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Abstract

Pommerenke initiated the study of linearly invariant families of locally schlicht holomorphic functions
defined on the unit disk D. The concept of linear invariance has proved fruitful in geometric function
theory. One aspect of Pommerenke's work is the extension of certain results from classical univalent
function theory to linearly invariant functions. We propose a definition of a related concept that we
call hyperbolic linear invariance for locally schlicht holomorphic functions that map the unit disk into
itself. We obtain results for hyperbolic linearly invariant functions which generalize parts of the theory
of bounded univalent functions. There are many similarities between linearly invariant functions and
hyperbolic linearly invariant functions, but some new phenomena also arise in the study of hyperbolic
linearly invariant functions.

1991 Mathematics subject classification (Amer. Math. Soc): 30C99, 30C25, 30C45, 30D45.

1. Introduction

This paper is a sequel to [6], in which we considered euclidean linearly invariant
functions, an idea due to Pommerenke ([14, 15]). The concept of euclidean linear
invariance is defined for locally schlicht holomorphic functions from the unit disk D>
with hyperbolic geometry to the complex plane C with euclidean geometry; let .3?
denote the family of locally univalent holomorphic functions defined on D. (We shall
employ the words 'univalent' and 'schlicht' interchangeably). The euclidean linear
invariant order of a function / in ££ is defined by

. I/"(0)1
= sup

where R e Euc(C), S e Aut(D) and /(0) = 0
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74 Wancang Ma and David Minda [2]

Here Aut(D) is the group of conformal automorphisms of D and Euc(C) is the group
of euclidean motions of C. Also, &{a) is the family of / in _£? such that a(f) < a.

In the present paper we shall consider bounded locally univalent functions. More
precisely, we shall consider locally schlicht functions / : D ->• O; let Jz?A denote the
family of all such functions. (We often use the subscript'/?' to distinguish a concept
in this paper from the analogous concept in [6].) From a geometric perspective we
are considering functions with hyperbolic geometry on D for both the domain and the
range. It is not immediate how to extend the concept of linear invariance to functions
in ££ h. Any definition of hyperbolic linear invariance should lead to analogs for
some of the important known results for euclidean linearly invariant functions. In
particular, we should obtain generalizations of results for bounded univalent functions
just as euclidean linear invariance extends much of the classical theory of univalent
functions. We propose the following definition for the hyperbolic linearly invariant
order for functions in ££h:

{ I f"(0)\
— u _ : f = RofoS,

2| / ' (0) | ( l | / ' (0) | )where R, S e Aut(D) and /(O) = OL

A function / in ££h is called hyperbolically linearly invariant provided its order
«*(/) is finite. Let ^/,(a) be the class of hperbolically linearly invariant functions /
such that ah(f) < a.

In this paper we establish analogs for many of the results for euclidean linearly
invariant functions in [6]. The analogies are not always obvious since we are now
dealing with hyperbolic rather than euclidean geometry on the range of the functions.
We give a purely geometric interpretation for the linear invariant order in terms of
uniform local hyperbolic k-convexity. We also relate hyperbolic linear invariance to
uniform local univalence in the hyperbolic sense. Growth, distortion and covering
theorems for the class ^ ( a ) are obtained, which we know are sharp in certain cases.

We would like to thank the referee for carefully reading the paper and making a
number of useful suggestions which helped to clarify the exposition.

2. Preliminaries

In this section, our purpose is to define certain concepts employed in this paper and
recall some basic facts that will be needed.

We begin with a brief discussion of hyperbolic geometry on D and related ideas.
The density for the hyperbolic metric on D is A.D(Z) = 1/(1 — |z|2). The hyperbolic
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length of a curve y in D is

The hyperbolic distance function on D induced by this metric is

, , , . 1, \ + \(a-b)/(\-ab)\
dh(a, b) = - log —.

The hyperbolic disk in D> with hyperbolic center a e D and hyperbolic radius p,
0 < p < oo, is defined by Dh(a, p) = {z e D : d/,(a, z) < p}.

The hyperbolic curvature of a path y : z = z(?) in D is

(3) *A(z, y) = (1 - \z\2)Ke{z, y) + Im

where /cf(z, y) denotes the euclidean curvature,

Ke(z, V) = 7777771 I m

Note that *:<,((), y) = AO,(0, y); in words, the hyperbolic curvature and euclidean
curvature coincide at the origin. Recall that hyperbolic curvature is invariant under the
group Aut(B),that is Kh(S(z), Soy) = KH(Z, y)foranyS e Aut(D). For more details
see [2,4,10]. Later, we shall need to know that if y is the positively oriented boundary
of the hyperbolic disk Dh(a, p), then Kh{z,y) — 2coth(2p). Also, the formula (3)
for hyperbolic curvature readily yields that Ke(z, y) > 0 when Kh(z, y) > 2.

Next we recall the notion of hyperbolic ^-convexity. A region £2 in O is hyperbol-
ically k-convex (relative to D) if for any pair of distinct points a, b e Q there exist
two shortest arcs of constant hyperbolic curvature k in D connecting a and b. Note
that curves in D of constant hyperbolic curvature are circular arcs. This notion was
introduced independently by Flinn and Osgood [2] and Mejia [8]. If S2 is a region in
D such that 3 Q is a closed Jordan curve of class C2, then Q is hyperbolically ^-convex
if and only if Kh(z, 3fi) > k for all z e dQ. (see [2, 8, 9]). In particular, Dh(a, p)
is hyperbolically ^-convex if and only if 2coth(2p) > k, a consequence of which
is that the unit disk is hyperbolically 2-convex. A univalent function / in J£h is
called hyperbolically k-convex provided the image /(D>) is hyperbolically ^-convex.
Hyperbolically ^-convex functions and related topics were investigated in [5, 9].

We now turn to hyperbolic linear invariance and related topics. First, we point out
an apparent problem with the definition of the hyperbolic linearly invariant order. In
the definition (2) of the quantity ah{f), the expression |/"(0)|/2|/ '(0)|(l - |/'(0)|)
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does not make sense if / is a conformal automorphism of D. In fact, if / is a
conformal automorphism of D, then the function / in (2) is a rotation of D so that
| / '(0) | = 1 and /"(0) = 0. We define ah = 1 when / € Aut(D). This convention is
made plausible by the fact that ah{cz) — 1 for any constant c with 0 < \c\ < 1. In
addition, we later show (Theorem 3) that ah(f) > 1 and ah{f) — 1 if and only if /
is hyperbolically 2-convex which further justifies our convention for the hyperbolic
linearly invariant order of a conformal automorphism of D.

Note that ah(f) = ah(R o f o S) for all R and 5 in Aut(O).

EXAMPLE 1. Let / e .£?/, be univalent and suppose / (D) is hyperbolically 2-
convex. Then ah ( /) < 1. This is an immediate comsequence of the inequality

which holds for a normalized (/(0) = 0) hyperbolically 2-convex function / [10,
Theorem 5]. Here the only extremal functions are the rotations of

(4) *i,/>(z) = z ,f* „ (0 < P < 1).
1 - (1 - p)z

Thus ^/,(1) contains all hyperbolically 2-convex functions, which is analogous to
^"(1) consisting of all euclidean convex functions. We point out that hyperbolic
2-convexity, rather than hyperbolic convexity, seems to be the appropriate analog
for euclidean convexity in the setting of hyperbolic linear invariance. We note that
a(kUp) = 1, independent of ft.

EXAMPLE 2. If / e Jifh is univalent, then ah(f) < 2. This follows directly from
an inequality of Pick [13]

which holds for a normalized (/(0) = 0) univalent function mapping D into itself
with equality if and only if / is a rotation of

+ ( l - z )

See [2] for an elementary proof of Pick's inequality. Hence, ^"/,(2) contains all
univalent functions in Jz?h, just as ^"(2) contains all univalent functions in Sf. We
remark that a(k2^) = 2, independent of ft.

The similarity of the coefficient bounds for hyperbolically 2-convex functions and
bounded univalent functions in Examples 1 and 2 was a strong motivation for the
definition of the hyperbolic linear invariant order.
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DEFINITION 1. For a holomorphic function / in D> and a point a in D>, we let p (a, / )
be the hyperbolic radius of the largest hyperbolic disk in D centred at a in which / is
univalent. Note that p(a, f) can be zero or infinite. Define p{f) = inf [p(a, f):ae
D>}; we say / is uniformly locally univalent (in the hyperbolic sense) if p(f) > 0.

Next we define uniform local hyperbolic ^-convexity.

DEFINITION 2. Let / e ^Ch. For a e O, the radius of hyperbolic &-convexity,
k > 0, at a is given by

Phkia, f) = sup{p < p(a, f) : f(Dh(a, p)) is hyperbolically &-convex}.

The uniform radius of hyperbolic k-convexity, k > 0, of / is

Phkif) = inf{phk(a, f) :a e D};

a function / is called uniformly locally hyperbolically k-convex provided Phk(f) > 0.
When no confusion results, we simply write pk(f) in place of Phk(f)-

We observe that phk(f) = phk(S o f o T) for all 5 and T e Aut(D). Note that
k\ < ki implies that p^(f) > Pt2(/)- 1° particular, pk(f) < Pi(f) for k > 2.
Observe that phk(f) < p(f).

DEFINITION 3. Let / e jSfA. We say that / is hyperbolic k-convexity preserving if
/ maps every hyperbolically k-convex subset of D injectively onto a hyperbolically
k-convex set. Define

kh(f) = inf{k > 2 : / is hyperbolic ^-convexity preserving}.

The reason that we can restrict k to be at least two in this definition will be made
clear at the end of the next section. In fact, the only functions in jSfh which are
hyperbolic fc-convexity preserving for 0 < k < 2 are the conformal automorphisms
of D. Obviously, kh(f) = kh(R o / o 5) for all R and 5 in Aut(D>).

3. Hyperbolically invariant differential operators

We introduce two invariant differential operators for holomorphic functions map-
ping the unit disk into itself.

DEFINITION 4. Suppose / is holomorphic in D and / (D) c D. Set
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and

™ n ft ^ (1 ~ \z\2)2f"(z) 2(1 - |z|2)2/(z)/'(z)2 2z(l - |zj2)/'(z)
(/) Uhi T \Z) = — .

1 - | /(z)|2 (1 - |/(z)|2)2 1 - |/(z)|2

Note that the Schwarz-Pick Lemma asserts that either | Dhi f(z) | < 1 for all z e D ,
or else / is a conformal automorphism of Q> and | Aii/(z)l = 1. Also, if /(0) = 0,
then A i / ( 0 ) = /'(0)andDh2f(0) = /"(0). Fora e D,setra(z) = (z -a ) / ( l - az ) .
Then Ta is a conformal automorphism of D which sends a to 0, T-a = T~\ Ta'(0) =
1 - \a\2, and ra'(a) = 1/(1 - |a|2). If / = r/(a) o / o T_a, then / is a holomorphic
function mapping D into itself with /(0) = 0. It is straightforward to verify that
Dh\f(a) = /'(0) and Dh2f(a) = /"(0). Therefore, the hyperbolic linearly invariant
order of a function / in Jj? h can be expressed concisely in terms of these two differential
operators as

with the restriction that / ^ Aut(D).
We next establish an invariance property of these differential operators under the

group Aut(D).

THEOREM 1. Suppose f is holomorphic in D and / (D) C O. If R, S e Aut(D),
then

\Dhj(R ofoS)\ = \Dhj(f)\ oS (7 = 1, 2).

PROOF. We establish this result when 7 = 1; the case j = 2 is basically the same.
Fix a e D and set b - S(a), g = R o / o S. We have Dhlf(b) = / ' (0), where
/ = Tm o_f o T_b and Dhlg(a) = | '(0), where | = Tm oj o T_a. Note that both
functions / and g fix the origin. It suffices to show that | / '(0)| = || '(0)|. This is
elementary because g = Ro f oS, where R = Tg(a) o R o 71/(fc) and S = TboSoT_a

are both rotations of the unit disk about the origin.

There is a close connection between these invariant differential operators and
hyperbolic curvature. We derive a formula for the change in hyperbolic curvature
under a function .5?h which establishes the connection.

THEOREM 2. Suppose f e J£h. Then

'(0
y ) \ D h l f ( z ) \ = K h ( z , y ) + I m l n r /_ , ,_

f D,2/(z) z'(
\DhJ(z)\z>(
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PROOF. Fix a e D. Set / = 7}(a) o / o 7La and y — Ta o y. If y is parametrized
by z = z(t) with z(t0) = a, then y is parametrized by z = z(t) and z(t0) = 0. Also,
we note that the unit tangent to y at a and the unit tangent to y at 0 are the same since
T^(a) > 0; in symbols, z'(to)/\z'(to)\ — z'(to)/\z'(to)\. Because hyperbolic curvature
is invariant under Aut(D) and / o y = Tfw o f o y, it suffices to show that

' Dh2f(0) 7 (to) ]
, foy)\DhJ(0)\ = K*(0, y) + Im

or equivalently,

«e(f(0), f o y) | / ' (0) | = Ke(0, y) + Im

Dhlf(0) \~z'(to)\

/"(0)

But this latter identity is just the formula for the change of euclidean curvature under
a locally schlicht holomorphic function [2].

THEOREM 3. Let f e Sfh. Then 1 < a ( / ) < ah(f), where a(f) denotes the
euclidean linearly invariant order of f. Also, ah(f) = 1 if and only if f is univalent
and / (D) is hyperbolically 2-convex.

PROOF. First, we show that 1 < ah(f) = a. There is no harm in assuming
/(0) = 0. Suppose that a < 1. Then / is not a conformal automorphism of O and

\Dhif(z)\
\Dhlf(z)\ <2a(l-\Dhlf(z)\).

This gives

f"(z) , 1
rr-r- + 1 -

- 2 5
2 ( 1 -

l - | z | 2

1 4-
+ 1 -

2a|z|
_

1 - l z l 2

2|z|

1-lzl2

In the final step we used the inequality | / (z) | < |z| which is valid because /(0) = 0
and / maps D into itself. Hence, if a < |z| < 1, then

/'(Z)
+ 1 - 1 - Izl2

2 | z |
1 - l z l 2 - a ) ) =

2 | z | 2

1 - Izl2
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since \Dhif(z)\ < 1. For z € D> define

[8]

«(z) = 1+Re
f'U)

The function u is harmonic in O and w(0) = 1. For a < \z\ < 1, we have

i ^ | z | 2 2|z|2

u(z)> = 1.

The preceding inequality implies that w(z) > 1 for z e D by the minimum principle
for harmonic functions. This contradicts M(0) = 1, so we must have a > 1.

Next we show that 1 < a(f) < ah{f). Recall that 1 < a(f) and that [14]

a(f) = sup

We have

— z

(1 - M2)

Dh2f{z)

/"(z)
— z

2Dhlf(z)

< <**(/) + (1/001 - «*(/))|D*,/(z)| < «*(/)

since ah(f) > 1 and | / (z) | < 1. This yields the desired result.
From Example 1 it now follows that ah{f) = 1 if / is univalent in D and /(D)

is hyperbolically 2-convex. All that remains is to show that if ah(f) = 1, then / is
univalent in D and / (D) is hyperbolically 2-convex. If ah{f) = 1, then we also have
a(f) = 1 so / is univalent in D and /(D>) is convex [14] (also see [6]). In order to
show that / (O) is hyperbolically 2-convex, it is sufficient to prove that f(Dh(0, p)) is
hyperbolically 2-convex for all p > 0, or equivalently, df(Dh(0, p)) has hyperbolic
curvature at least 2 for all p > 0 (see [2, 8, 9]). Let y be the positively oriented circle
of hyperbolic radius p centered at the origin. Then Kh(z, y) = 2coth(2p) > 2 and
from Theorem 2

y)\Dhlf(z)\ >Kh(z,y)-

>2-2c

\Dkif(z)\
\Dhlf(z)\

-\DhJ(z)\) = 2\Dhlf(z)\.

Hence, Kh(f(z), / o y) > 2. This completes the proof.

REMARK. NOW we can readily explain why the restriction k > 2 in the definition
of the quantity kh(f) can be imposed without loss of generality. The reason is that for
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0 < k < 2 there are no functions in Jz?h, except conformal automorphisms of D, which
map every hyperbolically ^-convex subset of D injectively onto a hyperbolically k-
convex set. Recall that by convention ah(f) = 1 for / € Aut(D). Suppose / maps
every hyperbolically it-convex subset of D injectively onto a hyperbolically k-convex
set for some k e [0, 2) and / £ Aut(D). Then for every a € D there exists a circular
arc y : z = z(0 of constant hyperbolic curvature k, which is part of the boundary of
a hyperbolically £-convex subset of D>, such that z(0) = a and

Im
Dhif(a)
Dhl f{a)

Dh2f(a)
Dhxf(a)

, , , T \Dh2f{a) z'(0) 1
= Kh(a, y) + Im { } = k —

7 [Dhlf(a)\z'(0)\\

Hence, by making use of Theorem 2, we have

k\DhXf{a)\ < Kh(f(a), f o

so that

Dh2f(a)

Dhif(a)

k

\Dhlf(a)\(l - \DhJ{a)\) ~
Because a e D i s arbitrary, this, in conjunction with (8), implies that ah(f) < k/2 <
1, a contradiction to Theorem 3.

4. Relationships between hyperbolic linear invariance and hyperbolic
k -convexity

We now investigate connections between the quantities ah{f), kh{f) and
the latter quantity we shall write simply as

THEOREM 4. Suppose f e 3?h. Then kh(f) = 2coth(2pM/)(/)).

PROOF. In this proof we will write k(f) in place of kh{f). First, we show that
2coth(2pi(/)(/)) < k(f). We may assume that k(f) < oo. For any € > 0, we
determine p = p(e) from the equation 2coth(2p) = k(f) + €. Then Dh(a, p) is
hyperbolically (k(f) + e)-convex since dDh(a, p) has constant hyperbolic curvature
k(f)+€. It follows from Definition 3 that/ is injective in the hyperbolic disk Dh (a, p)
and f(Dh(a,p)) is hyperbolically fc(/)-convex. This implies that p*</)(/) > p,
which is equivalent to the inequality 2 coth(2pt(/)(/)) < k(f) + e. Because e > 0 is
arbitrary, this establishes the desired inequality.

Next we show that k(f) < 2coth(2pt(/)(/)). We may assume that p*</)(/) > 0.
Set k = 2 coth(2pk(f)(f)) > 2. Suppose £2 is any subset of D which is hyperbolically
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£-convex. Since ft is hyperbolically k-convex (k > 2), ft is contained in a hyperbolic
disk of radius Pk(/)(f) (see [8, 9]). In particular, / is univalent on ft. We shall show
that /(ft) is also hyperbolically ^-convex. Because / is injective on ft, it suffices to
show that for any a, b e ft, the points f(a) and f(b) lie in a hyperbolically k-con\ex
set which is contained in /(ft) . Consider distinct points a, b e ft. Then there exist
two closed hyperbolic disks Ai and A2 with hyperbolic radii Pt(/)(/) such that a,
b g 3 A; (j = 1,2) and Hk[a, b] = A, n A2 c ft. As /(Ay) is hyperbolically k(f)-
convex, the hyperbolic lens-shaped region Hk[f(a), f(b)] is contained in f(Aj)
(j = 1, 2). Let T be any path in Hk[f(a), f(b)] from f(a) to f(b). Then there
is a path y, in Ay from a to b such that / o yy = V (j = 1, 2). Since / is a local
homeomorphism and y\, y2 are both paths from a to b, the condition / o yx = / o y2

implies that yj = y2 = y. Thus, y is contained inAi n A2, so T = f o y lies in
/ (A, n A2). It follows that Hk[f(a), f(b)] C / (A, n A2) C /(ft). This shows that
/(ft) is hyperbolically &(/)-convex. Hence k(f) < k.

THEOREM 5. Suppose f e JS?A. 7/zen a/,(/) = coth(2pw/)(/)).

PROOF. In this proof we again simply write kh(f) as k(f). From Theorem 3 the
desired equality holds if ah(f) = 1. Henceforth, we assume ah(f) > 1. In particular,
/ i Aut(D).

First, we show that aA(/) < coth(2pi(/)(/)). Set w = 2coth(2pt(/)(/)) and fix
z0 G D. From (8), it suffices to show that

<2coth(2pt( / )(/)).

We need only consider the case in which Dh2f(z0) ^ 0. Then there is a unique point
a e \D> such that z0 e dDh(a, pk(/)(f)) and

Im
Dhlf(z0) \z'(to)\ J

1 Dh2f(z0)

Dhlf(zo)

where y : z = z(?) is a parametrization of dDh(a, pk(/)(f)) and z(t0) = z0. By
making use of Theorem 4, we see that / o y is a hyperbolically /n -convex curve of
class C2, so that [9] Kh(f(z0), f o y) > m. Hence, by using Theorem 2,

= Kh(z0, y) + Im { f = m -
[Dhif(z0) \z'(to)\ Dhif(z0)

or
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Next, we establish coth(2pt (/)(/)) < ah(f). Determine p from coth(2p) =
«*(/) > 1 and set y = dDh(a, p). Then for z e y , Theorem 2 and (8) yield

oy)\Dhlf(z)\=Kh{z,y) ' T • — z'<'>

> 2coth(2/o) -

> 2(coth(2p) - « „ ( / ) ( 1 - |DM/(z)|))

= 2a*(/) |DM/(z)| .

Thus, Kh(f(z), f o y) > 2ah(f), so f(Dh(a, p)) is a hyperbolically 2aA(/)-convex
set. Because a 6 D is arbitrary, / maps every hyperbolic disk of radius p onto a
hyperbolically 2aA(/)-convex set. Now, proceeding exactly as we did in the second
part of the proof of Theorem 4, we can show that the set f(Q.) is hyperbolically 2a,, ( /)-
convex for each hyperbolically 2aA(/)-convex subset Q in P. This implies, by
Definition 3, the inequality Kh ( /) < 2ah ( / ) , which is equivalent to coth(2pyt(/)(/)) <

by Theorem 4.

COROLLARY 1. Suppose f e ££h. Then 2ah(f) = kh{f).

This should be viewed as an analog of the result for euclidean linearly invariant
functions which asserts that the euclidean linearly invariant order is simply related
to the uniform local hyperbolic radius of euclidean convexity [6, Theorem 3]. It
provides a simple hyperbolic geometric interpretation for the order of a hyperbolic
linearly invariant function.

COROLLARY 2. Let f e Jfh. Then ah(f) > coth(2p2(/)). In particular, f is
hyperbolically 2-convex in the disk [z : \z\ < ah(f) — ^/ah(f)

2 — l} .

PROOF. AS kh(f) > 2, we have fa{f) > pW)(f). Therefore,

coth(2p2(/)) < coth(2pM/)(/)) =

5. Uniform local univalence and hyperbolic linear invariance

It is known that a function / in Jf has finite linear invariant order if and only if
it is uniformly locally univalent ([6, 12, 14]). This is a consequence of the following
inequalities [14]
(9) coth(p(/)) < « ( / ) < 2coth(p(/)),
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where p(f) is the hyperbolic radius of uniform local univalence of / given in Defini-
tion 1 and the euclidean linear invariant ordera(/) is defined in(l). Improved bounds
were given in [6, Theorem 6]. We now show that there is an analogous result for the
hyperbolic linearly invariant order. In this section we relate the quantities p(f) and
ah(f) in a similar fashion when / is in Jfh. We also connect these quantifies to the
notion of hyperbolic starlikeness.

DEFINITION 5. A set £2 c O is called hyperbolically starlike with respect to a e £2
if for each z 6 £2 the hyperbolic geodesic connecting a and z lies in £2. When a — 0
this is equivalent to euclidean starlikeness. For / € JSfh, let

p*(a, / ) = sup{/0 < p(a, f) : f(Dh(a, p)) is hyperbolically starlike

with respect to f(a)}

and
p*(f) = wf{p*(a, f):ae D}.

A function / e .£?>, is called uniformly locally hyperbolically starlike if p*(f) > 0.

THEOREM 6. Suppose f e 3?h. Then p*(/) > 2p2(/).

PROOF. Set p = p2(f). There is nothing to prove if p = 0, so we may assume
p > 0. It suffices to show that p*(a, f) > 2p for all a e D. Because of the
invariance of both p*(a, f) and pi(f) under conformal automorphisms of D, we need
only consider the case in which a = 0 and /(0) = 0. Then we must show that
f(Dh(0,2p)) is starlike (in the euclidean sense) with respect to the origin. Actually,
we show that the curve f(dDh(0, 2r)) is starlike with respect to the origin for any
r e (p/2, p). Fix any z0 € O with dh(0, z0) = 2r. It is enough to establish the
inequality Re{zo/'(zo)//(zo)} > 0 [1> PP- 41-42]. Select a on the radial segment
[0, z0] with dh(0, a) — dh{a, z0) so that 0 and z0 lie on dDh(a, r) — y. Because r < p
we know that f{Dh{a, r)) is hyperbolically 2-convex. This implies that it is also
euclidean convex, so the image of the circle y is starlike with respect to 0 = /(0).
If c is the euclidean center and R the euclidean radius of y, then z(t) = c + Re",
0 < t < 2n, is a parametrization of this circle. Since / o y is starlike with respect to
the origin,

0 < — arg f(c + Re") = Re |
~ dt [ f{c + Re")

Select t0 e [0, 2n] with z(t0) — z0. Then we have Re"0 = z0 - c. But c = uz0 for
some u € (0, 1), so Re"0 = (1 — u)z0. The preceding inequality implies that
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Now we give a quantitative version of the fact that a function / in ££h has finite
hyperbolic linearly invariant order if and only if it is uniformly locally univalent.

THEOREM 7. For f e S£h, coth(p(/)) < ah(f) < 2coth(p(/)).

PROOF. The lower bound follows from Corollary 2 of Theorem 5 and Theorem 6
since 2p2(f) < p*(f) < p(f) implies that coth(p(/)) < coth(2p2(/))- Now we
establish the upper bound. In view of (8), it suffices to show \Dh2f\/(2\Dhlf\(l —
\Dhif\)) < 2coth(p(f)). Since the quantity \Dh2f\/(2\Dhlf\(l - \Dhlf\)) is in-
variant when / is replaced by 5 o / o T for any S,T € A u t ( O ) , it is enough to prove
that

™\ £2coth(p</))

when /(0) = 0 and / is univalent in {z : \z\ < /?}, where R = tanh(p(/)). Define
g(z) = f(Rz)/R. Schwarz's Lemma implies that g maps D into itself. Because g is
holomorphic and univalent in O, a result of Pick [13] (also see Example 2) gives

or equivalently,
2

. ... - R

This is the desired result.

COROLLARY 3. Let f € Jz?A. Then 1 < a(f) < ak(f) < 2a(f). In words, a
function in ££h is hyperbolically linearly invariant if and only if it is euclidean linearly
invariant.

PROOF. This is an immediate consequence of Theorem 3, Theorem 7 and the
inequality coth(p(/)) < a(f) stated in (9), where a(f) is defined in (1).

REMARK. By making use of the inequality [10, Theorem 5] (also see Example 1)

for hyperbolically 2-convex functions, we can show that

COth(2/02(/)) < «*(/) < COth(p2(/))

when / e if*.
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6. Growth, distortion and covering theorems

Before we derive various growth, distortion and covering theorems for the family
&'h (oc), we introduce functions that we will prove to be extremal for some functionals
over the class &h (a) in the special cases that a = 1,2. These functions are exact
hyperbolic analogs of the basic extremal functions for the class &(pt) and include the
functions in Examples 1 and 2 as special cases. For a > 1 and fi e (0, 1], we set

&h{a, ?) = {/ e &h{a) : / (0) = 0 and /'(0) = 0).

EXAMPLE 3. For 1 < a < 2 and 0 e (0, 1], let ka</} be the normalized (ka,^(0) = 0
and k'a p(0) = 0 ) holomorphic function on D determined from the identity

Clearly the function ka^ is univalent. Note that Jfcli/3 and k2tp are the functions of
Examples 1 and 2, respectively. From Examples 1 and 2, we know that ah{ka^) = a
in case a is 1 or 2. For 1 < a < 2, it is straightforward to verify that ah(kafi) > a.
We believe that ah(kap) = a for 1 < a < 2, but have been unable to prove this.

For a > 2, we cannot define a holomorphic function ka^ on D by the same
functional equation (10) since it does not have a solution which is holomorphic on all
of D in this case. But for real numbers x e (—1, 1), the real-valued function ka<p(x)
is well defined by

Thus, for a > 2 and fl e (0, 1] we regard the function ka,p as defined only for real
values x e (—1, 1).

THEOREM 8. Suppose f e J^ (« ) but f is not a conformal automorphism of D.
Then for any path y in Bfrom a to b,

\Dhlf(a)\ \Dhlf(b)\
exp[-2or length,, (y)] <l-\Dhlf(a)\ rL O-- .W-- X-\Dhxf{b)\

\Dhlf(a)\
exp[2a length,, (y)].

- 1 - \Dhlf(a)\
PROOF. It suffices to establish the upper bound because the lower bound then

follows by simply interchanging the roles of a and b. Let y : z = z(s),0 < s < L —
length,, (y), be a parametrization of y by hyperbolic arclength. This implies that

'(s) = [l - zCOzCO] ems).
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If we make use of the preceding expression for z'(s), then direct calculation results in

j s log DhJ(z) = ̂ {X - zz)e'9 + Re

Here we have suppressed the variable s. Thus,

2(1 - zz)f(z)f'(z) - 2 z

= Re /'(z)
_̂  , 2(1 - zz)f(z)f'(z)

(1 - zz) H — = 2z

Dh2f(z)

so that

Because / €

or

-r\DhJ(z)\ < \Dh2f(z)\.
as

x), we obtain from (8) and the preceding inequality that

d
— \DhXf(z)\ < 2a|DA1/(z)|(l - \Dhif(z)\),

d

<2a.
\Dhif(z)\(l-\Dhlf(z)\)

By integrating this differential inequality over the interval [0, L], we have

log
\Dhif(b)\ \Dhif(a)\

- l

<2aL.
l-\Dhlf(b)\ \l-\Dhlf(a)\

This is equivalent to the desired result.

REMARK. We make the following observations about the case in which equality
holds in Theorem 8. We assume that lengthA()/) > 0. If equality holds, then we must
have

(12) — log|DM/(z)|
ds

along y. In particular,

Dhlf(z)

Dh2f(z)

Dhlf(z)
= 2ct(l-\Dhlf(z)\)

/ e
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along y. Since the identity z'/\z'\ = e'e holds along y, we obtain

(13) **(/(z), / o y)\Dhlf(z)\ = Kh(z, y)

along y from Theorem 2. Recall that a path y in D is a subarc of a hyperbolic geodesic
if and only if it has vanishing hyperbolic curvature. From the preceding identity we
see that in the case of equality, y is a hyperbolic geodesic if and only if / o y is.

COROLLARY 4. Let f e ^h(a, fi). Then for any point z in D

Dhlka,p(-\z\) < \Dhif(z)\ < Dhlka,p(\z\).

These bounds are best possible for a = 1, 2.

PROOF. If / e <^/,(a, fi) and / is a conformal automorphism of D, then a = 1,
P = 1 and the bounds are trivial. Otherwise, the choices b = z, a — 0 and y = [0, z]
in the theorem give

Because the function h(t) = t/(l — t) is increasing on the interval [0, 1) with inverse
function h~l(s) = s/(l + s), we deduce that

z\y ~ ~ pa + \z\y + (i - fi)(i - \z\

All that remains is to calculate Dhika^(x) for — 1 < x < 1. By differentiating the
functional equations (10) and (11) in Example 3 that were used to define ka>/3, we find
that

1

Therefore,

The proof is now complete.

EXAMPLE 4. Let us explicitly state the bounds in the Corollary to Theorem 8 in the
special cases a — 1 and a = 2.
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Equality holds for k\ >/? and its rotations. This is a new distortion theorem for the
class of hyperbolically 2-convex functions. See [5] for other distortion theorems for
hyperbolically 2-convex functions.

If /eJ^*(2,0) , then

(1 + \z\Y - 40|z|

Equality holds for k2,p and its rotations. In particular, these latter inequalities are valid
for any univalent function mapping D into itself.

REMARK. We investigate the implication of equality in the Corollary to Theorem 8
when/} < 1. For0 = 1, the function / i s a rotation of D. Assume 0 < 1. We suppose
equality holds at z0 # 0. By performing a rotation of the function if necessary, we
may assume that z0 — x0 > 0. Then y in the proof of the Corollary to Theorem 8
is the radial segment [0, x0] and so a hyperbolic geodesic. Since we are assuming
equality holds, / o y is also a hyperbolic geodesic from (13) and therefore must be the
radial segment [0, f(x0)]. Because f'(0) = 0 is positive, it follows that [0, f(x0)]
must lie along the nonnegative real axis. In particular, f(t) > 0 for t e [0, x0] and / ,
/ ' and / " are all real valued on ( - 1 , 1). That Dhlf/Dhxf > 0 and Dhl f > 0 hold on
[0, x0] follows from (12) and the fact that Dhlf{G) = 0 > 0. Hence, the identity (12)
yields that

no 2/(o/'(o _ _2/_ = r i fit)
+ i2

for t e [0, XQ\. By integrating this identity over the interval [0, y] for any fixed
y e (0, x0], we obtain

. (1 - y2)f'(y)
l og i

or

mtegration of this equality over the interval [0, x] for any x e (0, Jto] results in

i±mr .
j ^ —x) - ! J '

which is exactly the same as (10) when 1 < a < 2 and (11) when a > 2. This final
identity is valid for all x e (0, x0], so the Identity Theorem implies that, up to rotation,
there is at most one extremal function. It does imply that for 1 < a < 2, the function
ka.0 is extremal provided a{kaj) = a, which we know to be true by Example 3 in the
cases a = 1 and a = 2. We suspect that a(ka#) = a remains valid for 1 < a < 2 but
have not been able to verify this.
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THEOREM 9. Let f e &h(a, P). Then for any point z in D

l/(z)l<^(|z|).

Equality holds for the function kaip e <^h(ot, P) in case a = 1,2.

PROOF. Set y = [0, z] and r = / o y . Then from the Corollary of Theorem 8,

= dh(0, ka,0(\z\).
2 1-*«,/)(||)

This implies the desired inequality.

For a = 2 and / univalent, Theorem 9 is due to Pick [13], while the case a = 1 is
contained in [5].

Finally, we obtain a covering theorem for hyperbolic linearly invariant functions.
For a holomorphic function / defined on D with /(0) = 0, let r(0, / ) denote the
radius of the largest schlicht disk centered at the origin which is contained in the
image Riemann surface / (O) . In more classical terms, r(0, / ) is the radius of the
largest disk centered at the origin such that the branch / " ' of the inverse function that
satisfies / " ' (0) = 0 can be continued analytically to this disk with values in D.

We recall the analogous covering theorem for euclidean linearly invariant functions.
Let

0) = {fe &(a) : /(0) = 0 and /'(0) = /?},

and
r(a, 0) = inf{r(0, / ) : / € &{a, )8)},

for any f} > 0. Then r(a, p) = P/(2a) [14]. Actually, the result in [14] is only stated
in case P = 1, but the extension to arbitrary positive P is elementary. This bound is
attained for the function

and its rotations. In particluar, note that r (a, P) —*• 0 as a —> oo for each fixed p.
The situation for the classes ^(a, P) is quite different. Set

rh(a, P) = inf{rA(0, / ) : / € &h(a, p)}.

https://doi.org/10.1017/S1446788700038118 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038118


[19] Hyperbolic linear invariance and hyperbolic &-convexity 91

There is a general covering theorem for normalized holomorphic self-maps of the unit
disk. If f is holomorphic in D with / ( 0 ) = 0, / ' ( 0 ) = 8 and / ( O ) c B>, then Landau
(see [3, p. 38]) proved that

B2

r(0, / ) >

This bound is sharp for the finite Blaschke product F{z) = z(B - z)/(l - Bz). Note
that this extremal function is not locally schlicht in D>. Landau's result implies that

B2

) >

This lower bound is independent of a, so rh(a, B) cannot approach 0 when a —>• oo
for any fixed B. The following result improves this lower bound on rh(a, 8) for
a e [1,2 + e] for some e > 0.

THEOREM 10. Fora > 1 and 8 e (0, 1],

/ower bound is sharp for a — 1, 2.

PROOF. Suppose / e ^/,(a, ^) and r = rA(0, / ) . Because / is locally schlicht,
there is a point (u with |w| = r such that the branch of /~ ' that satisfies f~l(0) = 0
can be continued analytically along the radial segment [0, co) = F with values in D,
but cannot be continued analytically to [0, co] and still have values in D>. Assume
r : w = w(t), 0 < t < 1, and set y = / " ' o r : z = z{t), 0 < t < 1. Then y is
a path in D with |z(f)| —> 1 as / —• 1. If r — 1, we are done. Otherwise, from the
Corollary of Theorem 8, we have

m ^ f \dw\_ f \f'(.z)\\dz\ f et ^
h(0,co) = / —- = / ——— = / \Dhlf(z)\

; r 1 - \W\2 JY 1 - | / (Z)P J

et ^ \dz\
\Dhlf(z)\

1

l-klfi{-\z\)

1 - z -dlzl

d\z\=dh(O,ka,fi(-l)).

/

i i \dz\ /" , , d\

\Dhika,fi(-\z\)\ - ! — i - > / DA 1^(- |z | ) —-!
1 - Iz|2 Jo 1 ~

*«./J(-|Z|)

This implies that r = \a>\ > \ka,p(—1)|. The explicit value of kap(—l) can be
determined from the functional equations (10) and (11) in Example 3.
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For a = 1 we have rh{\, fi) = fi/(2 — fi), which was established in [9] by a
completely different method, while for a = 2, Theorem 10 becomes rh(2, /$) =
/6/(l + VI — P)2- This latter covering result was established for the subclass of
^h(2, j6) consisting of univalent functions by Pick [13]. By using the same method
as that employed in the proof of Theorem 10, we can show that if / 6 c?h(a, P) is
univalent, which forces 1 < a < 2, then

For a = 2, this is due to Pick [13], while for a = 1 it is a special case of a growth
theorem in [5].

7. Concluding comments

There are a number of open questions for hyperbolic linearly invariant functions;
we mention a few directly related to this paper. First of all, is a{ka^) = a for
1 < a < 2? Next, what are plausible extremal functions for the family &h(a,fi)
when a > 2? How can the Corollary to Theorem 8 plus Theorems 9 and 10 be
improved for a > 2?

Now that euclidean and hyperbolic linearly invariant functions have been con-
sidered, it is natural to try to consider 'spherical linear invariance'. In this context
one would investigate locally univalent meromorphic functions / : D —* P, where P
denotes the Riemann sphere. Here D> is endowed with hyperbolic geometry while P
is considered with spherical geometry. A definition for the spherical linearly invariant
order has been proposed in [7]:

where R e Rot(P), S € Aut(D) and /(0) = 0\.

Here Rot(P) is the group of rotations of the sphere. Note that this parallels the
definition of the euclidean linearly invariant order (see [1]). However, the study of
spherically linearly invariant functions does not exhibit a simple parallelism with
the theory of euclidean linearly invariant functions. New difficulties arise in this
context, partly because there is no uniform upper bound on the second coefficient of
normalized (/(0) = 0 and /'(0) = 1) meromorphic univalent functions defined on
the unit disk. However, there is still an analogous close connection with uniform local
spherical convexity. Also, there is an interesting connection with normal functions:
every spherically linearly invariant function is normal. There is no euclidean analog
for this result; there are euclidean linearly invariant functions that are not Bloch

https://doi.org/10.1017/S1446788700038118 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038118


[21] Hyperbolic linear invariance and hyperbolic it-convexity 93

functions. Also, in [7] a definition of 'spherical linear invariance' for locally schlicht
meromorphic functions / : C —> P is proposed. In this latter context it turns out that
the class of spherically linearly invariant functions is rather uninteresting; the only such
functions are Mobius transformations and compositions of Mobius transformations
with the exponential function.
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