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ON THE CARTAN-NORDEN THEOREM
FOR AFFINE KAHLER IMMERSIONS

KATSUMI NOMIZU ano FABIO PODESTA

In [N-Pi-Po] the notion of affine Kahler immersion for complex man-
ifolds has been introduced: if M™ is an n-dimensional complex manifold
and f: M" — C"*!' is a holomorphic immersion together with an anti-
holomorphic transversal vector field {, we can induce a connection F
on M™ which is Kahler-like, that is, its curvature tensor R satisfies
R(Z, W) =0 as long as Z, W are (1, 0) complex vector fields on M.

This work is aimed at proving a Cartan-Norden-like theorem for
affine Kahler immersions, generalizing the classical result in affine differ-
ential geometry (see [N-Pi]). In §1 we deal with some preliminaries about
affine Kéahler immersions in order to make our work self-contained. In
§2 we prove our main result: if a non-flat Kihler manifold (M?", g) can be
affine Kahler immersed into C**! and the immersion f is non-degenerate,
then for every point x € M™ we can find a parallel pseudokihlerian metric
in C"** such that f is locally isometric around the point x.

§1. Preliminaries

Throughout this work we shall refer to [N-Pi-Po] for basic results
in the geometry of affine Kihler immersions. We recall here some funda-
mental equations. Let M" be an n-dimensional complex manifold with
complex structure J and let f: M™ — C**! be a holomorhic immersion.
We denote by D the standard flat connection in C**!, a transversal (1, 0)
vector field { = & — iJ& along f is said to be antiholomorphic if D, =0
for every complex vector field Z of type (1,0) on M™.

If X and Y are real vector fields on M”, we can write

(1-1) Dx(f* Y) = f*(VX Y) + h(X, Y)f + k(X, Y)JS

thus defining a torsionfree affine connection J and symmetric tensors A
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and k£ on M". Since f is holomorphic and J is D-parallel, we get that
VJ=0and (X, Y) = —h(JX, Y) = —h(X, JY). We can also write

(1.2) Dy = —f(AX) + ((X)§ + uX)JE

defining the shape operator A and two 1-forms p and v. An easy calcula-
tion shows that the transversal vector field { is antiholomorphic if and
only if AJ = —JA and v(X) = w(JX) for every real tangent vector field
X. By extending h as a complex bilinear function on complex tangent
vectors, we get for Z=X —iJX and W= Y — iJX

(1.3) MZ, W) =2MX, Y) + ik(X, Y))

and
MZ,W)=0

so that we can write for complex vector fields Z, W
(1.4) D (fu W) = f(7: W) + WZ, W).

The covariant symmetric tensor A is called the second fundamental form
for f and we shall say that f is non-degenerate if the tensor A is non-
degenerate; it is very easy to see that this condition is actually inde-
pendent of the choice of a transversal vector field (holomorphic, anti-
holomorphic or whatever).

Moreover by putting S = A — iJA and z = ¢ — iv we can write

(1.5) Dl = —8(Z) + «(Z)¢

for every (1, 0)-complex vector field Z.

We are now going to write down the fundamental equations of Gauss,
Codazzi and Ricci in the real representation; for the complex version we
refer to [N-Pi-Po]. Henceforth U, X, Y will indicate real vector fields.
We have the equation of Gauss

(1.6) R(X, Y)U = WY, U)AX — h(X, U)AY + h(JY, U)AJX
— WJX, U)AJY,
the two equations of Codazzi
. W xh)(Y, U) + pX)WY, U) + w(JX)WJY, U)
= Fyh)(X, U) + U Y)h(X, U) + w(JY)R(JX, U)
(1.8) (FxA)Y — p(X)AY — n(JX)JAY

= 7y A)X — (Y)AX — p(JY)JAX
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and the equations of Ricci
(1.9) MX, AY) — WY, AX) = 2du(X, Y)
(1.10) MAX,JY) =du(X,Y).

§2. On the Cartan-Norden Theorem

We are now going to prove our main theorem

THEOERM 2.1. Let f: M® — C"*' be a non-degenerate affine Kdhler
immersion. If the induced connection V is non-flat and coincides with the
Levi-Civita connection of a pseudo-kihlerian metric g on M™, then for every
xe M™ there is a neighborhood U(x) and a parallel pseudo-kidhlerian
metric { > on C**! so that [ is isometric relative to g and { > and the
transversal vector field ¢ for f is perpendicular to f(U(x)) at each point of
U(x).

Proof. We denote by h the second fundamental form for f and we
define the conjugate connection ¥/ of F by means of the following equation

(2.1) XY, U) = h(F,Y, U) + WY,V ,U — u(X)U — o«(X)JU).

We recall that v(X) = @(JX). Equation (2.1) defines 7 uniquely since &
is supposed to be non-degenerate and we have easily that ¥ is a complex
connection, that is, FJ = 0; by using the Codazzi equation ¥ turns out
to be torsionfree.

LEMmma 2.1. If the connection V is a Levi-Civita connection, then the
1-form is closed.

Proof. Indeed from the Gauss equation we get that Ric(Y, Z) =
—2h(AY, Z) since tr A = trJA = 0. Since F is metric, the Ricci tensor
is symmetric and from the Ricci equation we have that (Fyp)(Y) is sym-
metric in X and Y, that is, dpg = 0. g.e.d.

LeEmma 2.2. If V' comes from a pseudo-kihlerian metric g, then the
conjugate connection V is locally pseudo-kihlerian.

Proof. We define the (1, 1) tensor B by setting g(X, Y) = (BX, Y);
we note that since g is hermitian, we have that

WBX,Y) = h(BJX, JY) = MJBJX, Y)
hence B = JBJ. We now define
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8X,Y)=vmB'X,Y)

for a suitable positive function v in order to have that g = 0. We note
that

ZhX, B'Y) — X,V ,B'Y) — h(F;B'X,Y) = (V,8)(B"'X, B'Y) =0
and that
MX,JB'Y) = —h(JB'X,Y).
Using these identities we have
Zg(X,Y) — 5W,X, Y) — §X,7,Y)
= ZWWBX, Y) + vZWB X, Y) — v[Zh(X, B-'Y)
— WX, V;B'Y — W(Z)B'Y — JZ)JB1Y)]
— v[ZW(B'X,Y) — ((F,B'X,Y)

+ WZ)WB X, Y) + wJZ)WY, JB'X)]
= [Z(v) — 2vu(Z)I(B-'X, Y).

So g turns out to be F-parallel if and only if we can choose a pos-
itive function v so that Z(v) = 2vu(Z); since p is closed by Lemma 1, we
can find locally a function 2 so that x4 = di and then we can put v =
exp (22) > 0. g.e.d.

We now compute the curvature tensor R of 7: we have
UZWX,Y) = WV, V, X, Y) + h(V, X, V,Y — p(U)Y — p(JU)JY)
+ WX, P,Y) + WX, PV ;Y — w(UW, Y — i JU)JV ,Y)
— Up(Z)NX, Y) — f(Z)UNX, Y) — Up(JZ)N(X, JY)
—~ JZYUMX, JY) .

Interchanging U and Z and subtracting [U, Z]A(X, Y), we get
WMR(U, 2)X,Y) + KX, R(U, 2)Y) — 2du(U, Z)WX, JY) = 0.

Using now the structure equations (1.6), (1.10) and the fact that A is
non-degenerate, we have

2.2) R(U, 2)Y = 2h(AU, JZ)JY — WAU, Y)Z + hAZ, Y)U
— WY, AJU)Z + (Y, AJZ)JU.

Taking trace we have that /R\ié(X, Y) = 2(n + DA(ZX, Y) and by equation
(2.2), it follows that the space (M*, g) is H-projectively flat (see e.g. [Y],
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Chapter XII, (3.16)); so the space (M™", g) has constant holomorphic sec-
tional curvature and in particular it is Einstein, hence

(2.3) WAX, Y) = 23(X, Y) = wh(B"'X, Y)

for some function 2, which is constant if n > 2 (see [K-N], p. 168). By (2.3)
we have A = lwB~! and

(2.4) g(AX, Y) = wg(BX,Y) = wh(X, Y).
We now state the following
LemmaA 2.3. There is a nowhere vanishing C= function ¢ such that
(2.5) 8(AX,Y) = ¢(X, Y)
for all real vector fields X, Y and
(2.6) do = 2pp.

Proof. We have already established the first assertion (2.5); the func-
tion ¢ can be taken to be Av, where v is the function found in Lemma
2.2 and 2 is a constant if n > 2; so (2.6) follows from the proof of Lemma
2.2 if n > 2. In the general case we differentiate (2.5)

Zg(AX,Y) = (ZHMX, Y) + ¢ZN(X, Y)

hence
8(V;A)X, Y) + g(A(V;X), Y) + 8(AX,V,Y) = (ZMX, Y) + ¢ZNX, Y)
that is
2.7 8((V:A)X, Y) — ¢V :h)(X, Y) = (Zp)h(X, Y)
and
(2.8) 8(VNxA)Z, Y) — ¢(Vxh)(Z,Y) = (X$NZ, Y) .

If we now subtract (2.8) from (2.7) and use the equations of Codazzi we
obtain
(ZHNX, Y) — (XPWZ, Y)
= g(UWZ)AX + WJZ)JAX — (X)AZ — (JX)JAZ,Y)
— Sh(UX)Z + (IX)IZ — UZ)X — UJZ)IX, Y)
= ¢h2u(Z)X — 2u(X)Z, Y)

hence
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(ZHX — (XPZ = 2¢[(Z)X — (X)Z]
that is
Z¢ = 20(Z) .

Since the function v satisfies the same differential equation dv = 2vg and
does not vanish anywhere, it follows that 2 is a constant. If 1 were 0,
we would have from equation (2.4) that A vanishes identically, hence
that F is flat. q.e.d.

We are now going to define the parallel pseudo-kédhlerian metric ( )
in C**! by means of the following

§,J§ =0, §,6) =<J§JE = ¢,

where ¢ is the function given by Lemma 2.3. We have to verify that
{ > is D-parallel, that is

(2.9) ZU, VS = (D,U, V> + (U, D, V>

for all vector fields U and V along f and a vector field Z on M". If
U=/f,X and V=/f,Y, then (2.9) reduces to V,g=0. If U=/f,X and
V = &, then (2.9) gives condition (2.5) and if U = V = &, then (2.9) reduces
to (2.6). The other possibilities are easily seen to be automatically
satisfied. q.e.d.

COROLLARY 2.1. Let (M™, g) be a non-flat kdhlerian manifold and let
f: M™ — C"*! be a non-degenerate affine Kdhler immersion. Then the Ricci
tensor of (M™ g) is positive- or negative-definite. Moreover the pseudo-
kéihlerian metric { ) in C**!- given by Theorem 2.1 is positive-definite if
and only if the Ricci tensor of (M™, g) is negative-definite.

Proof. Using the Gauss equation, we have the following expression
for the Ricci tensor

Ric(X, Y) = —2m(AX, Y)

for all real vectors X and Y. Using Lemma 2.3 we have (locally)
Ric (X, X) = -—%g(AZX, X) = ——%g(AX, AY).

Since h is non-degenerate, we see from (2.5) that the (1,1) tensor A is
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one-to-one, hence the Ricci tensor is definite. Moreover Ric is negative-
definite if and only if the function ¢ is everywhere positive. q.e.d.

ExampLE. In order to show that the Ricci tensor can be positive-
definite, we give the following example. Let Q = {ze C; Re 2<0}; we
define f: 2 — C* by f(2) = (2, exp(2)) and take { = (exp(2),1) as an anti-
holomorphic transversal vector field. Actually { is perpendicular to f(Q)
at each point of 2 with respect to the Lorentzian metric of C* of signa-
ture (1,1). The induced Kahler metric g on 2 is given by

2(0/02,0/0Z2) =1 — exp(2Re2) >0, zel,

and it is easy to see that the second fundamental form A is

h(3/az, 3/dz) = — zzi E;)Re .

so that f is non-degenerate. Moreover the Ricci tensor of (2, g) is (see
[K-N], p. 158)

Ry — _0log(1 —exp(2Rez)) _ exp (2 Re 2) 1+ exp(2Rez)

0/020/0Z 1 — exp(2Rez) )

This shows that (2, g) can not be obtained as a complex hypersurface
of C? endowed with the euclidean metric (see [K-N], p. 177, Prop. 9.4).

Remark. In order to clarify the geometrical meaning of the conjugate
connection used in the proof of Theorem 2.1, we recall something about
the Gauss map for complex hypersurfaces as introduced in [N-S]. Let
(M, g) be a kahlerian manifold and f: M — C**! a non-degenerate complex
isometric immersion. We choose a unit real vector field & normal to
f(M); we recall (see [S], p.230) that if X is any real vector field on M

Ve = —AX + s(X)J ¢

where s is a 1-form and with our notation the normal connection form
r is simply given by z(Z) = is(X — iJX), where Z = X — iJX. From
(&, Y> =0 for every vector Y we get by differentiation

(2.10) sAXY)=hXY).
Finally the Codazzi equation is now the following (see [S], p. 253)

FxA(Y) — Py A)(X) — s(X)JAX + s(Y)JAX = 0.
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According to [N-S], p. 516, we define the Gauss map @
O: M~ CP"

by putting @(x) = n(¢), where n: S**! — CP” is the canonical projection.
It is shown that @,,(X) = —r.(AX) for every real tangent vector X at
x€ M, so that since f is non-degenerate, the rank of A is 2n by (2.10)
and therefore @ is an immersion. If now g denotes the Fubini-Study
kéahlerian metric on CP”, a direct inspection of the results stated in [N-S],
§ 5, shows that the pull back @*g is given by

0*3(X, Y) = g(AX, AY) = h(AX, Y) = -—%Ric X, 7).

We claim that the conjugate connection // as defined by formula (2.1) is
the Levi-Civita connection of the metric @*g. Indeed equation (2.1)
reduces to

(2.11) XWY,Z) = WV Y, Z) + WY,V Z — s(X)JZ)

where X, Y, Z are real vector fields on M. We first note that by equation
(2.10) we have that

(2.12) Vxh)(Y, Z) = g(FxA)(Y), Z) .
We write equation (2.11) in the equivalent form
(2.13) V)Y, Z) + WY, VxZ) = WY,V Z — s(X)JZ)
and if we interchange X and Z and subtract it from (2.13), we obtain
8((FcA)(2),Y) — g(F;A)X), Y¥) + h(Y, [X, Z])
= WY, ViZ —V,X — s(X)JZ + s(Z)JX).

Using now the Codazzi equation, formula (2.12) and the fact that A is
non-degenerate, we get that ViZ —V,X = [X, Z], that is, V is torsionfree.
We now prove that F®*g = 0: indeed

214)  O*3(FLY, Z) + 0%5(Y, P1Z) = hP 1Y, AZ) + h(AY, P xZ)
= XW(Y, AZ) — WY, V2 AZ) + s(X)W(Y, JAZ)
+ XWZ, AY) — WZ, V3 AY) + s(X)(Z, JAY)
= XY, AZ) + XW(Z, AY) — WY,V AZ) — WZ, V AY)

since WZ, JAY) = —W(Z, AJY) = —h(AZ,JY) = —WJAZ,Y). We now
note that
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XW(Z, AX) = Txh)(Z, AY) + W xZ, AY) + K(Z, V1AY)
= g(VxA)Z), AY) + h(V3Z, AY) + W(Z, 7 AY)
= W72 A)(2), Y) + WAV LZ, Y) + IZ, V,AY)
= WV xAZ, Y) + WZ, VT AY).

If we insert this into (2.14), we obtain
D*g(V 1Y, Z) + 0*8(Y,VxZ) = XW(Y, AZ) = X0*§(Y, Z)

and we are done.
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