21c)

that is, they are transport equations along the direction given by e00′ . For the

equations in (18.17c) one has

∂rΦ20 − ω̄∂rΦ21 − ξ̄A∂AΦ21 = L20(Γ,Φ,φ), (18.22a)

∂rΦ10 − ω̄∂rΦ11 − ξ̄A∂AΦ11 = L10(Γ,Φ,φ), (18.22b)

∂rΦ00 − ω̄∂rΦ01 − ξ̄A∂AΦ01 = L00(Γ,Φ,φ), (18.22c)

∂rΦ21 + ∂vΦ21 + U∂rΦ21 +XA∂AΦ21

− ω∂rΦ20 − ξA∂AΦ20 − ω̄∂rΦ22 − ξ̄A∂AΦ22 = M21(Γ,Φ,φ), (18.22d)

∂rΦ11 + ∂vΦ11 + U∂rΦ11 +XA∂AΦ11

− ω∂rΦ10 − ξA∂AΦ10 − ω̄∂rΦ12 − ξ̄A∂AΦ12 = M11(Γ,Φ,φ), (18.22e)

∂rΦ01 + ∂vΦ01 + U∂rΦ01 +XA∂AΦ01

− ω∂rΦ00 − ξA∂AΦ00 − ω̄∂rΦ02 − ξ̄A∂AΦ02 = M01(Γ,Φ,φ), (18.22f)

∂vΦ22 + U∂rΦ22 +XA∂AΦ22 − ω∂rΦ21 − ξA∂AΦ21 = N22(Γ,Φ,φ), (18.22g)

∂vΦ12 + U∂rΦ12 +XA∂AΦ12 − ω∂rΦ11 − ξ̄A∂AΦ11 = N12(Γ,Φ,φ), (18.22h)

∂vΦ02 + U∂rΦ02 +XA∂AΦ02 − ω̄∂rΦ01 − ξ̄A∂AΦ01 = N02(Γ,Φ,φ), (18.22i)

where L20, L10, L00, M21, M11, M01, N22, N12 and N02 are smooth functions

of their arguments – their explicit form will not be required. Finally, for the

Equations (18.17d) involving the components of the rescaled Weyl tensor one has

∂rφ0 − ω∂rφ1 − ξA∂Aφ1 = W0(Γ,φ), (18.23a)

∂rφ1 + ∂vφ1 + U∂rφ1 +XA∂Aφ1 (18.23b)

− ω̄∂rφ0 − ξ̄A∂Aφ0 − ω∂rφ2 − ξA∂Aφ2 = W1(Γ,φ), (18.23c)

∂rφ2 + ∂vφ2 + U∂rφ2 +XA∂Aφ2 (18.23d)

− ω̄∂rφ1 − ξ̄A∂Aφ1 − ω∂rφ3 − ξA∂Aφ3 = W2(Γ,φ), (18.23e)

∂rφ3 + ∂vφ3 + U∂rφ3 +XA∂Aφ3 (18.23f)

− ω̄∂rφ2 − ξ̄A∂Aφ2 − ω∂rφ4 − ξA∂Aφ4 = W3(Γ,φ), (18.23g)

∂vφ4 + U∂rφ4 +XA∂Aφ4 − ω̄∂rφ3 − ξ̄A∂Aφ3 = W4(Γ,φ), (18.23h)

with W0, W1, W2, W3 and W4 smooth functions of their arguments – again, their

explicit form will not be required.

In what follows, it is shown that all formal partial derivatives on N ∪I − can

indeed be computed from the above equations.
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Computation of formal derivatives on I −

To compute the formal derivatives on I − one first observes that the partial

derivatives ∂v, ∂2, ∂3 are interior, while ∂r is transverse. In this case, direct

inspection shows that except for

∂rφ4, ∂rΦ22, ∂rΦ12, ∂rΦ02,

all ∂r-derivatives of the unknown u can be computed using Equations (18.21a)–

(18.21c), (18.22a)–(18.22f) and (18.23a)–(18.23g). The exceptional cases shown

above arise due to the fact that ω = U = 0 on I − so that Equations (18.22g)–

(18.22i) and (18.23h) evaluated at I − do not, in fact, contain ∂r-derivatives.

To get around this problem one computes the ∂r-derivative of (18.22g)–(18.22i)

and (18.23h) and then evaluates on I − to obtain the system

∂v
(
∂rΦ22

)
+ ∂rU∂rΦ22 + ∂rX

A∂AΦ22 − ∂rω∂rΦ12

− ∂rξ
A∂AΦ12 − ξA∂A∂rΦ12 � ∂rN22,

∂v
(
∂rΦ12

)
+ ∂rU∂rΦ12 + ∂rX

A∂AΦ12 − ∂rω∂rΦ11

− ∂rξ
A∂AΦ11 − ξA∂A∂rΦ11 � ∂rN12,

∂v
(
∂rΦ02

)
+ ∂rU∂rΦ02 + ∂rX

A∂AΦ02 − ∂rω∂rΦ01

− ∂rξ
A∂AΦ01 − ξA∂A∂rΦ01 � ∂rN02,

∂v
(
∂rφ4

)
+ ∂rU∂rφ4 + ∂rX

A∂Aφ4 − ∂rω̄∂rφ3

− ∂r ξ̄
A∂Aφ3 − ξ̄A∂A∂rφ3 � ∂rW4.

The latter can be interpreted as a system of first-order linear ordinary differential

equations for ∂rφ4, ∂rΦ22, ∂rΦ12, ∂rΦ02. The initial data on Z for these

equations can be computed from the data on N ∪ I −. General results of the

theory of ordinary differential equations ensures that this system of equations can

be solved in a neighbourhood of Z on I −. Accordingly, all the first transverse

derivatives on I − can be explicitly computed. The argument described in this

paragraph can be generalised, by repeatedly differentiating the reduced equations

with respect to ∂r, to iteratively compute higher order ∂r-derivatives as the

solution to a system of algebraic equations and linear PDEs.

Computation of formal derivatives on N

The analysis of the formal derivatives on N is almost the mirror image of that

on I −. In this case ∂r, ∂2, ∂3 are interior derivatives, while ∂v is transverse.

After an inspection of the list of Equations (18.21a)–(18.21c), (18.22a)–(18.22i)

and (18.23a)–(18.23h) one finds that only

∂vφ4, ∂vφ3, ∂vφ2, ∂vφ1,

∂vΦ22, ∂vΦ12, ∂vΦ11, ∂vΦ02, ∂vΦ01
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are algebraically determined by the initial data on N . To obtain the remaining

transverse derivatives, one computes the ∂v-derivatives of Equations (18.21a)–

(18.21c), (18.22a)–(18.22c) and (18.23a) and evaluates them on N to obtain a

first-order system of ordinary differential equations along the generators of N for

∂vσ, ∂ve, ∂vΓ, ∂vΦ02, ∂vΦ01, ∂vΦ00, ∂vφ0.

Supplementing this system with the information on Z implied by the initial

data for the reduced equations, one finds that the general theory of ordinary

differential equations ensures the existence of solutions in a neighbourhood of

Z on N . In this manner one obtains a complete set of first-order transverse

derivatives on N . Higher order transverse derivatives can be obtained iteratively

by computing higher order ∂v-derivatives of the reduced conformal field equations

as required.

The analysis described in the previous paragraphs can be summarised in the

following:

Lemma 18.4 (computation of formal derivatives) Any arbitrary formal

derivatives (∂αu)� of the vector unknown u on N ∪I − can be computed from the

prescribed initial data u� for the reduced conformal field equations on N ∪I −.

18.3.2 The subsidiary system

To show that the solutions of the reduced equations imply a solution to the

full conformal field equations if initial data satisfying the constraints on N and

I − are prescribed, it is necessary to obtain a suitable subsidiary system for the

zero quantities encoding the conformal field equations. The propagation of the

constraints is ensured by the following:

Proposition 18.1 (propagation of the constraints) A solution u of the

reduced conformal field Equations (18.17a)–(18.17d) on a neighbourhood U of Z

on J+(Z ) that coincides with initial data on N ∪ I − satisfying the conformal

equations is a solution to the conformal field Equations (18.11a)–(18.11c) on U .

A subsidiary system adapted to the geometry of the characteristic problem

described in the previous sections is obtained from the following derivatives of

the zero quantities associated to the conformal field equations:

∇11′ΞAA′ , ∇11′ZAA′ , ∇11′ZAA′BB′ ,

∇11′ΣAA′BB′ , ∇11′ΞCDAA′BB′

(∇00′ +∇11′)ΔCDBB′ , (∇00′ +∇11′)ΛBB′CD.

Using arguments similar to those employed in Sections 13.3 and 13.4.5 one

rewrites the above derivatives as homogeneous expressions in the zero quantities.

Further details of these lengthy calculations can be found in Friedrich (1981a).
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Once a subsidiary system of the required form has been obtained, the propagation

of the constraints follows from the uniqueness of solutions to the characteristic

problem.

In addition to Proposition 18.1 one has the following:

Corollary 18.1 (preservation of the conformal gauge) Let u denote a

solution to the characteristic problem for the conformal field equations on a

neighbourhood U of Z on J+(Z ) which satisfies the gauge conditions given in

Lemmas 18.1 and 18.2. Then the metric g constructed from the components of

the solution u satisfies the vacuum Einstein field equations R[g] = 0.

This result follows from an argument similar to the one used to prove the

propagation of the algebraic conformal field equation encoding the trans-

formation rule for the Ricci scalar in Lemma 8.1. Here one considers the

derivative

∇11′
(
Ξ∇AA′∇AA′Ξ− 2∇AA′Ξ∇AA′

Ξ
)

and makes use of the conformal field equations to rewrite it as a homogeneous

expression in zero quantities. In view of the transformation law of the Ricci

scalar under conformal rescalings, the term in brackets coincides with R[g]. Now,

from the discussion leading to Lemma 18.2 one concludes that R[g] = 0 on

N ∪I −. The corollary then follows from the uniqueness of the solutions to the

characteristic problem.

18.3.3 The existence result

Combining the analysis developed in the previous subsections with the theory

of characteristic initial value problems for symmetric hyperbolic systems of

Section 12.5, one obtains the following existence result:

Theorem 18.1 (existence and uniqueness to the standard asymptotic

characteristic problem) Given a smooth reduced initial data set r� for the

conformal Einstein field equations on N ∪ I −, there exists a unique smooth

solution of the conformal field equations in a neighbourhood U of Z in J+(Z )

which implies the prescribed initial data on N ∪ I −.

Proof It follows from Lemma 18.4 that the formal derivatives of u can be

computed to any arbitrary order from the reduced data r� on N ∪ I −.

Hence, it is possible to formulate an auxiliary Cauchy problem for the reduced

conformal field Equations (18.17a)–(18.17d) with data implied by the extension

to a neighbourhood of Z given by Whitney’s theorem. Thus, using Theorem

12.7 and the discussion in Section 12.5.3 there is a neighbourhood W of Z in

J+(Z ) in which there exists a unique solution u to the reduced conformal field

equations which on N ∪I − coincides with the data u� implied by the prescribed
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reduced initial data – as Z ≈ S2, it is necessary to combine solutions in two

different patches. Finally Proposition 18.1 and Corollary 18.1 imply that the

solution to the reduced equations is, in fact, a solution to the full conformal field

equations.

The characteristic problem on N ′ ∪ I +

The analysis leading to Theorem 18.1 can be adapted to analyse the dual

asymptotic characteristic problem with data on N ′∪I + where N ′ is a future-

oriented null hypersurface. In this case one endeavours to find a solution in a

neighbourhood U ′ of Z ′ = N ′ ∩ I + in J−(Z ′). All the relevant expressions

can be obtained from those for the characteristic problem on N ∪ I − through

the replacements 0 �→ 1, 1 �→ 0 in the spinorial frame indices so that

e00′ �→ e11′ , e11′ �→ e00′ , e01′ �→ e10′ , e10′ �→ e01′ .

In particular, one has

φ0 �→ φ4, φ1 �→ φ3, φ2 �→ φ2, φ3 �→ φ1, φ4 �→ φ0

and

ω �→ ω̄, ξA �→ ξ̄A.

Similarly, for the connection coefficients and the components of the trace-free

Ricci spinor one has

Γ01′00 �→ Γ10′11, Φ12 �→ Φ10 = Φ01, and so on.

For consistency, one should replace the coordinate v along the generators of I −

with a coordinate u along the generators of I +.

18.4 The asymptotic characteristic problem on a cone

As discussed in the introduction, an alternative characteristic problem for the

conformal Einstein field equations consists of a configuration where initial data

is prescribed in a neighbourhood of the vertex of a cone representing the

timelike infinity of a Minkowski-like spacetime; see Figure 18.1, right. This

type of geometric setup for a characteristic initial value problem was originally

introduced in Friedrich (1986c) and is intended to model purely radiative

spacetimes, that is, a system describing gravitational radiation from past

null infinity which interacts non-linearly with itself and eventually escapes to

future null infinity. Intuitively, one would expect this type of solution to the

Einstein field equations to have a smooth structure at null infinity. To ensure

that the gravitational field consists only of gravitational radiation one requires

that the generators of null infinity are complete and that past timelike infinity is

represented by a point i− which is regular from the point of view of the conformal

completion.
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To discuss the geometric setting in a more precise manner it is convenient to

introduce some definitions.

Definition 18.1 (spacetimes with a cone past boundary) A spacetime

(M, g) is said to have a cone past boundary if:

(i) There exists a causal, oriented and time-oriented spacetime (M′, g′) (the

ambient manifold).

(ii) There exists a point o ∈ M′ such that the set consisting of o and all points

of M′ which can be joined to o by a causal curve in M′ – to be denoted by

J+(o,M′) – is closed in M′.

(iii) Given No ≡ ∂J+(o,M′), then No \ {o} is a smooth null hypersurface of

M′.

(iv) The set M corresponds to J+(o,M′) together with the structures it inherits

from (M′, g′) – in particular, g is the pull-back of g′ to M.

Given p ∈ M, the set Np ⊂ M is called the future null cone of p.

In terms of the above notions one introduces the further notion:

Definition 18.2 (spacetimes with a complete past null infinity cone)

A vacuum spacetime (M̃, g̃) is said to be a solution to the Einstein field

equations with complete null cone at past timelike infinity i− if there

exists a conformal extension (M, g,Ξ) with cone-like past boundary Ni− such

that the conformal factor satisfies

Ξ > 0 on M\ Ni− , (18.24a)

Ξ = 0 on Ni− , (18.24b)

dΞ �= 0 on Ni− \ {i−}, (18.24c)

dΞ = 0, HessΞ non-degenerate at i−, (18.24d)

and there is a diffeomorphism by means of which the manifolds M̃ and M\Ni−

can be identified so that g = Ξ2g̃ on M\ Ni− . The set Ni− \ {i−} is swept by

the future-directed null geodesics through i− and represents the past null infinity

I − of the spacetime.

Equipped with the above definitions, one can formulate a pure radiation

problem in which one asks: given data on a cone No, is there a unique solution

to the Einstein field equations with complete past null infinity implying fields on

I − which can be identified with the data prescribed on No and such that the

point o can be identified with i−?

18.4.1 Gauge conditions

This section gives a brief discussion of the gauge specification process for the

characteristic initial value problem on a cone. As is the case in all initial value
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problems concerning the conformal field equations, one has to consider three

different types of gauges: conformal, coordinate and frame gauges. These are

analysed in turn.

The conformal gauge

Given a null cone No with vertex o, let l denote the vector tangent to the null

generators of No. Consistent with conditions (18.24a)–(18.24d), it is assumed

that one has a conformal factor Ξ such that

Ξ = 0, dΞ = 0, s �= 0 at o.

Mimicking the discussion of Section 16.3, one can transvect the conformal field

equations

∇a∇bΞ = −ΞLab + sgab, ∇as = −∇bΞLba, (18.25)

with l to find that Ξ = 0 and s �= 0 on No and, moreover, that dΞ �= 0 on No\{o}.
It is also observed that if s|o = 0, then dΞ = 0 on No. The behaviour of the

conformal gauge at o can be refined by considering a rescaling as in Equation

(18.6) with ϑ > 0. Making use of the transformation formula for the Friedrich

scalar s, Equation (8.29b), one finds that s′|o = (sϑ−1)|o. Let γ(ς) with ς ∈ R

denote a future-directed null geodesic on No with γ(0) = o such that l = γ̇

and, consequently, ∇ll = 0. Setting l′ ≡ ϑ−1l, one finds that g′(l′, l′) = 0 and

∇′
l′l

′ = 0 as well. Using the transformation formula for the trace-free Ricci tensor

Φab, Equation (18.8), one finds that along γ it holds that

ϑ3l′al′bΦ′
ab = ϑ−1lalbΦab + 2lb∇b

(
la∇a(ϑ

−1)
)
.

Thus, if the value of the component l′al′bΦ′
ab is prescribed, the above equation

can be read as an ordinary differential equation for ϑ along the null geodesic γ.

The initial value of ϑ can be fixed through the specification of s|o. Using the first

of the equations in (18.25) one finds that

s|og′(l′, l′)|o = ∇l′∇l′Ξ
′|o.

In order to have a local minimum of Ξ at o, one needs that ∇l′∇l′Ξ
′|o > 0 forcing

s|o > 0 – in the signature (+−−−). Without loss of generality, one can then set

s = 2 at o, (18.26)

and

lalbΦab = 0 on No near o. (18.27)

In this construction there is still the freedom of specifying the value of dϑ at o.

Adapting the arguments of Section 18.1.2 one can set a characteristic initial value

problem on No for the wave Equation (18.7) in such a way that

R[g] = 0 on J+(No) near o. (18.28)
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The coordinates and the frame near o

A convenient four-dimensional description of the null cone No is obtained using

g-normal coordinates y = (yμ) centred at o; see Sections 2.4.5 and 11.6.2.

Accordingly, one has that yμ(o)= 0, gμν(o)= ημν , ∂λgμν(o)= 0 and Γμ
ν
λ(o)= 0.

These properties can be more concisely summarised in the expression

yμgμν = yμημν in a neighbourhood of o. (18.29)

In these coordinates, for fixed (yμ) �= 0 one has that the curve γ : ς → ςyμ is a

geodesic through o and that

No = {yμ ∈ R4 | ημνyμyν = 0, y0 ≥ 0}.

Thus, in these coordinates the null cone No can be thought of as being the null

cone through the origin in Minkowski spacetime.

Associated to the g-normal coordinates, it is natural to consider a normal

frame centred at o, that is, a frame {ea} which, in a neighbourhood U of o,

satisfies g(ea, eb) = ηab and ∇γ̇ea = 0 for any geodesic passing through o.

Without loss of generality, one can assume that the frame coefficients in ea =

ea
μ∂μ satisfy ea

μ(o) = δa
μ. Using the properties of the exponential function, it

can be shown that the frame coefficients ea
μ depend smoothly on the coordinates

(yμ). It can then be verified that g(γ̇, ea) is constant along γ. Moreover, using

that gμν = ηabω
a
μω

b
ν , it can be shown that

yμδμ
aea

ν(y) = yν , yμημνea
ν(y) = yμημνδa

ν . (18.30)

The above conditions can be regarded as an alternative definition of normal

coordinates. More precisely, if a set of coordinates y = (yμ) and frame coefficients

{eaμ} satisfy the conditions in (18.30) the metric components gμν will satisfy

condition (18.29).

To complete the discussion, it is convenient to introduce the vector field

y(y) = yμ∂μ tangent to the geodesics through o. One then has

y(o) = 0, (∇μy
ν)|o = δμ

ν , ∇yy = y.

Writing y in terms of a g-normal frame one has that y = yaea where ya(y) =

δν
ayν . Furthermore, using ∇yea = 0 one concludes that

ya(y)Γa
b
c(y) = δν

ayνΓa
b
c(y) = 0, close to o.

The coordinates y = (yμ) and the frame {ea} satisfying the conditions

discussed in the previous paragraphs will be collectively known as a normal

gauge. This gauge system is supplemented by a normalised spin frame {εAA}
satisfying yAA′∇AA′εA

B = 0 such that {eAA′} = {εAε̄A′} with eAA′ =

σAA′aea – here yAA′
is the spinorial counterpart of the vector y. In what follows,

all spinors will be expressed in components with respect to this type of frame.
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Adapted coordinates on No

The coordinates y = (yμ) introduced in the previous subsections provide

a convenient spacetime description of No. However, to analyse the intrinsic

geometry of the cone, one needs adapted coordinates. The construction of these

coordinates is similar to that of the coordinates (v, r, xA) used in the analysis

of the characteristic problem on N ∪ I − in Section 18.1.1. The fundamental

difference is that, in the case of a cone, these adapted coordinates degenerate

at the vertex o. More precisely, one can consider adapted coordinates x = (xμ)

such that No is given as a level surface by the condition r ≡ x1 = 0 and v ≡ x0

is a parameter along the generators with tangent l – thus, l = ∂v. The two-

dimensional spacelike surfaces Zv• ≡ {p ∈ N | v(p) = v•} satisfy Zv• ≈ S2,

except for the limit case Z0 = {o} which is a point. As in Section 18.1.1, (xA)

denote local coordinates on Zv• . On No the covector n� ≡ dr is null and normal

to No. The coordinate r can be chosen so that one has the usual normalisation

g(l,n) = 1. Finally, the vectors l and n can be completed to a frame by choosing

a pair of complex conjugate vectors m, m̄ ∈ T (Zv•), for v• �= 0, such that

g(m, m̄) = −1. As in Section 18.1.1 the vectors m and m̄ can be parallelly

propagated along the generators of No off some fiduciary section Zv• .

18.4.2 Null data on the cone

As in the case of the characteristic problem on N ∪I −, there are several ways of

prescribing the free data. The most physically meaningful specification consists

of the so-called radiation field encoding information on the two components

of the Weyl tensor with the slowest fall-off at null infinity, and can be thought

of as describing the two polarisation states of incoming radiation.

To describe the null data, let, as in previous sections, l denote the vector

tangent to the generators of the null cone No. As l is a null vector, there exists a

spinor κA such that lAA′
= κAκ̄A′

with lAA′
the spinorial counterpart of l. The

spinor κA is defined up to a phase κA �→ eiϑκA with ϑ ∈ R constant along the

null generators. The radiation field is then defined as the component

φ0 ≡ κAκBκCκDφABCD

of the rescaled Weyl spinor. Due to the phase ambiguity in κA, the radiation

field is a spin-weighted quantity. The information encoded in the radiation field is

equivalent to information on the pull-back of dabcdl
alc to No. More precisely, ifm

and m̄ are complex vectors tangent to the sections of No such that g(l,m) = 0,

then it follows from the symmetries of the Weyl tensor that φ0 = dabcdl
amblcmd.

Solving the constraints on No

In analogy to the characteristic problem on N ∪ I −, and making use of the

adapted coordinates x = (v, r, xA) and of the frame {l, n, m, m̄}, the conformal
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Einstein field equations split into equations transverse and intrinsic to No. The

intrinsic equations divide, in turn, into propagation equations (i.e. ordinary

differential equations) along the generators of the cone and constraints which

need to be solved only at a particular cut. Assuming the conformal gauge

discussed in Section 18.4.1, the knowledge of the radiation field φ0 on No allows

one to compute the value of the remaining conformal fields in a neighbourhood

of o on No. More precisely, one has the following:

Proposition 18.2 (reduced initial data for the asymptotic characteristic

problem on a cone) In the conformal gauge given by conditions (18.26),

(18.27) and (18.28), the transport equations induced by the conformal Einstein

field equations and the structure equations on No uniquely determine the fields Ξ,

s, ΦAA′BB′ and φABCD on No once the radiation field φ0 has been prescribed.

The resulting fields satisfy the constraint equations on No.

Details on this result can be found in Friedrich (2014b).

Evaluating formal derivatives on No

In addition to solving the constraint equations on No, and in order to apply the

theory of characteristic problems on a cone, given a choice of radiation field, it is

necessary to show that the (formal) derivatives of any order of the conformal

fields can be determined on the null cone along the generators of No. This

analysis is analogous to the one discussed in Section 18.3.1 for the characteristic

problem on N ∪I −. In the present case, however, the analysis is more delicate

as the set Z = N ∩ I − shrinks to a point, so that the information for the

integration along the generators has to be extracted solely from the null data.

The key result is the following (see Friedrich (2014b)):

Proposition 18.3 (computation of formal derivatives at the vertex ) In

a neighbourhood of the point o let the fields Ξ, s, ΦAA′BB′ φABCD, eAA′μ,

ΓAA′BC be smooth and be expressed in an o-centred normal gauge and a

conformal gauge satisfying Equations (18.26), (18.27) and (18.28). If the above

fields satisfy the conformal field equations, then the Taylor expansions of the fields

Ξ, s, ΦAA′BB′ and φABCD in a suitable neighbourhood of o are determined by

the null datum φ0.

Remark. In the above proposition, the neighbourhoods of o are spacetime

neighbourhoods in the ambient manifold M′ containing the cone No.

18.4.3 The existence result

The setting described in the previous paragraphs leads to the following existence

result, adapted from Chruściel and Paetz (2013):
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Figure 18.4 Schematic representation of the set up for the asymptotic
characteristic problem on a cone. The existence results are restricted to a
neighbourhood U of o in J+(o).

Theorem 18.2 (local existence for the asymptotic characteristic prob-

lem on a cone) For any smooth prescription of the radiation field φ0 on the null

cone at the origin of the Minkowski spacetime, No, there exists a neighbourhood

U ⊂ J+(o) of o, a smooth metric g and a smooth function Ξ such that:

(i) No is the light cone of o for g.

(ii) Ξ = 0 on No.

(iii) dΞ = 0, HessΞ �= 0 on o.

(iv) dΞ �= 0 on ∂J+(o) ∩ U \ {o}.
(v) The function Ξ has no zeros on U∩I+(o) and the metric g̃ = Ξ−2g satisfies

the vacuum Einstein field equations on U ∩ I+(o).

Moreover, the rescaled Weyl spinor φABCD of the pair (g,Ξ) extends smoothly

across No and the restriction of φABCDε0
Aε0

Bε0
Cε0

D to No\{o} coincides with

the prescribed radiation field φ0. The solution is unique up to isometries.

Remark. It follows from points (ii), (iii) and (iv) that the set No \ {o}
corresponds to the past null infinity I − of the resulting spacetime, while the

vertex o is its past timelike infinity i−. A schematic representation of the set up

of the above theorem is given in Figure 18.4.

The proof of the above theorem, as given in Chruściel and Paetz (2013), makes

use of the metric version of the conformal field equations and the associated wave

equations discussed in Paetz (2015); see also Section 13.5.2. The reason behind

the use of a hyperbolic reduction based on wave equations – as opposed, say, to

the first-order symmetric hyperbolic systems used throughout this book – lies

in the fact that the available theory of characteristic problems on a cone is well

understood for this type of equations; see Dossa (1986, 2002).

18.5 Further reading

Characteristic problems in general relativity have a long history. The first sys-

tematic discussion has been given in Sachs (1962c). Further classical discussions

can be found in Penrose (1965, 1980) and Müller zu Hagen and Seifert (1977).
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A review on the various approaches to the problem, including an analysis of the

possible choices of free data, can be found in Chruściel and Paetz (2012); this

reference provides a convenient point of entry to the literature on the subject.

The basic theory of asymptotic characteristic initial value problems for

the conformal field equations has been developed in the articles by Friedrich

(1981a,b). A version of Theorem 18.1 in the analytic setting was given in Friedrich

(1982). This result has been extended to the smooth setting in Kánnár (1996b)

using the reduction to an auxiliary Cauchy problem given in Rendall (1990).

The geometric set up for the asymptotic characteristic problem on a cone has

first been given in Friedrich (1986c). The relation between Taylor expansions at

the vertex of the null cone and the interior equations implied by the conformal

Einstein field equations has been examined in Friedrich (2014b). The existence

result for the characteristic problem in the cone has been given in Chruściel

and Paetz (2013). Characteristic problems on a cone are less studied than those

on intersecting null hypersurfaces. A good point of entry to the literature is

Choquet-Bruhat et al. (2011).

Characteristic problems provide a natural approach to the construction

of solutions to the Einstein equations by means of numerical methods. An

advantage of this formulation is its clear-cut connection with the notion of

gravitational radiation; see, for example, Damour and Schmidt (1990). A review

on the subject can be found in Winicour (2012).

The characteristic initial value problem has been used in the seminal work by

Christodoulou on the collapse of a spherically symmetric self-gravitating scalar

field; see Christodoulou (1986).
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