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Abstract

Biological invasions are a threat to protected areas globally; however, the relative lack of studies
quantifying the ecological impacts impairs informed decision-making. We selected three
annual alien plants, widespread in the riparian habitats of the Kruger National Park, South
Africa: Datura innoxia, Parthenium hysterophorus, and Xanthium strumarium, to examine
their potential impacts on riparian plant communities. We identified 12–13 populations for
each and placed a pair of invaded and uninvaded plots in each population. Species richness,
Shannon diversity, and Pielou evenness were compared between the invaded and uninvaded
plots using LMM models, and species composition was compared using ordination. The
invaded vegetation showed lower species richness compared to the uninvaded, with the
strongest effect observed for P. hysterophorus. The invaded plots also showed lower Shannon
diversity and Pielou evenness due to the presence of alien dominants. For all three invaders, the
invasion resulted in changes in the composition of native vegetation. Some native plants were
more frequent and abundant in the invaded vegetation, possibly due to the habitats created in
sandy river beds. The native species richness decreased with increasing invader cover, but the
species richness of aliens accompanying the invasive dominants was not negatively affected by
their cover. Our results confirmed the negative impact of invasive aliens on native plant
diversity, with the most pronounced effect by Parthenium hysterophorus invasions.

Introduction

Globalization has led to a significant rise in the rate at which species are being introduced to
regions beyond their natural areas (Roy et al. 2023, Seebens et al. 2021). While only a small
proportion of introduced species become invasive (i.e., survive and spread over long distances in
the introduced areas, Richardson et al. 2000), invasive species can have dramatic environmental
and socioeconomic impacts (Bacher et al. 2018, Kumschick et al. 2020), and biological invasions
are among the major threats to biodiversity globally (Brondizio et al. 2019, Roy et al. 2023). In
the last decade, knowledge of the global distribution of alien organisms has increased
dramatically (Pyšek et al. 2020b), as has awareness of invasions in protected areas (Foxcroft et al.
2017, Shackleton et al. 2020). While protected areas are frequently the focus of intensive
ecological research programmes, the effect of biological invasions is comparatively poorly
studied (Hulme et al. 2014), leading to a lack of quantitative data on impacts on which to base
decisions.

Protected areas were shown to act as barriers to invasions by alien plants (Foxcroft et al.
2011, Pyšek et al. 2003) and offer refuge from invasive species under climate change
(Gallardo et al. 2017). However, alien species still penetrate into protected areas, and
nowadays, very few are known to be free of invasive species (Pyšek et al. 2017, 2020b). In
addition, the number and magnitude of alien plant invasions in protected areas are
increasing; this trend is most pronounced for invasive plants that pose the greatest
continued threat of all taxonomic groups, as their numbers in protected areas worldwide
have increased by ~30% compared to the situation 40 years ago (Shackleton et al. 2020).
Impacts by alien species have been shown to be as significant inside protected areas as
outside, but only a small proportion provide actionable management recommendations
(Hulme et al. 2014). Invasive plants are being introduced into protected areas by various
means associated with human activities (ornamental species, tourism, vehicles), but also
naturally via water courses (Foxcroft et al. 2011, Foxcroft et al. 2019, Jarošík et al. 2011).
Thus, efforts to protect these areas from plant invasions are constrained by the introduction
of alien species’ propagules. For example, rivers entering protected areas represent a big risk,
as one cannot control what they bring in. Studies showed that the number of alien invasive
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plants inside a protected area could be predicted by several
factors, of which water runoff from adjacent areas was the most
important one (Foxcroft et al. 2011, Jarošík et al. 2011).

Rivers have long been recognized as major pathways of alien
plant introductions. On the one hand, most rivers flow through
human settlements, from which they can carry propagules of alien
plants into riparian sites (Hood & Naiman 2000, Planty-Tabacchi
et al. 1996). Moreover, fluctuating water levels in riparian areas
may facilitate the establishment of these propagules since they
provide open spaces by removing existing vegetation and increase
available resources by depositing nutrients (Richardson et al.
2007). As a result, alien plants often concentrate in riparian sites
(e.g., Chytrý et al. 2008, Pyšek et al. 2010), and while some remain
restricted to the vicinity of the river, often after a considerable time
lag, some spread away from the river (Čuda et al. 2020, Pyšek et al.
2020b). This represents a major threat to vegetation beyond the
riparian ecosystems and can start new invasions into habitats
previously unaffected.

Our knowledge of the dynamics and mechanisms of riverine
invasions is largely based on temperate climatic regions (Planty-
Tabacchi et al. 1996, Pyšek et al. 2010). However, the role of
rivers in invasions in subtropical and tropical regions may differ
from those in temperate regions, where water levels are
permanently high and invading plants spread along rivers by
colonizing their banks. In subtropical arid regions, where water
levels fluctuate depending on the season, invasive populations
may occur directly in riverbeds which makes their invasion
dynamics more closely dependent on channel dynamics and
stream features (Sibiya 2019) long-term weather patterns, and
water level fluctuations (Foxcroft et al. 2007, Richardson et al.
2007, Sibiya 2019). The macro-channel floor in perennial river
in ecosystems such as African savannas is formed by a mosaic of
water and terrestrial patches, with the balance between the two
environments dynamically changing, thus providing a perma-
nent opportunity for the establishment of arriving invaders
(Foxcroft et al. 2008, Sibiya 2019). Arid ecosystems are, in global
comparison to other biomes, less invaded; this is due to several
factors, such as the limited introduction of alien plants to these
areas or the ability of native plants to resist stressful conditions
(Pyšek et al. 2017). However, invasions in these areas can have
devastating consequences (see Milton & Dean 2010 for review).

Much work has been done on the impacts of invasive alien
trees and woody shrubs on river ecosystems (e.g., Beater et al.
2008, Esler et al. 2008, Witkowski & Garner 2008), with some
work on the management of annual and perennial shrubs and
herbaceous species (Morris et al. 2008). Unfortunately, to our
knowledge, the fine-scale spatial dynamics in relation to
invasions and their impacts on native plant communities has
been little studied in subtropical and tropical riparian habitats
(see Foxcroft et al. 2008 and Sibiya 2019 on patterns of alien
plants across river geomorphology). To predict future invasions
and provide managers and policymakers with a scientifically
sound basis to support decision-making, understanding the
impacts associated with pathways of invasion, such as rivers, is a
key element (Hulme et al. 2008).

Therefore, in this study, using Kruger National Park (KNP)
as a model subtropical/tropical African savanna ecosystem, we
focus on analysing the impact of three major herbaceous
invasive species spreading along rivers on riparian savanna
vegetation. The study is a contribution to the broader MOSAIK
(Monitoring Savanna Biodiversity in Kruger National Park)
project that explores patterns of species diversity across habitats

in KNP (Delabye et al. 2022, Hejda et al. 2022, Pyšek et al. 2020a,
Pyšková et al. 2022b). Specifically, we asked (i) what are the
impacts of plant invaders generally, and by each dominant
invasive species, on the plant community characteristics such as
species richness, diversity, and evenness; and (ii) do invasions
result in changes in plant species composition, also with regards
to the native and alien status of the associated species?

Material and methods

Study area: Kruger National Park

Kruger National Park, established in 1898 and formally proclaimed
in 1926, is the largest national park in South Africa and one of the
oldest national parks in the world. It is located in the north-eastern
part of the country, covering an area of 19,169 km2 and stretching
~450 kmnorth-south and 84 km east-west. Themajority ofKNPhas
a subtropical climate, with the Tropic of Capricorn crossing the park
in the North, and several large rivers flow through the park, mostly
in a west-east direction (i.e., Sabie, Olifants, Crocodile, Letaba,
Shingwedzi, Luvuvhu and Limpopo). The park’s environmental
heterogeneity stems from diverse geological conditions (granitoid
bedrock in the western vs. volcanic, mainly basalt and gabbro, in the
eastern part), altitude (140–780 m a.s.l.), climate (450–750 mm of
annual precipitation), and vegetation (Hejda et al. 2022, MacFadyen
et al. 2016). According to the latest update (Foxcroft et al. 2023),
there are an estimated 146 alien plant species occurring in thewild in
KNP, of which 30 are casuals, 58 are naturalized, 21 have become
invasive, and for 37 species, the status remains to be determined
(status categories according to Richardson et al. 2000). In response
to the escalating importance of plant invasions, KNP has initiated
several programmes aimed at preventing and mitigating incursions
of alien species (Foxcroft & Freitag-Ronaldson 2007, Foxcroft et al.
2009, Koenig 2009), but to date, few studies investigated the impact
of major invaders on plant community characteristics (Foxcroft
et al. 2008, Novoa et al. 2021, Robertson et al. 2011).

Study species

We focused on three major invasive species in KNP (Figure 1),
whose selection was based on the following criteria: (i) they occur
in riverbeds, where they dominate the invaded communities and
form extensive stands (so that they are likely to have impacts on the
river channel and adjacent riparian ecosystem); and (ii) they
are controversial species of concern to KNP management because
little is known about their impacts, potentially leading to the
assumption that they are minor (especially for Xanthium
strumarium and Datura spp.), and therefore, management
recommendations are urgently needed. They represent a potential
threat to savanna vegetation as they have successfully naturalized
or become invasive, both globally and in other African countries
(Table 1). Datura innoxia, Parthenium hysterophorus, and
Xanthium strumarium are the species that best meet these criteria
and represent the most problematic annual plant invaders in KNP.
Parthenium hysterophorus largely occurs in the southern region of
KNP, while D. innoxia and X. strumarium are typically found in
high abundances in the northern region of the KNP (Figure 2).

Sampling design and data

The plots invaded by the target species were sampled along Sabie,
Letaba, Olifants, and Shingwedzi rivers (Figure 2). We located
12–13 populations of each invader in river beds and/or on river
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banks, distributed across 5, 6, and 7 sites per species (for
D. innoxia, X. strumarium and P. hysterophorus, respectively).
Within each population, we established a plot of 100 m2 with the
invasive species dominating the vegetation, reaching at least 50%
cover. The majority of plots were 10 × 10 m; where the character of
the population did not allow to place a square, a different shape was
used to achieve the same total cover (e.g., 8.0 × 12.5). For each
invasive population, we located a plot of the same size in the
adjacent uninvaded vegetation located in similar habitat con-
ditions, representing the control (see Hejda et al. 2009 for details
and potential caveats of the space-for-time substitution approach).
This design resulted in 74 plots (37 invaded and 37 uninvaded,
arranged in pairs) spread over 18 sites by four rivers (Figure 2),
where the vegetation was sampled.

All plant species present in the herb layer of a plot were recorded,
and their abundance was estimated using the Braun-Blanquet cover-
abundance seven-grade scale (Mueller-Dombois & Ellenberg 1974);
shrubs of height comparable to the surrounding herbswere included
in the herb layer. This yielded the data on species richness,
represented by the total number of species recorded in a plot. To
quantify the occurrence of species in plots, the Braun-Blanquet
scores were transformed to percentage cover values as follows:
5= 87.5%, 4= 62.5%, 3= 37.5%, 2= 15%, 1= 2.5%, þ= 1.0%,
r= 0.02% (van der Maarel 1979). These values were considered as a
measure of species abundance in a plot and included in the
calculations of Shannon diversity and Pielou evenness.

The nomenclature of species was based on Pooley (1998), Schmidt
et al. (2002), van der Walt (2009), and van Oudtshoorn (2012).

Figure 1. Invasive alien species studied (a,
c – Datura innoxia, e – Parthenium hysterophorus,
g – Xanthium strumarium) and various types of
uninvaded control plots (b, d, f) adjacent to those
dominated by the invaders. Photos by P. Pyšek.
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Univariate statistical analyses

Two types of data were used as importance values for the univariate
analyses. First, data considering all species recorded in the herbal
layer (including the target dominants and other aliens) were used
to calculate species richness S, Shannon diversity H’, and Pielou
evenness J. The same procedure was applied using data only for
native species, i.e., excluding the target alien dominants and other
aliens.

The Shannon diversity H’ (Magurran 2004) was calculated as

H0 ¼ �
X

Pi � LN Pið Þð Þ

where Pi = relative abundance of species i. The Pielou evenness
(Pielou 1966) was calculated as

J 0 ¼ H0

LN species richnessð Þ

Linear mixed-effect models (LMM, e.g., Raudenbush & Bryk
2002) were used to detect the pairwise differences between the
invaded and uninvaded control plots. Species richness S, Shannon
diversity H’, and Pielou evenness J were set as response variables in
three separate LMMmodels; the invaded/uninvaded status of each
plot and the target alien species’ identity were the predictors. The
site and pairs of invaded and uninvaded plots (nested in sites)
represented the random effects, hierarchically arranged as follows:
m1<-lme(richness or diversity or evenness~ invaded-control
plots*alien identity, random=~1|site/pair).

The same LMM models were used to test the differences in the
richness of other alien species (besides the three target invaders
D. innoxia, P. hysterophorus, and X. strumarium) present in
invaded and uninvaded plots. Separate LMM models were used to
test the effect of each of the three invaders: m2<-lme(richness
or diversity or evennes~ invaded-control plots, random=~1|
site/pair).

LMM regression models and LMM analyses of covariance were
used to test (i) the relations between the native and alien species
richness and the dominant species’ relative cover and (ii) the
differences in these relations between the native and alien species.
The relative cover was expressed as the ratio between the
dominant’s cover and the sum of the covers of species present
in the herb layer of a given plot. In these models, the dominant’s
relative cover was the predictor, the species richness was the
response variable, and the native vs. alien origin of species
represented the factor variable in the analyses of covariance. The
interaction term between the dominant’s relative cover and species’

origin (native vs. alien) was of the most interest in the LMM
analyses of covariance, as it represented the difference in the
response of native and alien species to the invader’s dominance. As
in all LMMmodels, the sites and pairs of plots (nested in sites) were
set as the random effects, hierarchically arranged. The script for the
LMM analyses of covariance was: m1<-lme(species richness ~
dominants’ relative cover*species’ origin, random=~1|site/pair).

Square root and log transformations of the data were used to
achieve normality, which was then tested using the Shapiro-Wilk
normality tests (Crawley 2007). The arcsin transformation was
applied to the relative dominant’s cover. The accuracy of LMM
models was inspected using the plots on the relations between the
residuals and fitted values as well as by normal probability plots
(Crawley 2007). All univariatemodels were created in the R software
(R Development Core Team 2013) using the package nlme.

Multivariate statistical analyses

First, constrained ordinations were used to test the differences in
species composition between the invaded plots and uninvaded
control plots; the pair identity was set as a ‘block defining
covariable’ (nested in ‘site’ and ‘alien invader’s identity’ that were
also included as covariables – see, e.g., Lepš& Šmilauer 2014). This
arrangement ensured that the invaded and uninvaded plots were
permuted within closely related pairs, filtering out the variability
given by the differences between the three target aliens and the
individual sites, as this variability was not considered interesting in
relation to research hypotheses. Second, separate ordination
models were used to test the compositional differences between
the invaded vs. uninvaded vegetation for each invasive dominant
(D. innoxia, P. hysterophorus, and X. strumarium). In these
analyses, the pair identity was set as a ‘block defining covariable’
nested only in ‘site’.

All species of the herb layer were included in the ordination
analyses except the target aliens. Ordination analyses were
performed twice: once with percentage covers of species as
importance values to detect differences given by species
abundances and then with binary presence/absence data to detect
purely qualitative differences in species composition.

Results

Univariate analyses

In a model with the three target invaders analysed together,
invaded plots harboured less species (both for all and native species
only) than uninvaded plots: 21.5 ± 6.7 vs. 24.7 ± 8.2, and 16.2 ± 5.9
vs. 19.6 ± 7.9, respectively; p= 0.011 and p= 0.001 (Table 2,
Supplementary Table 1). For individual species, the invasion of P.
hysterophorus resulted in significant differences between invaded
and uninvaded plots, both in terms of all (22. 7 ± 5.8 vs. 29.5 ± 8.4,
p= 0.038) and native species richness (17.5 ± 5.2 vs. 25.3 ± 6.9,
p= 0.009). The differences in plots invaded by D. innoxia and X.
strumarium and their controls were not significant (Figure 3).

Based on all data and the three invasive species merged, invaded
plots showed lower Shannon diversity H’ and Pielou evenness J
than uninvaded plots: 1.04 ± 0.23 vs. 1.37 ± 0.60, p= 0.005, and
0.35 ± 0.07 vs. 0.43 ± 0.17, p= 0.03, respectively (Table 2,
Supplementary Table 1). Among individual species, plots invaded
by P. hysterophorus had significantly lower H’ and J for all species
than uninvaded plots: 1.09 ± 0.32 vs. 1.51 ± 0.24, p= 0.004, and
0.35 ± 0.09 vs. 0.45 ± 0.07, p= 0.007, respectively. The same
was true for D. innoxia (0.99 ± 0.22 vs. 1.67 ± 0.71, p= 0.002 and

Table 1. Characteristics of the target invasive species. Data on the number of
regions (at the scale of countries) where the species has naturalized (globally/
African) are taken from the GloNAF database (Pyšek et al. 2017, van Kleunen et al.
2015). All species are annual and invasive in KNP (Foxcroft et al. 2023)

Species Family Origin
1st KNP
record

Regions
naturalized

Datura innoxia
Mill.

Solanaceae Central
America

1953 272/39

Parthenium
hysterophorus L.

Asteraceae American
tropics

2003 119/13

Xanthium
strumarium L.

Asteraceae North
America

1953 147/17
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0.32 ± 0.06 vs. 0.52 ± 0.20, p= 0.003, respectively). No significant
differences in H’ and J were found for X. strumarium (Figure 3).

On the contrary, invaded plots showed slightly higher Shannon
diversity H’ (1.22 ± 0.51 vs. 1.14 ± 0.58) and Pielou evenness J
(0.44 ± 0.16 vs. 0.38 ± 0.17) for native species, compared to
uninvaded plots in a model including all three invasive species, but
the differences were not significant (p= 0.880 and p= 0.505,
respectively).

No significant differences in the richness of alien species (with
the target invaders excluded) were detected between the invaded
and uninvaded plots, whether considering all three target invaders
together or testing their effects separately.

However, alien and native species differed in their response to
invaders’ cover. If the species richness for both groups is regressed
on the relative cover of the invader (expressed as the proportion of
the total community cover it contributes, Figure 4), in amodel with
data for all three invaders merged, native species richness decreases
(T = -3.641, DFres= 34, p= 0.001) whereas the trend for alien
species is not significant (T= 1.104, DFres= 34, p= 0.277); this
difference in the relationships for natives and aliens is marginally
significant (T = 1.935, DFres= 72, p= 0.057). With regard to
particular species, P. hysterophorus is the only one with a
significantly different relationship of alien and native species to
its increasing cover (T= 3.692, DFres= 22, p= 0.001).

Figure 2. Location of study sites in the Kruger
National Park. The Datura innoxia sites are
indicated by red circles, Parthenium hysteropho-
rus by yellow, and Xanthium strumarium by blue
circles.
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Multivariate analyses

The composition of plots dominated by any of the three invaders
significantly differed from that of adjacent uninvaded vegetation,
both when species cover and binary presence/absence data were
used as importance values in ordination analyses: p= 0.002 and
p= 0.002, respectively (Table 3). Concerning the separate models
on each of the invaders, their impacts on species composition were
always significant, the only exception being that of P. hyster-
ophorus when binary presence/absence data were used as
importance values (Table 3). As shown by the ordination plots,
the majority of native species are more abundant and frequent in
the uninvaded vegetation (Figure 5), but some of them reach
higher values of these characteristics in invaded than in uninvaded
plots Table 4).

Discussion

Differences in species richness, diversity and evenness

In general, the three target invaders show a negative impact on
native vegetation, manifested by the differences between the
invaded and adjacent uninvaded plots. At the level of individual
species, Parthenium hysterophorus had a consistently negative
impact on the species richness and diversity of the invaded
community. The lowered species diversity by P. hysterophorus
invasion was due to a decrease in species richness and evenness,
with both characteristics contributing similarly to the diversity
reduction. The invasion by Datura innoxia did not reduce species
richness but had a strong negative impact on Shannon diversity,
mediated by the markedly reduced evenness. For Xanthium
strumarium, consistently across community characteristics and
species groups (native or alien), we did not find evidence of impact.

All three species are very strong dominants, reaching up to
100% cover. The significant differences in Shannon diversity and
evenness between invaded and uninvaded plots disappear if only
native species are considered in analyses, and these community
characteristics tend to be even higher than they are in the invader’s
presence, more so inD. innoxia invaded plots. This is because with
a strong invasive dominant present, other species in the
community are suppressed, and the probability of the occurrence
of a strong native dominant is low. Once the strong invasive
dominant is excluded from the calculation, both H’ and J’ reach the
same or even higher values in invaded plots.

Differences in species composition

Besides the observed impact on the community characteristics, the
three invaders significantly affected the frequencies with which
other species occur and the abundances, proxied by the cover, that
they reach. This is reflected in significant compositional differences
between invaded and uninvaded plots; for P. hysterophorus, the
effect was only obvious in analysis with species covers included, as
covers use more information from the data and reflect the
differences in abundances, whereas the tests on binary data reflect
only qualitative changes in species composition. Yet, from the
consistent impact on species composition, it follows that the
majority of native species must react consistently to the invasion of
any of the three dominant aliens by either decreasing or increasing
their cover and frequency in the invaded vegetation. Most native
species show a negative response to the invasive dominant, as
revealed by the ordination plots. However, there are native species
that are more frequent (Abutilon ramosum, Bothriochloa radicans,Ta
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Figure 3. Differences in the number of species S, Shannon diversity H’, and Pielou evenness J between invaded and uninvaded (control) plots for the three alien invasive species
studied. Bars show means and error bars standard deviation of the mean. Figures on the left side of the panel (a, c, e) show the differences for all species and those on the right
(b, d, f) side only for the native plant species. Significant differences aremarked with asterisks * p< 0.05, ** p< 0.01. The figure shows that of the three target invaders, Parthenium
hysterophorus has the most pronounced negative impact on species richness. However, when considering all present species (i.e., including aliens), Datura innoxia has the most
pronounced negative impact on Shannon diversity and Pielou evenness.
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Cyperus rupestris, Grewia villosa) or more abundant in the invaded
vegetation (Abutilon ramosum, Coccinia rehmani, Panicum
deustum, Ruellia cordata).

Contrasting ecologies drive impact mechanisms

All three species targeted by our study are noxious invaders not
only in Africa but also on a global scale. Their naturalized
populations have been recorded in 17–32% of regions of the world,
based on the GloNAF database (Pyšek et al. 2017, van Kleunen
et al. 2015, 2019). More importantly, their impacts have been
reported in many regions (Holm 1997, Weber 2017). This is
especially true for P. hysterophorus, which has been shown to alter
soil nutrient composition and displace native plant species through
competition and allelopathy in a wide range of habitats (Adkins &
Shabbir 2014, Matzrafi et al. 2021) and therefore represents the
greatest threat to KNP riparian areas (e.g., Bajwa et al. 2019, Brunel
et al. 2014, Chhogyel et al. 2021, Timsina et al. 2011). Yet, the
impact on the richness and diversity of other species in our system,
although overall significant and detectable, varied among the
invaders and with regard to the community characteristics used to
measure it.

When drawing conclusions about what these invasions mean
for savanna vegetation, it needs to be borne in mind that the
magnitude of impact detected depends on the scale of sampling
(Stohlgren et al. 2002). In our study, because we were interested in
recording the effect the invasive dominants have in a broader
landscape context, we focused on the community scale, using plots
of the size commonly used to study herb vegetation layer (Chytrý
et al. 2008, Stohlgren et al. 2006). With increasing scale, the

impacts may become less pronounced because other species in
invaded communities can survive or newly colonize by utilizing the
gaps in the invader’s cover, a mechanism that we observed in the
field. This is also an explanation, at least in part, for the differences
in the severity of impacts among the invaders studied. The
observed impact of Parthenium hysterophorus was generally the
most pronounced of the three, and at the time of sampling, this
species created the densest populations with very little space for
other species once it reached a high cover; interestingly, it has been
suggested that P. hysterophorus has an allelopathic potential (Singh
et al. 2003, van der Laan et al. 2008) that was not reported for the
other two invaders. At the time of sampling, the stands of
X. strumarium and D. innoxia were usually patchy, and even if
having a high cover, their growth habit provides space for other
species on patches of bare ground and lower in the stand – this
made the impact of these two species less pronounced.

The differences in the ecology of particular invaders further
contribute to the variation in the severity of impacts that we
recorded. As P. hysterophorus invades the shrubby savanna and
clearings in gallery forest higher at the river edge, it often replaces
species-rich grassy savanna (Figure 1f). Hence, the loss of species
due to invasion is generally more pronounced compared to other
two invaders that replace vegetation that is poorer in species
(Figure 3a and b), such as the sandy river channel floor (Figure 1b)
or grazing lawns (Figure 1h). There, the invasion often creates
patches of different substrates, clayey and richer in nutrients, with
plant remnants, seeds, soil, and debris brought by the river flow.
Such places provide suitable habitats to ruderal species with higher
demands for nutrients, facilitating their colonization of invaded
sites (Figure 1a), thereby reducing the impact of D. innoxia and
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Figure 4. Relationship between the numbers of
native and alien species in 10× 10m plots, and the
relative cover of the three invasive species,
expressed as the contribution of its cover to the
total cover in the plots. Invaded and control plots
are marked by different symbols and the target
invaders by different colours. Regression lines are
based on simplified linear models including only
the predictor and response variable; significant
relationships are indicated by solid lines, nonsig-
nificant by dotted lines. The trend based on data
for all three invaders merged is indicated by the
black line.

Table 3. Results of ordination analyses comparing the species composition of invaded and uninvaded plots, using species percentage covers and presence/absence
(binary) as input data. The percentage of explained variation is given, and significant results are in bold. The results are shown for all invasive species and each species
individually to indicate how much they affect the species composition

Predictor

Cover Binary

Variation (%) p-value Variation (%) p-value

All invasives 7.0 0.002 4.1 0.002

Datura innoxia 14.4 0.002 10.5 0.028

Parthenium hysterophorus 11.8 0.026 10.0 0.106

Xanthium strumarium 11.3 0.002 9.7 0.012
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X. strumarium and further strengthening the differences among
invaders in the magnitude of their impacts.

In terms of invasion theory, the observedmechanism points to the
fertility islands described by Novoa et al. (2021) for KNP (i.e., the
presence of alien plants might create favourable conditions for the
establishment and growth of other plants) and can be interpreted as
an indication of invasional meltdown (Braga et al. 2018, Simberloff &
Von Holle 1999) – because the mechanism acts more effectively for
alien species; it is thus not a ‘ruderal meltdown’ alone. This claim is
supported by the result of the analysis of the relationship between
invaders’ covers and the occurrence of other species – high cover of
invasive species reduced the native species richness (in line with other
results, this was most pronounced for P. hysterophorus) but had no
negative impact on alien species occurring in the plant communities
sampled, rather the opposite trend was indicated (Figure 4).

Impact on vegetation and beyond: implications for
management

The species selected provided a suitable model system to infer
about different ecologies of invaders and hence mechanisms of
invasion. All are annuals from the Americas, which makes species-
specific biases, such as those associated with the region of
introduction or with different life histories, irrelevant. On the other
hand, while all target species spread along rivers, field experience
suggests that they differ in their capacity to colonize areas outside
riverbeds. Datura innoxia is most closely confined to sandy
substrates in riverbeds, where X. strumarium is also common; the
two species often occur together in invaded stands or in close
proximity to each other. However, the latter species also invades
riverbanks higher above the riverbed with more compact soils, and
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Figure 5. Ordination plot showing the compositional differences between the invaded and uninvaded plots for Datura innoxia (a), Parthenium hysterophorus (b) and Xanthium
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uninvaded plots was set as a ‘block defining covariable’. Abbreviations: SeneNigr = Senegalia nigrescens, AcalIndc = Acalypha indica, AlthPung = Althernanthera pungens,
AmarHybr = Amaranthus hybridus, AmarPrae = Amaranthus praetermissus, AristAdsc = Aristida adscensionis, ArgmMex = Argemone mexicana, ArmgOchr = Argemone ochroleuca,
ArsCong = Aristida congesta, BercDisc = Berchemia discolor, BoerCocc = Boerrhavia coccinea, BracDefl = Brachiaria deflexa, BulbHisp = Bulbostylis hispidula, ChenAmbr =
Chenopodium ambrosioides, ChenBotr = Chenopodium bothrys, ChlrMoss = Chloris mossambicensis, ChlrVirg = Chloris virgata, CleoAngs = Cleome angustifolia, CombMoss =
Combretummossambicense, CommBeng= Commelina bengalensis, CommErec= Commelina erecta, CorbDecm= Corbichonia decumbens, CucmZeyh= Cucumis zeyheri, CyprObts
= Cyperus obtusiflorus, CyprRotn = Cyperus rotundus, CyprRups = Cyperus rupestris, CyndDact = Cynodon dactylon, CyprSexn = Cyperus sexangularis, DactAegp = Dactyloctenium
aegypticum, DactAust = Dactyloctenium australe, DatrStrm = Datura stramonium, DichAnul = Dichantium anulatum, DichrCinr = Dichrostachys cinerea, EchnColn = Echinochloa
colona, EleuCorc= Eleusine coracana, EragAdsc= Eragrostis adscensionis, EragCili= Eragrostis cilianensis, EragLehm= Eragrostis lehmaniana, EragPatn= Eragrostis patentipilosa,
EragRigd = Eragrostis rigidior, EragRotf = Eragrostis rotifer, EragSupr = Eragrostis superba, EragTric = Eragrostis trichophora, EuphHirt = Euphorbia hirta, EuphInae = Euphorbia
inaequilatera, EvolAlsn = Evolvulus alsinoides, FelcMoss = Felicia mossamedensis, FlueVirs = Flueggea virosa, GompCels = Gomphrena celosioides, GrewFlav = Grewia flavescens,
HeliSteu = Heliotropium steudneri, HeliZeyl = Heliotropium zeylanicum, HermBorg = Hermannia boraginiflora, HibsAeth = Hibiscus aethiopicus, HibsMicr = Hibiscus micranthus,
HippCren = Hippocratea crenata, IpomObsc = Ipomoea obscurra, IpomSine = Ipomoea sinensis, IndgCost = Indigastrum costatum, IndgSchm = Indigofera schimpferi, JustFlav =
Justicia flava, JustMatm = Justicia matamensis, IndgVici = Indigofera vicioides, KyphAngs = Kyphocarpa angustifolia, LeonNept = Leonotis nepetifolia, LeucSexd = Leucas
sexdentata, LimeDint = Limeum dinteri, LimeSulc = Limeum sulcatum, LippJavn = Lippia javanica, MalvCorm = Malvastrum coromandelianum, MelhAcum = Melhania acuminata,
MelhnSp = Melhania sp., MollNudc = Mollugo nudicaulis, OcimAmer = Ocimum americanum, OzorPanc = Ozoroa paniculosa, PancMaxm = Panicum maximum, Pentpent =
Pentodon pentandrus, PhilViol = Philenoptera violacea, PhylMadr = Phyllanthus maderaspatensis, PlucDios = Pluchea dioscoridis, PycrComp = Pycreus compressus, RhynMinm =
Rhynchosia minima, SesbBisp = Sesbania bispinosa, SesmAlat = Sesamum alatum, SidaDred = Sida dredgei, SprAfrc = Spirostachys africana, SporFimbr = Sporobolus fimbriatus,
SporIocl = TephPurp = Tephrosia purpurea, TragBert = Tragus berteronianus, TribTerr = Tribulus terrestris, TricMonc = Tricholaena monachme, TridProc = Tridax procumbens,
UrocMoss = Urochloa mossambicense, UrocOlig = Urochloa oligotricha, VerbBonr = Verbena bonariensis, WaltIndc = Waltheria indica, XysmInvl = Xysmalobium involucratum,
ZinnPerv = Zinnia peruviana. Alien species codes are shown in red font.
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P. hysterophorus is the most widespread of the three beyond
riverbeds, commonly invading the understory of the gallery forest
and clearings there. The ecology of all three invaders makes the
comparison of invaded and uninvaded plots more robust as some
of the cautions with regard to the space-for-time substitution
approach (see Hejda et al. 2009 for discussion) are less relevant in
places where rather large areas of homogeneous habitats in terms
of substrate, dispersal opportunities, and disturbance regimes can
be found to locate plots. Themain potential limitation of the space-
for-time approach is the uncertainty in the causality of the
observed effects. In our case, the question might arise if the
differences between invaded and control plots are really caused by
the dominance of the target aliens or by a difference in some
confounding factor, which may either promote or suppress the
dominance of invading aliens. However, the stands of all three
target aliens were spread over large homogenous riparian areas,
which makes the presence of confounding factors unlikely.
Moreover, a biased significant result would presume there are
systematic rather than random differences between the invaded
and control plots, which is also unlikely.

From a broader perspective, it needs to be emphasized that in a
protected area such as KNP, the biodiversity conservation
objectives aim “to maintain the delivery of broad ecosystem
services by ensuring its biota and associated terrestrial processes
are restored and maintained” (KNP 2018). When studying the
impacts of invasive plant species, the focus needs to be on the whole
ecosystem and consider other potential ecosystem impacts, such as
on herbivores (Pyšková et al. 2022a), other animals (Foxcroft et al.
2022), and soils (Novoa et al. 2021). Such an approach allows us to
gain a holistic understanding of invasion impacts and provide a
complete assessment of management needs. Here, we examined
the effects of three invasive alien plants on one aspect of a larger
programme, namely, impacts on vegetation. Our results show that
the invasions of two of the target aliens (Datura sp. div.,
X. strumarium) are unlikely to have profound effects on the
diversity of the riverbed vegetation. However, there is evidence that
they still have significant compositional effects. A study on the
effects of management and post-control response of invasive alien
plants in the KNP (Morris et al. 2008) suggested that continuous

control of riparian alien species, including X. strumarium, would
reduce seed production and limit the displacement of recovering
native vegetation, allowing natural rehabilitation. However, with
the introduction of X. strumarium in 1953, any reduction in seed
production is likely to have little effect at this point. Parthenium
hysterophorus, which also spreads outside of the river channel,
both reduces overall plant diversity and changes species
composition.

When suggesting management policies, the feasibility of
achieving the objectives, including the likelihood of success and
costs of control, also needs to be considered in addition to their
impacts. All management measures need to be designed with the
awareness that complete eradication from KNP of these invasive
species is impossible. For this reason, it may be necessary to accept
the presence of stands of Datura sp. div. and X. strumarium in the
riverbeds for part of the year, as being annual species, they die at
the end of summer. According to van Wilgen et al. (2017), much
funding has been spent on X. strumarium control, with little long-
term success. Also, populations of these aliens re-establish rapidly
following control. Should the species be found to be invading other
areas where there is a higher likelihood of impacts on diversity,
management would be recommended. It needs to be noted,
however, that these recommendations are based on vegetation
impacts, while the impacts on other ecosystem components may
enhance the need for control. However, P. hysterophorus deserves
special attention due to its stronger impacts and direct competition
with co-occurring plant species, especially as it successfully invades
outside the riverbeds along themacrochannel bank and in drainage
lines or moist areas further away from rivers.
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found at https://doi.org/10.1017/S0266467423000299
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