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Abstract. It is well known that Godel’s incompleteness theorems hold for X -definable theories
containing Peano arithmetic. We generalize Godel’s incompleteness theorems for arithmetically de-
finable theories. First, we prove that every X, |-definable X;-sound theory is incomplete. Secondly,
we generalize and improve Jeroslow and Héjek’s results. That is, we prove that every consistent
theory having IT,,; | set of theorems has a true but unprovable IT; sentence. Lastly, we prove that no
X, +1-definable X;-sound theory can prove its own X;,-soundness. These three results are general-
izations of Rosser’s improvement of the first incompleteness theorem, Godel’s first incompleteness
theorem, and the second incompleteness theorem, respectively.

§1. Introduction. As it is inscribed in the title of the famous paper, Godel’s incom-
pleteness theorems were proved for a particular system, Principia Mathematica PM. The
proofs were based on the three facts—that PM is defined primitive recursively, PM is
w-consistent, and PM includes arithmetic. Hence, as Godel had pointed out in the paper,
Godel’s theorems are applicable to similar theories which satisfy these three conditions.
Godel’s theorems have been generalized further and currently they are often stated as
follows: for any extension 7' of Peano arithmetic PA, if T is X;-definable and X-sound,
then T is incomplete (the first incompleteness theorem), and if 7 is Xj-definable and
consistent, then the consistency of T is not provable in 7 (the second incompleteness
theorem).

The assumptions of X|-definability and X|-soundness in Godel’s theorems can be jus-
tified philosophically. PM and other similar theories have been constructed in order to
formalize the whole of mathematics effectively. X{-soundness should be satisfied by any
theory which is intended to be a formalization of mathematics including arithmetic, and
X 1-definability is an acceptable condition for the effectiveness, since X1-definable theories
are axiomatizable primitive recursively.

Mathematically, X-definability is the optimal condition for Godel’s theorems in the
sense that we cannot generalize Godel’s theorems to Aj-definable theories. That is, there
exists a Ap-definable consistent and complete extension of PA, and we can find a
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A,-definable theory whose consistency is provable in it (see Feferman (1960)). It is an
interesting problem to investigate theories which are out of the range of Godel’s theorems,
and, for example, nonrecursively-enumerable theories which prove their own consistency
are investigated in Niebergall (2005) and Kasa (2012).

However, there have been various generalizations of Godel’s theorems. Concerning
> 1-soundness, Rosser showed in Rosser (1936) that the X -soundness requirement on the
theory 7 in Godel’s theorem can be weakened to the mere consistency of 7, and this
generalization is now called the Godel-Rosser first incompleteness theorem.

Regarding X;-definability, based on Carnap’s analysis of nonconstructive rules, Rosser
showed in Rosser (1937) that Godel’s theorems hold for certain extensions of PM which
are not Xi-definable. By referring to Putnam’s discussions of trial-and-error predicates,
Jeroslow proved in Jeroslow (1975) that, for any consistent theory 7 including arithmetic
and having a Aj-definable set of theorems, there is a true II; sentence that is not prov-
able in 7. Also Jeroslow proved that for any Xi-sound extension 7" of arithmetic with a
¥-definable set of theorems and provability predicates Pry (x) of T satisfying certain ad-
ditional conditions, the X,-consistency of Prz (x) is not provable in 7.! Hajek generalized
Godel’s first incompleteness theorem in Hajek (1977) along the direction of Jeroslow’s
argument, proving that for any consistent extension 7' of PA whose set of theorems is PA-
provably A, o, there exists a true I1,,41 sentence that is not provable in 7. Hijek proved
also that if an extension 7 of PA having a I1,,4, set of theorems is X, ;,-consistent, then
there is a T -unprovable true 11,4 sentence.

In this paper, we investigate further generalizations of Godel’s theorems to the case of
arithmetically definable theories. We firstly discuss the first incompleteness theorem. We
start with a generalization of the first incompleteness theorem to the statement that every
¥, +1-definable consistent extension of PA has an unprovable true IT,; sentence. While
this generalization itself is a consequence of Hajek’s result, we shall give two stronger
variations of this generalization.

The first such variation is an extension of Rosser’s generalization. The Godel-Rosser
first incompleteness theorem cannot be generalized to X, -definable theories directly, since,
as we have mentioned before, there is a Aj-definable consistent and complete extension
of PA. However, the Godel-Rosser theorem can be restated as every X;-definable and
Yo-sound extension of PA is incomplete, and we prove that every X,.|-definable and
¥ ,-sound extension of PA is incomplete as well.?

Another variation is an extension of Jeroslow and Hdijek’s generalizations. Although
Héjek’s result is strongly related to Jeroslow’s, the former is not a generalization of the
latter because there is a A, set which is not PA-provably A,. We prove that if T is a
consistent extension of PA having a IT,,; set of theorems, there exists a true IT,, 4| sentence
that is not provable in 7'. This is a generalization of Jeroslow’s result and an improvement
of Hajek’s result, and it gives a negative answer to the following problem of Héjek given
in Héjek (1977): Does there exist a consistent extension of PA having a I13 set of theorems

1 Actually, Jeroslow stated these results in the terminology of experimental logics, and thus we
describe adaptations of Jeroslow’s results (see also Fact 5.7 below).

2 The referee informed the authors that our article has overlap with the following preprint,
which deals with a generalization of the Godel-Rosser first incompleteness theorem: Salehi, S.
& Seraji, P., Godel-Rosser’s incompleteness theorems for nonrecursively enumerable theories,
http://arxiv.org/abs/1506.02790. See also Salehi, S. & Seraji, P., Godel-Rosser’s incompleteness
theorem, generalized and optimized for definable theories, to appear in Journal of Logic and
Computation.
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that can prove all true IT, sentences? Using the result above, we show also that if T is a
X, +1-consistent theory having a IT,4, set of theorems, then 7 is incomplete.

Next, we examine the second incompleteness theorem. We prove that no Z,,1-definable
¥,-sound theory can prove its own X,-soundness. In addition, we study the consistency
statements for X,-definable theories. We prove that for every X,4;-definable and
>,-sound theory T, there is a consistency statement for some axiomatization of 7 which
is independent of 7. Thus appropriate consistency statements can be witnesses for the
generalized version of the Godel-Rosser first incompleteness theorem.

§2. Preliminaries. In this paper, we call a set of sentences a theory. Thus a theory
is identified with its axiom set. We consider only theories in the language of first-order
arithmetic {4, %, 0, 1, <}. We assume that 7 and U always denote theories containing
Peano arithmetic PA. Let @ be the set of all nonnegative integers. For each n € w, n
denotes the numeral for . For each formula ¢, gn(p) is the Godel number of ¢, and "¢~
denotes the numeral for gn(g).

We recursively define the classes X, and II, of formulas for every n € w as
follows: Xy = Il is the class of all formulas all of whose quantifiers are bounded;
.11 (resp. II,41) is the class of all formulas of the form Ix¢ (resp. Vx¢g) for some
¢ € II, (resp. ¢ € Z,), and here quantifiers preceding ¢ are allowed to be absent. We
say a formula is X, (PA) (resp. I1,(PA)) if it is PA-provably equivalent to some formula
in X, (resp. I1,). Throughout this paper, we sometimes omit ‘(PA)’ if there is no danger
of confusion. A formula is called A, (N) (resp. A, (7)) if it is equivalent to both some X,
formula and some II,, formula in N (resp. 7). We suppose that the subscript n of X, I1,
and A, ranges over o unless otherwise stated.

We say a formula o (u) is a definition of a theory T if and only if {n €  : N =0 (n)} =
{gn(p) : ¢ € T}. Let I be a class of formulas. A definition of 7" which is a I' formula
is called a I' definition of T. A theory T having a " definition is said to be I'-definable.
Notice that distinct I' definitions of a I'-definable theory 7" need not be equivalent in 7,
and that every X, -definable consistent theory always has two X, definitions which are not
T -equivalent (see Corollary 4.6 below).

We say a formula o («) is a binumeration of a theory T in a theory U if and only if for
any sentence ¢, U =0 ("¢ ") whenever ¢ € T,and U =0 ("¢ ") whenever ¢ ¢ T. When
abinumeration o (#) is a I' formula, we say o (1) a I" binumeration. For each formula o (1),
we can construct a formula Prf,; (x, y) which states “a sentence with the code x has a proof
with the code y from the set of all sentences satisfying o (1), and the formula Prf, (x, y)
is called the proof predicate of o (u) (see Feferman (1960)). For n > 0, if o (u) is X,
(resp. I1,), the resulting formula Prf, (x, y) is X,,(PA) (resp. I1,,(PA)). Define Pr, (x) to
be the formula 3yPrf; (x, y) which is called the provability predicate of o (u). If o (1) is a
definition of a theory T, then Pr, (x) is a definition of the theory {¢ : T F¢}.

For each definition o (1) of T, the consistency assertion Con, of o (u) is defined as
—Pr, ("0 = 17), which expresses the consistency of 7. If o (u) is Z,, then Con, is a
I1,,(PA) sentence. Let (o |x)(u) be the formula o (1) A u < x. Then for each n € w, the
formula (o |n)(u) is a definition of the finite subtheory {¢ € T : gn(p) < n}of T.

The following facts hold (see Feferman (1960) and Lindstrom (1997)).

FACT 2.1. Let T and U be theories, and o (x) be a binumeration of T in U.

1. If p € wis a code of a T-proof of ¢, then U —=Prf, ("¢, p).
2. If ¢ € wis not a code of any T -proof of ¢, then U = —=Prf, ("9, ¢).

https://doi.org/10.1017/51755020317000235 Published online by Cambridge University Press


https://doi.org/10.1017/S1755020317000235

606 MAKOTO KIKUCHI AND TAISHI KURAHASHI

FACT 2.2. Let o (u) and t (1) be any formulas.
1. PAEYu(o (u) = t(u)) - Vx(Pry (x) = Pr;(x)).
2. PAEYu(o(u) = t(u)) = (Con, — Cony).

FACT 2.3 (See Mostowski (1952)). Let T be a subtheory of U. If o (1) is a binumeration
of T in U, then U = Cong|; for any n € o.

Let I' be either X,,41 or Il, 1, then it is known that there is a I' formula Truer (x)
which is a truth-definition for sentences in I', that is, for any formula ¢p(x) € T, PA
Vx(p(x) <> Truer("p(x)7)), where "¢ (x) ™ is the standard dot notation, and notice that
x is free in Truer("¢(x)™) (see Lindstrom (1997)). Then the formula Truer(x) is a I’
definition of the set Thr(N) := {¢ € I' : N = ¢} of all true sentences in I". On the
other hand, Tarski’s undefinability theorem says that there exists no formula defining the
set TA := {¢ : N |= ¢} of all true sentences. Also there is a Aj(PA) formula Trues, (x)
which is a truth-definition for sentences in X (see Kaye (1991)).

Define Pr, ,(x) to be the formula Jv(Trues,,, (v) A Pry(v—x)). Then we have the
following proposition (see Smoryriski (1985)).

PROPOSITION 2.4. Let o (x) be any X,1 definition of a theory T.

L IfT +Thy, (N) =Vxe(x), then PA+Thy, (N) =VxPr, ,("e(x)™).
2. PAEVX(Pron(To () » w () ) = (Prou(Co(x) ") = Pro (T (X))
3. Ifp(x) is 41, then PA EVx(p(x) = Pro,(To(x)™).

§3. Notions related to consistency and completeness. In this section, we introduce
some notions related to consistency and completeness of theories and show several prop-
erties of these notions.

DEFINITION 3.1. Let T be a theory and T be a class of formulas.

1. T is T'-sound if and only if for all T sentences ¢, N |= ¢ whenever T  ¢.
2. T is sound if and only if T is X,-sound for any n € .

3. T is T-consistent if and only if for all T formulas ¢ (x), if T =@ (k) for all k € o,
then T ¥ Ix¢(x).

4. T is w-consistent if and only if T is X, -consistent for any n € .
. T is T-complete if and only if for all T sentences ¢, T = ¢ whenever N = ¢.

AN W

. T is T'-decisive if and only if for all T sentences ¢, either T \=¢ or T = —¢ holds.

It is well-known that every extension of PA is Xj-complete. It is easy to see that a
theory T is complete if and only if 7T is II,-decisive for all n € w, and that T is consis-
tent if and only if 7 is Zp-sound. The notion of w-consistency was introduced in Godel
(1931), and IT,,—1-consistency was originally introduced in Kreisel (1957) under the name
‘n-consistency’.

We exhibit several properties of these notions.

PROPOSITION 3.2 (See Hajek (1977) and Smorynski (1977b)).

1. T is X,-sound if and only if T is 11,4 1-sound.
2. T is I1,-consistent if and only if T is X, 41-consistent.
3. T is I1,-complete if and only if T is Z,41-complete.
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PROPOSITION 3.3 (See Smoryniski (1977b)). Letn > 0. If T is X,-sound, then T is
X, -consistent.

COROLLARY 3.4. If T is sound, then T is w-consistent.

It is known that for n = 1, 2, the X,-soundness of T is equivalent to the X, -consistency
of T. Also, an w-consistent complete theory is deductively equivalent to TA (see Isaacson
(2011) and Smorynski (1977b)). The following proposition is a stratified version of these
results.

PROPOSITION 3.5.

1. Ifn <2and T is X,-consistent, then T is X, -sound.
2. Ifn >3, T is £,-consistent and 11,,_>-decisive, then T is X, -sound.

Proof. We only prove clause 2. Actually, we prove the statement for n > 2 by induction
on n. The statement for n = 2 is already obtained in clause 1. Suppose that the statement
holds for n. Let T be any X, -consistent and I1,_-decisive theory, and ¢ (x, y) be any
X,_1 formula. If T + 3xVye(x, y), then T ¥ —Vyp(k, y) for some k € w because T
is X,41-consistent. For such k, T ¥ —¢ (E, l_) for all ] € w. Since T is II, _j-decisive,
T+ go(lE, l_) forall/ € w. Since T is X,-consistent and I1,,_»-decisive, T is X,-sound by
the induction hypothesis. Hence N = ¢ (k, [) for all [ € . Therefore N = IxVyp(x, y).
We have shown that T is X,41-sound. O

It is known that there exists a Xi-definable theory which is w-consistent but not
Y3-sound (cf. Lindstrom (1997) p. 36). Thus for n > 3, X,-consistency does not imply
X, -soundness in general.

COROLLARY 3.6. If T is w-consistent and complete, then T is deductively equivalent
to TA.

We obtain the following relations between several properties a theory may have.
PROPOSITION 3.7. Forn > 0, the following are equivalent:

1. T is I1,,-complete and consistent,
2. T is X,-sound and I1,-decisive;

3. T is Z,-consistent and I1,-decisive.

Proof. (1 = 2): Suppose that T is a I1,-complete consistent theory. Let ¢ be any %,
sentence.

First, we prove the X,-soundness of 7. If T ¢, then T ¥ —¢ by the consistency of 7.
Since —¢ is a I1,, sentence, we have N [~ —¢ by I1,,-completeness. Thus N |= ¢, and T is
X ,-sound.

Secondly, we prove that 7 is I1,-decisive. Suppose T ¥ —¢, then N = ¢ as we have
seen above. Since 7T is also X, 1-complete and ¢ is a X, sentence, we obtain 7 ¢, and
thus T is II,-decisive.

(2 = 1): Suppose that T is X,-sound and I1,-decisive. Obviously, T is consistent. Let
¢ be any 11, sentence such that N = ¢. By X, -soundness, T ¥ —¢. Then T I ¢ because
T is I1,-decisive. Therefore T is I1,,-complete.

(2 © 3): This is immediate from Propositions 3.3 and 3.5. U

The following characterization of X,-soundness is formally presented in Beklemishev
(2005) Lemma 2.9.
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PROPOSITION 3.8. A theory T is X,-sound if and only if T + Thy,, (N) is consistent.

Proof. (=): We show the contrapositive. Suppose that T + Thy ., (N) is inconsistent.
Then there is a true X, sentence ¢ such that T = —¢. Since —¢ is a false I1,,4| sentence,
T is not I1,,41-sound. By Proposition 3.2.1, T is not X,-sound.

(<): We again show the contrapositive. Suppose that 7 is not X,-sound, then 7" proves
a false X, sentence ¢. Then T + —¢ is inconsistent, and —¢ € Thy,  (N). Therefore
T + Thyg, , (N) is inconsistent. O

§4. The first incompleteness theorem. Godel constructed in Godel (1931) a true
but T-unprovable I1; sentence, called the Godel sentence of T, for each X-definable
consistent theory 7. Moreover, if T is w-consistent, then such a sentence is not refutable
in T, and therefore it is undecidable in 7. This is Godel’s first incompleteness theorem.
The w-consistency assumption can be replaced by X -consistency in the proof of the first
incompleteness theorem. We have seen in Propositions 3.3 and 3.5 that X;-consistency is
equivalent to X-soundness. Then we have

FACT 4.1 (Godel’s first incompleteness theorem).

1. If T is -definable and consistent, then T is not I11-complete.
2. If T is X1-definable and X1 -sound, then T is not I1;-decisive.

There are two improvements of Godel’s first incompleteness theorem, which were ob-
tained by Rosser and Jeroslow, respectively. Rosser improved in Rosser (1936) the second
clause of Godel’s first incompleteness theorem by replacing the X -soundness assumption
by the consistency of the theory.

FACT 4.2 (The Godel-Rosser first incompleteness theorem). If the theory T is X1-
definable and consistent, then T is not I1-decisive.

Let Th(T) be the set of all theorems of T'. Note that if T is X|-definable, then Th(T') is
also X|-definable, and thus A (N)-definable. Jeroslow improved the first clause of Godel’s
first incompleteness theorem, which is Theorem 2 in Jeroslow (1975).

FACT 4.3 (See Jeroslow (1975)). If Th(T) is Ay (N)-definable and T is consistent, then
T is not I1{-complete.

In the Godel-Rosser first incompleteness theorem, the X -definability assumption of T’
cannot be replaced by the A, (N)-definability because of the following fact.

FACT 4.4 (See Jeroslow (1975); Smoryniski (1977a)). There exists a Ay (N)-definable
complete consistent theory T.

Thus the Godel-Rosser first incompleteness theorem cannot be extended to X, -definable
theories directly. On the other hand, Godel’s first incompleteness theorem is directly gen-
eralized to X, -definable theories. We give a proof of such a generalization, however, later
we improve it in two ways.

THEOREM 4.5.

1. If T is X,,4+1-definable and consistent, then T is not 11,,+1-complete.
2. If T is X,4+1-definable and X, 1 1-sound, then T is not I1,,11-decisive.

Proof. Clause 2 is immediate from clause 1 by Proposition 3.7, thus it suffices to prove
clause 1. Let 7 be a X,,4-definable consistent theory. If T is not IT,-complete, T is not
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I1,,+1-complete. Thus we may assume that 7 is II,-complete. By Proposition 3.2, T is
also X,1-complete.

Let o (1) be a X, definition of 7. The provability predicate Pr, (x) is a X, formula.
There is a 11,4 sentence y satisfying PA = y <> —=Pr,; ("y ™) by Fixed-Point Lemma
(see Lindstrom (1997) for details). If T+ w, then Pr, ("w ™) is a true X, sentence. By
our assumption, 7 = Pr, ("w ™). Thus T = —y. This contradicts the consistency of 7.

Therefore T ¥ w. Also T ¥ =Pr,("y ™). Then =Pr, ("y ) is a I1,,41 sentence which
is true but not T-provable. Therefore T is not I1,41-complete. U

From the first clause of Theorem 4.5, we obtain non7 -equivalent X, definitions of
¥, +1-definable consistent theory 7'. For n = 0, this is well-known (see Feferman (1960)).

COROLLARY 4.6. Let T be any Z,1-definable consistent theory. Then there are X, 41
definitions oo(u) and o1 (u) of T which are not equivalent in T .

Proof. Let oo(u) be any X,4; definition of 7. We may assume that 7" +— Ju—aoq(u)
(otherwise, replace ao(u) by og(u) A u # 0 = 17). Since T is %, +1-definable and con-
sistent, there exists a true I1,4| sentence ¢ which is not provable in T by Theorem 4.5.1.
Define o1 (u) to be the X, formula og(u) V —¢. Then N = Vu(oo(u) <> o1(u)) because
N = ¢, and hence o1 () is also a X, definition of 7. Suppose T FVu(oo(u) < o1(u)),
then T = —¢ — Yuoo(u). Since T F Ju—oo(u), we have T I ¢. This is a contradiction.
Therefore T ¥ Yu(oo(u) <> o1(u)). O

First, we improve the second clause of Theorem 4.5. Specifically, we prove that the
assumption of X, 1-soundness in the statement can be replaced by Z,-soundness. This is
a generalized version of the Godel-Rosser first incompleteness theorem. In our proof, we
use a generalized version of Craig’s trick.

FACT 4.7 (Craig’s trick (see 2.2.C in Grzegorczyk, Mostowski, & Ryll-Nardzewski
(1958))). Every X,ii-definable theory has a deductively equivalent I1,-definable
theory.

THEOREM 4.8. If T is X,1-definable and X ,-sound, then T is not 11, 1-decisive.

Proof. Suppose that T' is X, |-definable and X,,-sound. It follows that T4+Thy, _, (N)is
¥,+1-definable and consistent by Proposition 3.8. By Craig’s trick, there is a IT,-definable
theory 7" which is deductively equivalent to 7 + Thy, . (N). Let y () be a I1,, definition
of T’, then y (u) is a binumeration of 7’ in T’ because T’ knows all X, ;-truth.

The proof predicate Prf, (x,y) of y(u) is a A,41(PA) formula. Let w be a 1,44
sentence such that PA — y < Vy(Prf,("y",y) — Jz < yPrf, ("—y 7, z)). Then
neither y nor —y is provable in 7’ by a usual argument of the proof of Rosser’s in-
completeness theorem. Since y is IT,41, T’ is not IT,,-decisive. Hence also T is not
I1,,+1-decisive. U

In the next section, we give an alternative proof of Theorem 4.8 (see Corollary 5.14).
Theorem 4.8 can be slightly strengthened as follows.

THEOREM 4.9. If T is X,1-definable and X, -consistent, then T is not I1,41-decisive.

Proof. The statement for n = 0 is exactly Godel’s first incompleteness theorem because
X p-consistency is equivalent to X1-soundness by Propositions 3.2 and 3.5. We may assume
n > 0.Let T be any X, -definable X, -consistent theory. If 7 were I1,,4-decisive, then
T is X,-sound by Proposition 3.7. This contradicts Theorem 4.8. Therefore T is not IT,,4 -
decisive. (]
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Secondly, we improve the first clause of Theorem 4.5 along the direction of Jeroslow’s
improvement. One improvement like that has already been made by Hajek.

FACT 4.10 (See Hajek (1977)). If Th(T) is A,42(PA)-definable and T is consistent,
then T is not 11,4 1-complete.

Hijek also proved another generalization of the first incompleteness theorem.

FACT 4.11 (See Hdjek (1977)). If Th(T) is 11,,42-definable and T is X, ;-consistent,
then T is not 11, 1-complete.

Facts 4.10 and 4.11 are Theorems 2.8 and 2.5 in Héjek (1977), respectively. Since A2 (N)
sets are not always A, (PA) in general, Fact 4.10 is not a generalization of Jeroslow’s result.

We prove that the assumption of the X, ,>-consistency in Fact 4.11 can be replaced by
consistency.

THEOREM 4.12. If Th(T) is Il,yi-definable and T is consistent, then T is not
I1,,-complete.

Proof. Let T be a consistent theory such that Th(T') is I1,,4|-definable, and let Vx 7 (u, x)
be a 1,4 definition of Th(T) where 7 (u, x) is a X, formula. Let ¢ be a X, sentence
satisfying the following equivalence:

PAFg & x(—t(Tp,x) AVy <xt(T—p 7, y)).

Define y to be the X, sentence x(—z("—¢p ", x) AVy < x t("¢", y)). Then it is easy
to show PA =—¢ Vv —y. Since T is consistent, at least one of ¢ ¢ Th(T) or —¢ ¢ Th(T)
holds. Thus N = Jx—7(T9 ™, x) vV Ix—7("—¢ ", x). Hence we obtain N = ¢ Vv w.

Towards contradiction, we assume that 7 is I1,,-complete. Then 7 is also Z,,+1-complete
by Proposition 3.2. We distinguish two cases N = ¢ and N = .

If N = ¢, then T ¢ by our assumption. Thus ¢ € Th(T"). On the other hand, we have
N = =Vxz ("¢, x) by the choice of ¢. Then ¢ ¢ Th(T') since Vx7 (u, x) defines Th(T).
This is a contradiction.

If N = y, then T = y by our assumption. Then 7' - —¢, and hence —¢ € Th(T). On
the other hand, we have N = —=Vx7 ("—¢ 7, x) by the definition of w. Then —¢ ¢ Th(T).
This is also a contradiction.

We conclude that T is not IT,-complete. (]

By Theorem 4.12, if Th(T) is I1,4,-definable and T is consistent, then T is not IT, ;-
complete. This is a generalization of Jeroslow’s result and an improvement of Héijek’s
results. Also the n = 0 case of Theorem 4.12 states that there is no consistent theory 7'
such that Th(7T') is I1;-definable. This is an improvement of Remark 2.6(1) in Héjek (1977)
which states that there is no X|-consistent theory 7 such that Th(T') is IT;-definable.

From Theorem 4.12 and Proposition 3.7, we immediately obtain the following corollary,
which is also an improvement of the second clause of Theorem 4.5.

COROLLARY 4.13. If Th(T) is I1,,2-definable and T is X, 41-consistent, then T is not
I1,,41-decisive.

Hajek proposed the following problem, in Problem 2.9 of Hijek (1977): Does there exist
a ITp-complete consistent theory T such that Th(T) is I13-definable? Theorem 4.12 gives
a negative answer to Hajek’s problem.

From the following examples, we can see that Theorem 4.9, Theorem 4.12 and Corollary
4.13 are optimal.
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EXAMPLE 4.14. The theory PA + Thy, (N) is X, -definable, sound, 11,-complete
and I1,-decisive.

EXAMPLE 4.15. There are A, (PA)-definable, 11,,-complete, X, -sound and complete
theories.

Every Lindenbaum completion of PA + Thy, ., (N) (see Lemma 3.2 in Héjek (1977))
witnesses this example.

§5. The second incompleteness theorem. Like Godel’s first incompleteness theorem,
Godel’s second incompleteness theorem is also a theorem for X-definable theories. The
second incompleteness theorem states that if 7 is X-definable and consistent, then T
cannot prove its own consistency. However the statement described above is ambiguous
because it is known that the unprovability of consistency statements depends on the under-
lying representation of 7', and thus we must state Godel’s second incompleteness theorem
more precisely.

FACT 5.1 (Godel’s second incompleteness theorem). If T is X|-definable and consis-
tent, then for any X\ definition o (u) of T, T ¥ Cony.

Feferman showed that ‘X definition’ in the statement of Godel’s second incompleteness
theorem cannot be replaced by ‘Il definition’.

FACT 5.2 (Feferman, 1960). If T is X|-definable, then there is a 11} definition t(u) of
T such that T +Con;.

Therefore Godel’s second incompleteness theorem cannot be generalized to
Y, +1-definable theories directly. On the other hand, the second incompleteness theorem
can be seen as a theorem about soundness since the consistency of a theory is equivalent to
its Zo-soundness.

For every definition o (1) of T, the uniform X,, reflection principle RFNyx, (¢) of o () is
the sentence Vx (X, (x) APrs (x) — Trues, (x)) expressing the X,-soundness of 7', where
¥, (x) is the natural Aj(PA) binumeration of the set of all X, sentences. The uniform
reflection principle RFN(c) of o (1) is the theory {RFNx, () : n > 1} which expresses
the soundness of 7.

Let Con, , be the sentence —|Pr,,,n(’_(_) = 17). If o (u) defines the theory T, then
Con, , can be seen as a formal consistency statement of 7 4+ Thy, _ (N). By using the
properties of partial truth-definitions Truey, ,, (x) and Proposition 2.4, Proposition 3.8 can
be formalized in PA as follows.

n+

PROPOSITION 5.3. Let o(u) be a X,y definition of T, then PA = RFNs (c) <
Con, .2

Since RFNy,(0) and Con, are equivalent in PA for any X; definition o (1) of any X
definable theory, Godel’s second incompleteness theorem can be restated as follows.

THEOREM 5.4 (Godel’s second incompleteness theorem). For any X1-definable theory T,
the following are equivalent:

3 The referee pointed out that the proof of Proposition 5.3 is not carried out if RFN 5, (o) is defined
as the schema {Vx(Prs (Tp(x)7) — ¢(x)) : ¢(x) € X,} because PA may not know that the
theory defined by o (u) is sufficiently strong.
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1. T is Xg-sound,
2. for all X1 definitions o (u) of T, T ¥ RFNy(0);
3. for some X1 definition o (u) of T, T ¥ RFNy, (o).

We generalize this version of the second incompleteness theorem. For our proof, we use
the following improvement of Fact 2.3. Define Prg(x) to be the canonical X provability
predicate for pure predicate calculus.

FACT 5.5 (See Kreisel & Lévy (1968)). PA = RFN(9).
Here we prove a generalization of Godel’s second incompleteness theorem.
THEOREM 5.6. For any X, 1-definable theory T, the following are equivalent:

1. T is £,-sound,
2. forall X, definitions o (u) of T, T ¥ RFNy, (0);
3. for all £+ definitions o (u) of T, T ¥ RFN(o).

Proof. (1 = 2): Suppose that T is X,-sound, then T + Thy, _, (N) is consistent by
Proposition 3.8. Let ¢ (1) be any X, definition of 7. Then 7 4+ Thy, (N) ¥ Con, ,
by carrying out a usual proof of Godel’s second incompleteness theorem with Proposition
2.4. Since PA = RFNg, (6) — Con, , by Proposition 5.3, we have T 4 Thy,  (N) ¥
RFNs, (o). Therefore T ¥ RFNg, (o).

(2 = 3): Obvious.

(3 = 1): We prove the contrapositive. Suppose that 7" is not X,-sound. Then there is a
¥, sentence ¢ such that 7 ¢ and N |= —¢. Let (1) be any X,1| definition of T, and
define o (1) to be the X, formula 7 (u) A —¢. Since N = —¢, N = Vu(o (u) < t(u)),
and thus o (1) is a X4 definition of 7.

Since PA ¢ — VYu—o (1), we obtain PA ¢ — (Pr,;(x) <> Prg(x)) by Fact 2.2.1.
Because PA = RFN(@) by Fact 5.5, for each n € w,

PAo A Z,(x) APrs(x) > Prg(x)
— Trueg, (x).

Then we have T = Vx (X, (x)APr, (x) — Trues, (x))since T F ¢. Therefore we conclude
T =RFN(o). O

By Theorem 5.6, we can conclude that Godel’s second incompleteness theorem
(Theorem 5.4 (1 < 2)) is the n = 0 case of the general property about the X, -soundness
of X, +1-definable theories.

Under an appropriate interpretation, we can understand that Jeroslow proved a version of
the second incompleteness theorem for a class of X,-definable theories. That is, Jeroslow’s
proof of Theorem 6 in Jeroslow (1975) essentially showed the following fact.

FACT 5.7 (See Jeroslow (1975)). Let T be a X,-definable and X 1-sound theory. If there
exists a Ty formula 7w (x) such that T =Prr ("o ") <> (") for all X, sentences ¢, then
T cannot prove its own X,-soundness.

The n = 1 case of Theorem 5.6 is an improvement of Fact 5.7.
If n = 0, the existence of a X, definition o (1) of T with T ¥ RFNy, (o) implies the
% ,-soundness of 7. On the other hand, this is not the case for n > 0 in general.

PROPOSITION 5.8. Forn > 0, there exist a X1-definable theory T and a X1 definition
o (u) of T such that T is consistent but not £,-sound, and T ¥ RFNg, (o).
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Proof. Let T be the theory PA + —Con;, ,—; where 7 (1) is a X definition of PA. Then
the formula o () = v(u) Vv u = "=Con; ,—; " is a X definition of 7. It follows from
PA + Con, ,—1 — Con; ,—; and Proposition 5.3 that 7 and o (u) satisfy the required
conditions. U

We obtain the following proposition.

PROPOSITION 5.9. There is an w-consistent X1-definable theory T having a X4 defini-
tion o (1) such that T —RFN(o).

Proof. Let T be a X1-definable theory which is w-consistent but not Z3-sound (see our
remark just after Proposition 3.5). Let o (1) be the X4 definition of 7" from our proof of
Theorem 5.6 (3 = 1).* Then T proves RFN(o). O

From this proposition, we obtain a X3-consistent X4-definable theory 7" having a X4 def-
inition o (1) such that T' proves the X3-consistency of o (u). Therefore the X,-soundness
assumption in the statement of Theorem 5.6 cannot be replaced by ZX,-consistency
throughout.

Finally, we investigate several properties of consistency statements. First, we give a
characterization of the unprovability of the negation of consistency assertions.

THEOREM 5.10. For any X,41-definable theory T, the following are equivalent:

1. T is Z41-sound,
2. for all X, definitions o (u) of T, T ¥ =Con,,.

Proof. (1 = 2):If T is X, 1-sound, then the T, sentence Con, is true for any X,
definition o («) of T. By the X, 1-soundness of 7', T does not prove =Con,.

(2 = 1): We show the contrapositive. Suppose that 7" is not X, 1-sound, then there is a
¥,+1 sentence ¢ such that 7 ¢ and N = —¢.

Let 7 (u) be any X, 4 definition of T. Define o (1) to be the X, formula z(u) Vv ¢.
Because N |= —¢, we have N = Vu(o (1) <> 7(u)). Thus o (1) is a X,,41 definition of 7.

Since PA ¢ — VYuo (u), PA ¢ — —Con,. Therefore T +—Con, since T ¢. [

We obtain the following corollaries.

COROLLARY 5.11. If T is X,41-definable and not X,-sound, then there are X,
definitions o1 (u) and o2(u) of T such that T = Cong, and T = —Cong,.

Proof. Suppose that T is X, +1-definable and not Z,,-sound. Then by Theorem 5.6, there
exists a X,y definition o1 () of T such that T - RFN(o1). Then T F Con,, .

Since T is not X,41-sound, there exists a X, definition o7 (u) of T such that T +
—Con,, by Theorem 5.10. O

COROLLARY 5.12. If T is X,41-definable and 11,4 -decisive, then there are X,
definitions o1 (u) and o2(u) of T such that T =Cong, and T F—Cong,.

Proof. This is immediate from Theorem 4.8 and Corollary 5.11. (]

THEOREM 5.13. If T is I1,-definable and X,-sound, then there exists a X,y definition
o (u) of T such that T ¥ Con, and T ¥ —Con,.

4 Moreover, in this case, the formula & (u) is in fact I13 by letting 7 (1) in our proof of Theorem 5.6
be a X definition of T'.
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Proof. Suppose that T is II,-definable and X,-sound. Then T is II,4+-sound by
Proposition 3.2. Also by Proposition 3.8, T 4 Thy, _ (N) is consistent.

Let 7(u) be any II, definition of 7. Also let o (1) be a X, formula satisfying the
following equivalence:

PAtou) < [r(u) v Iy(Pri ("Cong 7, y) A w (Y] A w(u),

where  (x) is the formula Vz < x=Prf,("—Con, 7, z).

Towards contradiction, suppose 7+ Con,. Then T ¥ —Con,, and thus N = w(n)
holds for any n € . Hence N | o(n) holds for any n € o because N |=
Jy(Prf,("Con, 7, y) A w(¥)). Then the formula o («) is a definition of a trivially incon-
sistent theory, and thus we have N = —Con,,. This contradicts the IT,-soundness of T
because Con, is a I1,,4| sentence. Therefore T ¥ Con, .

Again towards contradiction, suppose T —Con, and let p be a natural number such
that N = Prf,("=Con, ", p). Then T 4 Thy, . (N) = Prf,("=Con, ", p) because this
sentence is true X, 4. Hence

T+Thy,, (N)Fw@)—u < p. (D

Since T ¥ Con,, the X, sentence Vy < p—Prf,("Con, 7, y) is true. Together with (1),
this implies

T +Thg,,,(N) ==3y(Prf, ("Con, 7, y) A w(y)). (2)

By (1) and (2), we have T 4 Thy,, ,(N) = 0o(u) = 7(u) Au < p. By Fact 2.2.2,
T+Thg, . (N) =Con,; — Con,. Since 7 (1) is a binumeration of 7 in T +Thy,  (N),
we have T 4+ Thy, , (N) - Con;; by Fact 2.3. Therefore we obtain 7' 4 Thy,  (N)
Con, . This contradicts the consistency of T + Thy, , (N). We conclude 7' ¥ —Con,.

Then N = Vu(o (1) <> t(u)) because T ¥ Con, and T ¥ —Con,. This means that
o(u) is a X4 definition of 7. O

Notice that the n = 0 case of Theorem 5.13 is a consequence of Theorem 7.4 in
Feferman (1960).
By Craig’s trick, we immediately obtain the following corollary.

COROLLARY 5.14. If T is Z,41-definable and X,-sound, then there exists a X,1|
definition o (1) of some axiomatization of Th(T') such that T ¥ Con, and T ¥ —Con,,.

Our generalization of the Godel-Rosser first incompleteness Theorem (Theorem 4.8)
follows from Corollary 5.14. Thus we obtain that the witnesses for Theorem 4.8 can be
provided by appropriate consistency statements.

By combining Corollary 5.11 and Theorem 5.13, we obtain the following corollary.

COROLLARY 5.15. If T is I1,,-definable and consistent, then there are X, definitions
o1(u) and o2(u) of T such that T ¥ Cong,, and T ¥ —Cony,.

Proof. Suppose that T is I1,-definable and consistent. If 7" is X,-sound, then this is
obvious by Theorem 5.13. If T is not X,-sound, then there are X, definitions o (u)
and o2(u) of T such that T = —Con,, and T +— Con,, by Corollary 5.11. Since T is
consistent, 7 ¥ Con,, and T ¥ —Cong,. O

In contrast to Theorem 5.10, it follows from Corollary 5.15 that for I1,-definable theory
T, the existence of a X,y definition ¢ () of T with T ¥ =Con, does not imply any kind
of soundness of T in general.
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