K. Nomizu and F. PodestàNagoya Math. J.Vol. 121 (1991), 127-135

ON THE CARTAN-NORDEN THEOREM FOR AFFINE KÄHLER IMMERSIONS

KATSUMI NOMIZU AND FABIO PODESTÀ

In [N-Pi-Po] the notion of affine Kähler immersion for complex manifolds has been introduced: if M^n is an *n*-dimensional complex manifold and $f: M^n \to \mathbb{C}^{n+1}$ is a holomorphic immersion together with an antiholomorphic transversal vector field ζ , we can induce a connection Γ on M^n which is Kähler-like, that is, its curvature tensor R satisfies R(Z, W) = 0 as long as Z, W are (1, 0) complex vector fields on M.

This work is aimed at proving a Cartan-Norden-like theorem for affine Kähler immersions, generalizing the classical result in affine differential geometry (see [N-Pi]). In §1 we deal with some preliminaries about affine Kähler immersions in order to make our work self-contained. In §2 we prove our main result: if a non-flat Kähler manifold (M^n, g) can be affine Kähler immersed into C^{n+1} and the immersion f is non-degenerate, then for every point $x \in M^n$ we can find a parallel pseudokählerian metric in C^{n+1} such that f is locally isometric around the point x.

§ 1. Preliminaries

Throughout this work we shall refer to [N-Pi-Po] for basic results in the geometry of affine Kähler immersions. We recall here some fundamental equations. Let M^n be an n-dimensional complex manifold with complex structure J and let $f: M^n \to \mathbb{C}^{n+1}$ be a holomorphic immersion. We denote by D the standard flat connection in \mathbb{C}^{n+1} , a transversal (1,0) vector field $\zeta = \xi - iJ\xi$ along f is said to be antiholomorphic if $D_Z\zeta = 0$ for every complex vector field Z of type (1,0) on M^n .

If X and Y are real vector fields on M^n , we can write

(1.1)
$$D_{x}(f_{*}Y) = f_{*}(\nabla_{x}Y) + h(X, Y)\xi + k(X, Y)J\xi$$

thus defining a torsionfree affine connection V and symmetric tensors h

Received March 6, 1990.

and k on M^n . Since f is holomorphic and J is D-parallel, we get that $\nabla J = 0$ and k(X, Y) = -h(JX, Y) = -h(X, JY). We can also write

(1.2)
$$D_X \xi = -f_*(AX) + \mu(X)\xi + \nu(X)J\xi$$

defining the shape operator A and two 1-forms μ and ν . An easy calculation shows that the transversal vector field ζ is antiholomorphic if and only if AJ = -JA and $\nu(X) = \mu(JX)$ for every real tangent vector field X. By extending h as a complex bilinear function on complex tangent vectors, we get for Z = X - iJX and W = Y - iJX

(1.3)
$$h(Z, W) = 2(h(X, Y) + ik(X, Y))$$

and

$$h(Z, \overline{W}) = 0$$

so that we can write for complex vector fields Z, W

(1.4)
$$D_{z}(f_{*}W) = f_{*}(\nabla_{z}W) + h(Z, W)\zeta.$$

The covariant symmetric tensor h is called the second fundamental form for f and we shall say that f is non-degenerate if the tensor h is non-degenerate; it is very easy to see that this condition is actually independent of the choice of a transversal vector field (holomorphic, anti-holomorphic or whatever).

Moreover by putting S = A - iJA and $\tau = \mu - i\nu$ we can write

$$(1.5) D_{\bar{z}}\zeta = -S(Z) + \tau(Z)\zeta$$

for every (1,0)-complex vector field Z.

We are now going to write down the fundamental equations of Gauss, Codazzi and Ricci in the real representation; for the complex version we refer to [N-Pi-Po]. Henceforth U, X, Y will indicate real vector fields. We have the equation of Gauss

(1.6)
$$R(X, Y)U = h(Y, U)AX - h(X, U)AY + h(JY, U)AJX - h(JX, U)AJY,$$

the two equations of Codazzi

(1.7)
$$(\nabla_X h)(Y, U) + \mu(X)h(Y, U) + \mu(JX)h(JY, U)$$

$$= (\nabla_Y h)(X, U) + \mu(Y)h(X, U) + \mu(JY)h(JX, U)$$

(1.8)
$$(\nabla_X A)Y - \mu(X)AY - \mu(JX)JAY$$

$$= (\nabla_Y A)X - \mu(Y)AX - \mu(JY)JAX$$

and the equations of Ricci

(1.9)
$$h(X, AY) - h(Y, AX) = 2d\mu(X, Y)$$

$$(1.10) h(AX, JY) = d\nu(X, Y).$$

§ 2. On the Cartan-Norden Theorem

We are now going to prove our main theorem

Theoerm 2.1. Let $f: M^n \to \mathbb{C}^{n+1}$ be a non-degenerate affine Kähler immersion. If the induced connection V is non-flat and coincides with the Levi-Civita connection of a pseudo-kählerian metric g on M^n , then for every $x \in M^n$ there is a neighborhood U(x) and a parallel pseudo-kählerian metric $\langle \ \rangle$ on \mathbb{C}^{n+1} so that f is isometric relative to g and $\langle \ \rangle$ and the transversal vector field ζ for f is perpendicular to f(U(x)) at each point of U(x).

Proof. We denote by h the second fundamental form for f and we define the conjugate connection $\tilde{\mathcal{V}}$ of \mathcal{V} by means of the following equation

$$(2.1) Xh(Y, U) = h(\nabla_X Y, U) + h(Y, \tilde{\nabla}_X U - \mu(X)U - \nu(X)JU).$$

We recall that $v(X) = \mu(JX)$. Equation (2.1) defines \tilde{V} uniquely since h is supposed to be non-degenerate and we have easily that \tilde{V} is a complex connection, that is, $\tilde{V}J = 0$; by using the Codazzi equation \tilde{V} turns out to be torsionfree.

Lemma 2.1. If the connection ∇ is a Levi-Civita connection, then the 1-form is closed.

Proof. Indeed from the Gauss equation we get that $\operatorname{Ric}(Y, Z) = -2h(AY, Z)$ since $\operatorname{tr} A = \operatorname{tr} JA = 0$. Since V is metric, the Ricci tensor is symmetric and from the Ricci equation we have that $(V_X \mu)(Y)$ is symmetric in X and Y, that is, $d\mu = 0$.

Lemma 2.2. If V comes from a pseudo-kählerian metric g, then the conjugate connection \tilde{V} is locally pseudo-kählerian.

Proof. We define the (1, 1) tensor B by setting g(X, Y) = h(BX, Y); we note that since g is hermitian, we have that

$$h(BX, Y) = h(BJX, JY) = h(JBJX, Y)$$

hence B = JBJ. We now define

$$\tilde{g}(X, Y) = vh(B^{-1}X, Y)$$

for a suitable positive function v in order to have that $\tilde{V}\tilde{g}=0$. We note that

$$Zh(X,\,B^{\scriptscriptstyle -1}Y)\,-\,h(X,\,{\mathcal V}_ZB^{\scriptscriptstyle -1}Y)\,-\,h({\mathcal V}_ZB^{\scriptscriptstyle -1}X,\,Y)\,=\,({\mathcal V}_Zg)(B^{\scriptscriptstyle -1}X,\,B^{\scriptscriptstyle -1}Y)\,=\,0$$

and that

$$h(X, JB^{-1}Y) = -h(JB^{-1}X, Y).$$

Using these identities we have

$$\begin{split} Z\tilde{g}(X,\,Y) &- \tilde{g}(\tilde{V}_{Z}X,\,Y) - \tilde{g}(X,\,\tilde{V}_{Z}\,Y) \\ &= Z(\upsilon)h(B^{-1}X,\,Y) + \upsilon Zh(B^{-1}X,\,Y) - \upsilon [Zh(X,\,B^{-1}Y) \\ &- h(X,\,V_{Z}B^{-1}Y - \mu(Z)B^{-1}Y - \mu(JZ)JB^{-1}Y)] \\ &- \upsilon [Zh(B^{-1}X,\,Y) - h((V_{Z}B^{-1}X,\,Y) \\ &+ \mu(Z)h(B^{-1}X,\,Y) + \mu(JZ)h(Y,\,JB^{-1}X)] \\ &= [Z(\upsilon) - 2\upsilon\mu(Z)]h(B^{-1}X,\,Y) \,. \end{split}$$

So \tilde{g} turns out to be \tilde{V} -parallel if and only if we can choose a positive function v so that $Z(v) = 2v\mu(Z)$; since μ is closed by Lemma 1, we can find locally a function λ so that $\mu = d\lambda$ and then we can put $v = \exp(2\lambda) > 0$.

We now compute the curvature tensor \tilde{R} of $\tilde{\emph{V}}$: we have

$$\begin{split} UZh(X,\,Y) &= h(\tilde{r}_{\scriptscriptstyle U}\tilde{r}_{\scriptscriptstyle Z}X,\,Y) + h(\tilde{r}_{\scriptscriptstyle Z}X,\,\tilde{\tilde{r}}_{\scriptscriptstyle U}Y - \mu(U)Y - \mu(JU)JY) \\ &+ h(\tilde{r}_{\scriptscriptstyle U}X,\,\tilde{\tilde{r}}_{\scriptscriptstyle Z}Y) + h(X,\,\tilde{\tilde{r}}_{\scriptscriptstyle U}\tilde{r}_{\scriptscriptstyle Z}Y - \mu(U)\tilde{\tilde{r}}_{\scriptscriptstyle Z}Y - \mu(JU)J\tilde{\tilde{r}}_{\scriptscriptstyle Z}Y) \\ &- U\mu(Z)h(X,\,Y) - \mu(Z)U(h(X,\,Y) - U\mu(JZ)h(X,\,JY) \\ &- \mu(JZ)Uh(X,\,JY) \;. \end{split}$$

Interchanging U and Z and subtracting [U, Z]h(X, Y), we get

$$h(R(U, Z)X, Y) + h(X, \tilde{R}(U, Z)Y) - 2d\nu(U, Z)h(X, JY) = 0.$$

Using now the structure equations (1.6), (1.10) and the fact that h is non-degenerate, we have

(2.2)
$$\tilde{R}(U,Z)Y = 2h(AU,JZ)JY - h(AU,Y)Z + h(AZ,Y)U - h(Y,AJU)JZ + h(Y,AJZ)JU.$$

Taking trace we have that $\widetilde{Ric}(X, Y) = 2(n+1)h(ZX, Y)$ and by equation (2.2), it follows that the space (M^n, \tilde{g}) is *H*-projectively flat (see e.g. [Y],

Chapter XII, (3.16)); so the space (M^n, \tilde{g}) has constant holomorphic sectional curvature and in particular it is Einstein, hence

$$(2.3) h(AX, Y) = \lambda \tilde{g}(X, Y) = \lambda v h(B^{-1}X, Y)$$

for some function λ , which is constant if $n \geq 2$ (see [K-N], p. 168). By (2.3) we have $A = \lambda v B^{-1}$ and

$$(2.4) g(AX, Y) = \lambda v g(B^{-1}X, Y) = \lambda v h(X, Y).$$

We now state the following

Lemma 2.3. There is a nowhere vanishing C^{∞} function ϕ such that

$$(2.5) g(AX, Y) = \phi h(X, Y)$$

for all real vector fields X, Y and

$$(2.6) d\phi = 2\phi\mu.$$

Proof. We have already established the first assertion (2.5); the function ϕ can be taken to be λv , where v is the function found in Lemma 2.2 and λ is a constant if $n \geq 2$; so (2.6) follows from the proof of Lemma 2.2 if $n \geq 2$. In the general case we differentiate (2.5)

$$Zg(AX, Y) = (Z\phi)h(X, Y) + \phi Zh(X, Y)$$

hence

$$g((\nabla_z A)X, Y) + g(A(\nabla_z X), Y) + g(AX, \nabla_z Y) = (Z\phi)h(X, Y) + \phi Zh(X, Y)$$

that is

(2.7)
$$g((\nabla_z A)X, Y) - \phi(\nabla_z h)(X, Y) = (Z\phi)h(X, Y)$$

and

(2.8)
$$g((\nabla_x A)Z, Y) - \phi(\nabla_x h)(Z, Y) = (X\phi)h(Z, Y).$$

If we now subtract (2.8) from (2.7) and use the equations of Codazzi we obtain

$$(Z\phi)h(X, Y) - (X\phi)h(Z, Y)$$

$$= g(\mu(Z)AX + \mu(JZ)JAX - \mu(X)AZ - \mu(JX)JAZ, Y)$$

$$- \phi h(\mu(X)Z + \mu(JX)JZ - \mu(Z)X - \mu(JZ)JX, Y)$$

$$= \phi h(2\mu(Z)X - 2\mu(X)Z, Y)$$

hence

$$(Z\phi)X - (X\phi)Z = 2\phi[\mu(Z)X - \mu(X)Z]$$

that is

$$Z\phi = 2\phi\mu(Z)$$
.

Since the function v satisfies the same differential equation $dv = 2v\mu$ and does not vanish anywhere, it follows that λ is a constant. If λ were 0, we would have from equation (2.4) that A vanishes identically, hence that V is flat.

We are now going to define the parallel pseudo-kählerian metric $\langle \rangle$ in \mathbb{C}^{n+1} by means of the following

$$\langle f_* X, f_* Y \rangle = g(X, Y), \qquad \langle f_* X, \xi \rangle = \langle f_* X, J \xi \rangle = 0,$$

 $\langle \xi, J \xi \rangle = 0, \qquad \langle \xi, \xi \rangle = \langle J \xi, J \xi \rangle = \phi,$

where ϕ is the function given by Lemma 2.3. We have to verify that $\langle \ \rangle$ is *D*-parallel, that is

(2.9)
$$Z\langle U, V \rangle = \langle D_z U, V \rangle + \langle U, D_z V \rangle$$

for all vector fields U and V along f and a vector field Z on M^n . If $U=f_*X$ and $V=f_*Y$, then (2.9) reduces to $V_Zg=0$. If $U=f_*X$ and $V=\xi$, then (2.9) gives condition (2.5) and if $U=V=\xi$, then (2.9) reduces to (2.6). The other possibilities are easily seen to be automatically satisfied.

COROLLARY 2.1. Let (M^n, g) be a non-flat kählerian manifold and let $f: M^n \to \mathbb{C}^{n+1}$ be a non-degenerate affine Kähler immersion. Then the Ricci tensor of (M^n, g) is positive- or negative-definite. Moreover the pseudo-kählerian metric $\langle \rangle$ in \mathbb{C}^{n+1} - given by Theorem 2.1 is positive-definite if and only if the Ricci tensor of (M^n, g) is negative-definite.

Proof. Using the Gauss equation, we have the following expression for the Ricci tensor

$$Ric(X, Y) = -2h(AX, Y)$$

for all real vectors X and Y. Using Lemma 2.3 we have (locally)

$$\operatorname{Ric}(X, X) = -\frac{2}{\phi}g(A^{2}X, X) = -\frac{2}{\phi}g(AX, AY).$$

Since h is non-degenerate, we see from (2.5) that the (1, 1) tensor A is

one-to-one, hence the Ricci tensor is definite. Moreover Ric is negative-definite if and only if the function ϕ is everywhere positive. q.e.d.

Example. In order to show that the Ricci tensor can be positive-definite, we give the following example. Let $\Omega = \{z \in \mathbb{C}; \operatorname{Re} z < 0\}$; we define $f: \Omega \to \mathbb{C}^2$ by $f(z) = (z, \exp(z))$ and take $\zeta = (\exp(\overline{z}), 1)$ as an anti-holomorphic transversal vector field. Actually ζ is perpendicular to $f(\Omega)$ at each point of Ω with respect to the Lorentzian metric of \mathbb{C}^2 of signature (1, 1). The induced Kähler metric g on Ω is given by

$$g(\partial/\partial z, \partial/\partial \overline{z}) = 1 - \exp(2\operatorname{Re} z) > 0, \quad z \in \Omega$$

and it is easy to see that the second fundamental form h is

$$h(\partial/\partial z, \partial/\partial z) = \frac{\exp(z)}{1 - \exp(2 \operatorname{Re} z)}$$

so that f is non-degenerate. Moreover the Ricci tensor of (Ω, g) is (see [K-N], p. 158)

$$R_{\rm I\bar{I}} = -\frac{\partial^2 \log \left(1 - \exp \left(2\,\mathrm{Re}\,z\right)\right)}{\partial/\partial z \partial/\partial \overline{z}} = \exp \left(2\,\mathrm{Re}\,z\right) \frac{1 + \exp \left(2\,\mathrm{Re}\,z\right)}{1 - \exp \left(2\,\mathrm{Re}\,z\right)} > 0 \; .$$

This shows that (Ω, g) can not be obtained as a complex hypersurface of \mathbb{C}^2 endowed with the euclidean metric (see [K-N], p. 177, Prop. 9.4).

Remark. In order to clarify the geometrical meaning of the conjugate connection used in the proof of Theorem 2.1, we recall something about the Gauss map for complex hypersurfaces as introduced in [N-S]. Let (M, g) be a kählerian manifold and $f: M \to \mathbb{C}^{n+1}$ a non-degenerate complex isometric immersion. We choose a unit real vector field ξ normal to f(M); we recall (see [S], p. 230) that if X is any real vector field on M

$$\nabla_{\mathbf{r}}\xi = -AX + s(X)J\xi$$

where s is a 1-form and with our notation the normal connection form τ is simply given by $\tau(Z) = is(X - iJX)$, where Z = X - iJX. From $\langle \xi, Y \rangle = 0$ for every vector Y we get by differentiation

(2.10)
$$g(AX, Y) = h(X, Y).$$

Finally the Codazzi equation is now the following (see [S], p. 253)

$$(\nabla_X A)(Y) - (\nabla_Y A)(X) - s(X)JAX + s(Y)JAX = 0.$$

According to [N-S], p. 516, we define the Gauss map Φ

$$\Phi \colon M \to \mathbf{CP}^n$$

by putting $\Phi(x) = \pi(\xi)$, where $\pi \colon S^{2n+1} \to \mathbb{C}\mathbf{P}^n$ is the canonical projection. It is shown that $\Phi_{*x}(X) = -\pi_{*\xi}(AX)$ for every real tangent vector X at $x \in M$, so that since f is non-degenerate, the rank of A is 2n by (2.10) and therefore Φ is an immersion. If now \tilde{g} denotes the Fubini-Study kählerian metric on $\mathbb{C}\mathbf{P}^n$, a direct inspection of the results stated in [N-S], § 5, shows that the pull back $\Phi^*\tilde{g}$ is given by

$$\Phi^* \tilde{g}(X, Y) = g(AX, AY) = h(AX, Y) = -\frac{1}{2} \operatorname{Ric}(X, Y).$$

We claim that the conjugate connection $\tilde{\mathcal{V}}$ as defined by formula (2.1) is the Levi-Civita connection of the metric $\Phi^*\tilde{g}$. Indeed equation (2.1) reduces to

$$(2.11) Xh(Y,Z) = h(\nabla_X Y,Z) + h(Y,\tilde{\nabla}_X Z - s(X)JZ)$$

where X, Y, Z are real vector fields on M. We first note that by equation (2.10) we have that

$$(2.12) (\nabla_X h)(Y, Z) = g((\nabla_X A)(Y), Z).$$

We write equation (2.11) in the equivalent form

$$(2.13) \qquad (\nabla_x h)(Y, Z) + h(Y, \nabla_x Z) = h(Y, \widetilde{\nabla}_x Z - s(X)JZ)$$

and if we interchange X and Z and subtract it from (2.13), we obtain

$$g((\nabla_X A)(Z), Y) - g((\nabla_Z A)(X), Y) + h(Y, [X, Z])$$

= $h(Y, \tilde{\nabla}_X Z - \tilde{\nabla}_Z X - s(X)JZ + s(Z)JX)$.

Using now the Codazzi equation, formula (2.12) and the fact that h is non-degenerate, we get that $\tilde{\mathcal{V}}_{x}Z - \tilde{\mathcal{V}}_{z}X = [X, Z]$, that is, $\tilde{\mathcal{V}}$ is torsionfree.

We now prove that $\tilde{\mathcal{V}}\Phi^*\tilde{g}=0$: indeed

$$(2.14) \quad \Phi^* \tilde{g}(\tilde{\mathcal{V}}_X Y, Z) + \Phi^* \tilde{g}(Y, \tilde{\mathcal{V}}_X Z) = h(\tilde{\mathcal{V}}_X Y, AZ) + h(AY, \tilde{\mathcal{V}}_X Z)$$

$$= Xh(Y, AZ) - h(Y, \mathcal{V}_X AZ) + s(X)h(Y, JAZ)$$

$$+ Xh(Z, AY) - h(Z, \mathcal{V}_X AY) + s(X)h(Z, JAY)$$

$$= Xh(Y, AZ) + Xh(Z, AY) - h(Y, \mathcal{V}_X AZ) - h(Z, \mathcal{V}_X AY)$$

since h(Z, JAY) = -h(Z, AJY) = -h(AZ, JY) = -h(JAZ, Y). We now note that

$$\begin{split} Xh(Z,AX) &= (\overline{\mathcal{V}}_X h)(Z,AY) + h(\overline{\mathcal{V}}_X Z,AY) + h(Z,\overline{\mathcal{V}}_X AY) \\ &= g((\overline{\mathcal{V}}_X A)(Z),AY) + h(\overline{\mathcal{V}}_X Z,AY) + h(Z,\overline{\mathcal{V}}_X AY) \\ &= h((\overline{\mathcal{V}}_X A)(Z),Y) + h(A\overline{\mathcal{V}}_X Z,Y) + h(Z,\overline{\mathcal{V}}_X AY) \\ &= h(\overline{\mathcal{V}}_X AZ,Y) + h(Z,\overline{\mathcal{V}}_X AY) \,. \end{split}$$

If we insert this into (2.14), we obtain

$$\Phi^*\tilde{\mathbf{g}}(\tilde{\mathbf{V}}_{\mathbf{X}}\mathbf{Y},\mathbf{Z}) + \Phi^*\tilde{\mathbf{g}}(\mathbf{Y},\tilde{\mathbf{V}}_{\mathbf{X}}\mathbf{Z}) = \mathbf{X}\mathbf{h}(\mathbf{Y},\mathbf{A}\mathbf{Z}) = \mathbf{X}\Phi^*\tilde{\mathbf{g}}(\mathbf{Y},\mathbf{Z})$$

and we are done.

REFERENCES

- [K-N] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol II, John Wiley, New York (1969).
- [N-Pi] K. Nomizu and P. Pinkall, On the geometry of affine immersions Math. Z., 195 (1987), 165-178.
- [N-Pi-Po] K. Nomizu, U. Pinkall and F. Podestà, On the geometry of affine Kähler immersions, Nagoya Math. J., 120 (1990), 205-222.
- [N-S] K. Nomizu and B. Smyth, Differential geometry for complex hypersurfaces, II J. Math. Soc. Japan, 20 (1968), 498-521.
- [S] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math., (1967), 246-266.
- [Y] K. Yano, Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, Oxford (1965).

Katsumi Nomizu
Department of Mathematics
Brown University
Providence, RI 02912
U.S.A.

Fabio Podestà c/o Scoula Normale Superiore Piazza Cavalieri 7 I-56100 Pisa Italy