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CONDITIONS FOR OSCILLATION OF
FIRST ORDER NEUTRAL DELAY DIFFERENTIAL EQUATIONS

ZIWEN JIANG

In this paper, some new sufficient conditions for oscillation of first order neutral
delay differential equations with several variable coefficients are obtained. These
sufficient conditions include and are in many cases weaker than those known.

1. INTRODUCTION

The oscillation theory of first order neutral delay differential equations (NDDEs for
short) has been extensively developed during the past few years. We refer to the works
of Grammatikopoulos et al [1, 2, 3] , Ladas and Sficas [4], Gopalsamy and Zhang [5],
Jiang Ziwen [6] for some results related to the oscillations of NDDEs. Recently, there
has been some interest in the oscillation theory of first order NDDEs when the NDDE
has one or more variable coefficients (for example see Gopalsamy and Zhang [5], Jiang

Ziwen [6)).
In this paper, we study the oscillation of first order NDDEs with several variable
coeflicients
d m n
(1.1) I (z(t) - Z cix(t — r,-)> + ij(t)x(t -5;)=0
i=1 j=1
and

(1.2) ( i:: x(t—r,>+2p] ot —s;) = 0.

When m = n = 1, Gopalsamy and Zhang in [5], Jiang Ziwen in [6] obtained some
sufficient conditions for oscillation of the first order NDDEs (1.1) and (1.2). But these
sufficient conditions in [5] or [6] are strong. The purpose of this paper is to give some
new sufficient conditions which are weaker than those in [5] and [6] for oscillation of the
first order NDDEs (1.1) and (1.2). In order to achieve this aim, we first obtain some
new sufficient conditions for oscillation of the first order NDDEs with several coefficients

(1.3) %(z(t) - Zc,-a:(t — r,-)) + ij:v(t -5;)=0.
i=1 j=1
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Then we use these new sufficient conditions for oscillation of (1.3) and two Lemmas to
derive some new sufficient conditions for oscillation of (1.1) and (1.2). All of these new
sufficient conditions we obtain include and are in many cases weaker than those in the
articles {2, 3, 4, 5, 6]; furthermore these new sufficient conditions can be verified when
the coefficients of NDDEs are given. That is, these sufficient conditions have relevance
to the coefficients of NDDEs only.

2. LEMMAS AND THEOREMS

In this section, we shall prove some lemmas and theorems which are the foundation
of our main results. First, we consider the first order NDDEs

d m n
(1.3) It (:I:(t) - Zc;x(t - r;)) + ij:c(t —5;)=0
i=1 j=1
where the coefficients satisfy

m
(2.1) c,~>0,i=1,2,---,m,Zc,-<1 and O0<7r; <7< - < Ty
i=1

(2.2) p;>0,7=12,---,n and 0<s <s2< < sp.

We have the following result:

LEMMA 2.1. Assume that
m n
(2.3) Zc; exp (vr;) + Zp,- exp(vs;)/v>1 forall v>0.
i=1 ji=1

Then all solutions of (1.3) are oscillatory.

PRrOOF: The characteristic equation of (1.3) is

(2.4) fQA)=x- /\Zci exp (—Ar;) + ij exp (—As;) = 0.

i=1 Jj=1

To prove this result, it suffices to prove that (2.4) has no real roots under the assumption
(2.1) and (2.2) (see [1, Theorem}). We note that any real root of (2.4) cannot be positive

under the assumption (2.1) and (2.2). Since f(0) = ) p; > 0, A = 0 is not a root of
i=1
(2.4). Thus any real root of (2.4) can only be negative. Let A = —vy < 0 be a root of

(2.4), then

m n
1- Zc,- exp (vor;) — ij exp (vos;)/vo =0, vo > 0.
i=1 j=1
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(3] Delay differential equations

which contradicts the condition (2.3). Hence (2.4) has no real roots under the assump-
0

tion (2.1) and (2.2). The proof is complete.
THEOREM 2.2. Assume that

n m n m
eijSj 2 I—quxp(ri lej/(l— Ec,)).
=1 j= i=1

(2.5)
ij=1

Then all solutions of (1.3) are oscillatory.

ProOOF: We define the function f so that

flv) = ipj exp (vs;)/v + ici exp (vr;) — 1, v > 0.

=1 =1

n m
Consider the value of f at v for 0 <v g 3 p,-/(l - ci) , then
n m
fv) > ij/v+ Zc,- —1.
=1 i=1
Z C,') .
m

/(1 -3 c,-) and note

i=1

Hence f(v) > 0 for all v satisfying 0 < v < ) pj/(l -
j=1

3 e
I
oA

Let us now consider the value of f at v for v > Y p;
i=1
that p; exp (vs;)/v has a global minimum at 1/s; and the minimum value is ep;s; for

j=1,2,---,n. Then

3
~—

n m
But by our assumption (2.5), € Y pjs; + > ciexp (r,- Dj
j=1 i=1 i

Il
-

m

showing that f(v) >0 for all v > ) p,-/(l -3 c,-) .
i=1

=1
Thus we have shown that (2.3) holds. It follows from Lemma 2.1 that all solutions
1

of (1.3) are oscillatory and the proof is complete.
THEOREM 2.3. Assume that
n m
(i) Xpisjzl-3c, or
i=1 i=1
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n m
(i) Y pjsj<1—3 ¢ and
j=1 i=1

(2.6) sz I—Zc,exp (T,ij/(l—zci_zpjsj>).

Then all solutions of (1.3) are oscillatory.

Proor: (i) Since
ezn:pjsj > e(l — Xm:c,-) >1-— iciexp (nizy/(l — ici)),
j=1 i=1 i= i

by Theorem 2.2, all solutions of (1.3) are oscillatory.
(ii) We define the function f as in the proof of Theorem 2.2. We first consider the

n m n
value of f at v for v > ¥ pj/<1— Sea—3 ijj) and note that p; exp (vs;)/v has
1=1 = j=1

a global minimum at 1/s; and the minimum value is ep;s; for j =1,2,---,n. Then

flv) = ij exp (vs;)/v + Zc,' exp (vr;) —

>eZp]sJ+Zc,exp<r,ZpJ/( Em: ,-—zn:pjsj>>—1.

By our assumption (2.6),
n m n m n
eijsj + Zciexp <ri2pj/<1 — Zc,- - ijsj)) -1>0
j=1 =1 i=1 3

showing that f(v) > 0 for all v > Y pj/(l Y - lejsj) .
j i=1 i=

Next we consider the value of f at v for v satisfying

0<vg z:pj/(l—Zc1 ijs])
Ij=1 =1

We have

Ep]exp vs; /v+Zc,exp (vr;) -1 >Zp_, 1+vs])/v+2c,—1

Jj=1 j=1
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(5] Delay differential equations 5

Hence f(v) > 0 for all v satisfying 0 < v < E p]/(l - Zlci - lejsj> .
1= ij=

Thus we have shown that (2.3) holds. By Lemma 2.1, all solutions of (1.3) are
oscillatory and the proof is complete. a

In general, the conditions (2.5) and (2.6) are difficult to verify. In the following,
we give some sufficient conditions which are easier to verify than the conditions (2.5)
and (2.6).

THEOREM 2.4. Assume that there exists a nonnegative integer N satisfying
n m N n m k
en  eSmsz1-3ad((nln)/(1-2a)) /o
j=1 =1

i=1 k=0 j=1 i=

Then all solutions of (1.3) are oscillatory.

PROOF: Since

ic,-i((n;p,-)/<1_gq>>’°/(k!) < gciexp (('r,-;pj)/(l —f:c,-)),

i=1 k=0 =1

(2.5) holds. It follows from Theorem 2.2 that all solutions of (1.3) are oscillatory and
the proof is complete. 0

THEOREM 2.5. Assume that Z pis; <1-— Z ¢i, and that there exists a non-
j=1 i=1
negative integer N satisfying

(2.8) eZsz] 1—20,2((7‘,-]2:1”)/(1—;@_;pjsj))k/(k!)-

Then all solutions of (1.3) are oscillatory.

PROOF: Since

8-St
< exp ((néw)/(l - gci - :;Pjsj)>,

(2.6) holds. It follows from Theorem 2.3 that all solutions of (1.3) are oscillatory and
the proof is complete. 0
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REMARK. The sufficient conditions of Theorem 2.2.-2.5. for oscillation of first order
NDDEs include and are in many cases weaker than those of [2, 3, 4, 5, 6], so the results
of Theorem 2.2.-2.5. develop the results of [2, 3, 4, 5, 6]. See Example 1 and Example
2 in Section 4 of this paper.

Second, we consider the first order NDDEs

(1.1) < Zc,x(t—r,)) +Zp] z(t —s;) =0,

where the coefficients satisfy

m
(i) ci>0a i=172y"'7m7 ZC;‘(].; O<r1<r2<---<'rm; 0<31<
i=1
$2 € K 8y

n
(ii) p;(t) is continuous and p;(t) > ¢; 20, j=1,2,---,n, tE€R, 3 ¢; > 0.
7=1

Then we have the following result:

LEMMA 2.6. Assume that y(t) is a nonoscillatory solution of (1.1). Then
tl—lglo y(t) = 0.

The proof of Lemma 2.6 is similar to the proof of Lemma 2.7 , so we omit it.

Finally, we consider the first order NDDEs

(1.2) %(m(t) Z( t—T,))-{-ZPJ z(t —s;5) =0

where the coefficients satisfy
(i) 0<ri << <ry; 0<s1<82< < 85y
20

n
,J=1,2,---,n,teR, > ¢;>0.
i=1
(iii) ¢;(t) is continuous and 0 < u; < ¢(t), t € R, tlim ¢(t) =c, 1 =
00

(if) p;(t) is continuous and p;{t) >

m m
,2,---,mand 0< Y u; € Y <1

i=1 i=1
Then we have the following result:
LEMMA 2.7. Assume that y(t) is a nonoscillatory solution of (1.2). Then
lim y(¢) = 0.
t—00

PRrROOF: The negative of a solution of (1.2) is again a solution of (1.2) and a
nonoscillatory solution is an eventually positive or negative solution, so without loss of
generality, we may assume that y(t) is an eventually positive solution of (1.2). Then

y(t)>03 y(t_ri)>0v i=1,2,--- ,m; y(t_sj)>0,j=1’2a"'an
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(7] Delay differential equations 7

for all ¢t > T, for some T7 > 0. Let

(2.9) 2(t) = y(t) = Y c(t)y(t — o).
i=1

Then

d n
(2.10) 2 =- > pity(t—s;) <0, t> T,

=1

We see that z(t) is a strictly monotone decreasing function for ¢t > T;, and so that
lim z(t) exists. If lim z(t) = —oo, then 2(t) < 0 for all ¢ > T, for some T > T3.
t—o0 t—00
Hence
(2.11) y(t) < Y citylt - ), ¢ > T,

Note that from conditions (iii) of (1.2),

m
u; < C,'(t) <c¢ + (1 —Zci>/(2m), 1=1,2,---,m
i=1
for all t > T3 for some T3 > Ty. It follows from (2.11) that
m m
t) < Z(ci + (1 - Zc;) /(2m))y(t —-r;), t 2 Ts.
i=1 1=1
Let
y(Ts3—1) = lgliaéxm{y(Ta —1i)},
then
m
y(T3) < Z(c,—f—(l Zc,)/ ) (T3 -1)= (1+Zc,) (Ts5—7)/2, 7271 >0.
i=1 i=1

By iteration we have

y(T3 + n7) < ((1+Zc,>/2) T3)

which implies that l'l)m y(T5 + n7) = 0. Note that from (2.9}, li_)m 2(T3 +n1) = 0.
n o0 n oo

This contradicts the assumption that tlim z(t) = —oo. Hence
—00

lim 2(t) = a € R.
t—o0
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From (2.10), we have

2(Ts3) —a= / ij(s)y(s —s8;)ds 2 qu /Too y(s — s;)ds > 0.

3_11

Thus y € L! [T + sp,00) , and so that z € L' [T3,00). Hence o must equal 0. Note
that

o

1
—

0= tl_lglo z(t) = tl_lglo inf 2(t) = tl_lglo infy(t) — < c,-) tl_l)I& sup y(t),

1

0= tl_lglo z(t) = tl_lglo sup z(t) = tl—lglo supy(t) — (

E

ci> lim inf y(¢),
t—o0
and then we have

m m
hm infy(t) = (Z c,) hm supy(t) = (Z c,) lim inf y(t),

=1 i=1

which implies that
tl_l)l’glo infy(t) = tl_xglo supy(t) =0 or oo.

Hence we have

tl_lgloy() 0 or oo

Note that y € L [T3 + s,,0), and hence

lim y(t) = 0.

t—o0

The proof is complete. 0

3. MAIN RESULTS

In this section, we use the results in Section 2 to study sufficient conditions for
oscillation of first order NDDEs (1.1) and (1.2). We obtain the following main results
of this paper.

When gy =0 where 1 < k < n or uy =0 where 1 < £k < m in the NDDEs (1.1)
and (1.2), we list it (or them) in the following conditions and proofs of Theorem 3.1.
and Theorem 3.2. for convenience.
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[9] Delay differential equations 9

THEOREM 3.1. Assume that one of the following five conditions holds.
m
(a) eZquJ l—zc,exp(r,Zq]/( Zlci)>.
(b) 1 - Z Ci.

(c) s,<1—Ec,,and
i=1

H'M: ||'M= T

eZq]sJ 1 —zc,exp (r,Zq,/(l —izr:;c,- —gqjsj>).

(d) There exists a nonnegative integer N satisfying

m

Lot Ta((+50)/(-Ee)) /o

j=1 i=1

(e) Y% i=19385 < 1- 21 ¢i, and there exists a nonnegative integer N satisfying
1=

ejz::lqjsj >1 —gcig((riéth)/(l _gci —]Z:;qjsj))k/(k!)

Then all solutions of (1.1) are oscillatory.

ProOOF: We shall show that the existence of a nonoscillatory solution of (1.1)
leads to a contradiction. Suppose y is a nonoscillatory solution of (1.1); we suppose
that y(¢t) > 0 for all ¢ > T for some T > 0 (If y(t) < 0 eventually the procedure is
similar.) It follows from lemma 2.6 that tl_lglo y(t) = 0 and we have from (1.1) that

Z,yt—n-}-z/ pi(s)y(s —s;)ds; t >
(3.1) Z t—ri)+2q]~/ y(s —s;)ds; t > to
=1 i=1 t

where tg = max {T' + 7, T + sn}. It is not difficult to see from (3.1) that
(3.2) y(8) > cry(t — 1), y(@) = y(to + nr1 + 7) > avexp (—ut)
for all t > to where n is a nonnegative integer and

(3.3) 0<7<r; p=—(n(c1))/r1; o= exp (uty) tos{gg)lwl {y(@®)}.
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Define the sequence {yx(t)} by
yo(t) = y(t)

m n o0
(3.4) wn®) =Y amt-r)+3 g / yk(s — 5;) dsi £ > to.

i=1 j=1
It follows from (3.1) and (3.4) that

y1(t) —yo(t) <0, y2(t) — y1(t) <O, -+, yr41(t) — yx(t) < 0; t > to,
which implies that
(3.5) Ye+1(t) S ye(t) < < p1(t) < yolt), t 2 to.
Furthermore we have from (3.4) and (3.2) that
yo(t) > aexp (—ut), t > to,
and also one can derive using (3.3) that
y1(t) > aexp (—pt), ye1(t) > aexp(—ut), k=1,2,---, t > to.
Thus we have from (3.5) that
cexp (—pt) < Yr+1(t) S yu(t) < - <1(t) <o, t 2 to.

By Lebesgue’s convergence theorem the pointwise limit of {yx(t)} exists and hence
m n oo
aexp(~ut) S = D ew’t=r)+ D0 [ V(s s)dsit>to
i=1 j=1 vt

where
y*(t) = lim yx(t), t = to.
k—o0

y*(t) is a nonoscillatory solution of the NDDE

(3.6) %(.’E(t) - Zciz(t - ri)) + qu:z(t —-5;)=0,t>t,
i=1 j=1

where the coefficients satisfy

m
(3.7) ¢>0,1=12,---,m, Zci<1 and 0<7 €12 < Ty
i=1

n
(3.8) g;20,5=1,2,---,n, qu>0 and 0<s;<sy<-- <8y
j=1
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[11] Delay differential equations 11

(A) By Theorem 2.2, (3.6) cannot have a nonoscillatory solution when (a)
holds. This contradiction proves all solutions of (1.1) are oscillatory.

(B) By Theorem 2.3 (i), (3.6) cannot have a nonoscillatory solution when (b)
holds. This contradiction proves all solutions of (1.1) are oscillatory.

(C) By Theorem 2.3 (ii), (3.6) cannot have a nonoscillatory solution when (c)
holds. This contradiction proves all solutions of (1.1) are oscillatory.

(D) By Theorem 2.4, (3.6) cannot have a nonoscillatory solution when (d)
holds. This contradiction proves all solutions of (1.1) are oscillatory.

(E) By Theorem 2.5, (3.6) cannot have a nonoscillatory solution when (e)
holds. This contradiction proves all solutions of (1.1) are oscillatory.

The proof is complete. a
THEOREM 3.2. Assume that one of the following five conditions holds.

(a) e]éjlq,-s,- >1- 3 uexp (r,- > qj/(l = fu))

i=1 j=1 i=1

n m
(b) Y asi=1-3 u.
j=1 i=1
n m
() X ¢;85<1—3 ui,and
ij=1 i=1

n m n m n
eZq]-sj 21— Zuiexp (T;qu/(l - Zui - ijsj>).
j=1 i=1 Jj=1 i=1 j=1

(d) There exists a nonnegative integer N satisfying

ezn:qjs,- 21 —iu;i((riiqj)/(l —zm:u,))k/(k!)'

J=1 i=1 k=0 Jj=1 i=1

n m
(e) g;s; <1 — 3 u;, and there exists a nonnegative integer N satisfying
=1

K] i=1

e) a5 21 “i“ii<<ri:§%‘)/<1 ‘gui—jz::l%sj))k/(k!)-

j=1 i=1 k=0

Then all solutions of (1.2) are oscillatory.

ProoF: We shall show that the existence of a nonoscillatory solution of (1.2)
. leads to a contradiction. Suppose y is a nonoscillatory solution of (1.2). Without loss
of generality, we may suppose that y(¢) > 0 for all ¢ > T for some T > 0. (If y(t) <0
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eventually the procedure is similar.) It follows from lemma 2.7 that tlim y(t) = 0 and
—00
we have from (1.2) that

v =Y aue-r)+3 [ " ()l — 55)dsi ¢ > to
i=1 j=1 t

m n 00
(3.9) > Zuiy(t —r) + qu/ y(s—sj)ds; t > to

i=1 j=1 t
where tg = max{T + rp,, T + 3, }. Without loss of generality, we may assume that
u1 > 0. It is not difficult to see from (3.9) that
(3.10) y(t) 2 wiy(t — 1), y(t) = y(to + nry +7) 2 aexp (—ut)
for all t > to where n is a nonnegative integer and

. < Dp=— Ca= i .
(3.11) 0< 7 <1 p=—(In(u1))/r1; @ = exp (uto) o in {v()}

Define the sequence {yx(t)} by

volt) = y(t)
B12) n@=Y wnC-r)+ Y [ wl-s)ds >0
i=1 j=1 7t

It follows from (3.9) and (3.12) that
y1(t) —yo(t) <0, y2(t) —y1(t) <O, -+, yr41(t) —yk(t) < 0; ¢ 2 2o,
which implies that
(3.13) Ye1(t) S yr(t) <o < pa(t) < wolt), t = to.
Furthermore we have from (3.12) and (3.10) that
Yo(t) > aexp (—ut), t > to,
and also one can derive using (3.11) that
‘ y1(t) = aexp(—pt), ye+1(t) 2 aexp(—put), k=1,2,---, t 2 to.

Thus we have from (3.13) that

aexp(—ut) < yry1(t) < yk(t) < -+ <yi(t) < o, t 2 to.
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By Lebesgue’s convergence theorem the pointwise limit of {yx ()} exists and hence
m n oo
aexp(—pt) Sy* (1) =D wy*(t—r)+ ZqJ'/ y* (s —s;j)ds; t = to,
i=1 j=1 t

where

y*(8) = lm yk(t), t > to.
y*(t) is a nonoscillatory solution of the NDDE
d m n
(3.14) s (:c(t) - ;u.’x(t - r,-)) + j_zlqj:z:(t —55)=0,t>to,

where the coefficients satisfy

(3.15)
m
u; 20,1=1,2,---,m, 0<Zui<1 and O0<ri<ra<<--<rm;
i=1
(3.16)
n
g;20,j=12,---,n, qu >0 and 0<s8;<s3< < 8q.
i=1
(A) By Theorem 2.2, (3.14) cannot have a nonoscillatory solution when (a)
holds. This contradiction proves all solutions of (1.2) are oscillatory.
(B) By Theorem 2.3 (i), (3.14) cannot have a nonoscillatory solution when (b)
holds. This contradiction proves all solutions of (1.2) are oscillatory.
(C) By Theorem 2.3 (ii), (3.14) cannot have a nonoscillatory solution when
(¢) holds. This contradiction proves all solutions of (1.2) are oscillatory.
(D) By Theorem 2.4, (3.14) cannot have a nonoscillatory solution when (d)
holds. This contradiction proves all solutions of (1.2} are oscillatory.
(E) By Theorem 2.5, (3.14) cannot have a nonoscillatory solution when (e)
holds. This contradiction proves all solutions of (1.2} are oscillatory.
The proof is complete. a

REMARK. The sufficient conditions for oscillation of first order NDDEs (1.1) and (1.2)
in this section include and are weaker than those of [5, 6], so the results of this section

develop the results of [5, 6]. See Example 3, Example 4 and Example 5 in the Section
4 of this paper.
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4. EXAMPLES

In this section, we shall apply the results of this paper to some examples; further-
more we shall show from these examples that the sufficient conditions for oscillation
of first order NDDEs which we obtained in this paper include and are in many cases
weaker than those known and these sufficient conditons can be verified when a NDDE
is given.

ExXAMPLE 1. We consider the following NDDE

(4.1) d%(z(t)—i—z(t—%)) +%z<t—%> o,

where

Note that

1 3 1 T1P1
pP1s1 % < 1 C1, €p181 3 Cl( + 1 )

—C

Then the condition

r
p1sie>1—c;  or plsle>1—cl(1+11p;)
-G

of [2, 3, 4, 5] does not hold. Hence the results of [2, 3, 4, 5] can not be applied to (4.1).
But condition (2.7) (or (2.5), or (2.6), or (2.8)) holds when m = n = 1. It follows from
Theorem 2.4 (or Theorem 2.2, or Theorem 2.3, or Theorem 2.5) that all solutions of
(4.1) are oscillatory.

ExAMPLE 2. We consider the following NDDE

(4.2) %(m(t) - }Ix (t - %) - %a:(t,— 1)) + %z(t - %) + %x (t - %) =90,

where
m=n=2 Cl—'l‘ C2=-];' T'1=‘];
’ 4’ 8’ 2’
r2=1 P1—l Pz‘—“l' 31—1 Sz—g-
! 2’ 8’ e’ e
Note that
3 5
P181+P232=Z;<§=1—C1—02,
e(p1s1 + p2sz) = —2— > g =1-¢ (1 + ____q{p;f_p;)) —c (1 + ———Tfp;f_p;)).

Then condition (2.5) (or (2.6), or (2.7), or (2.8)) holds when m =n = 2. It follows
from Theorem 2.2 (or Theorem 2.3, or Theorem 2.4, or Theorem 2.5) that all solutions
of (4.2) are oscillatory.
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ExaMPLE 3. We consider the following NDDE

69 Ao e(-2)) (3 ro)e(e- D) =0 e50

where

Note that

1 T
eq131=§=1—cl(1+%).

Then condition (2.29) of [5] and p1(t) < w where w is a positive constant do not hold,
and hence [5, Theorem 2.3] and [6, Theorem 2.7] can not be applied to (4.3). But
condition (d) of Theorem 3.1 holds when m = n = 1, so it follows from Theorem 3.1
that all solutions of (4.3) are oscillatory.

EXAMPLE 4. We consider the following NDDE

(4.4) %(z(t) - (% + %)z(t— g)) + (% + %)z(t— %) —0,t>1,
where

m=n=1, a1{t) =

Note that

1 T
eq131=§=1—u1(1+1%>.

Then condition (d) of Theorem 3.2 holds when m = n =1, so it follows from Theorem
3.2 that all solutions of (4.4) are oscillatory.

EXAMPLE 5. We consider the following NDDE

(4.5) %(m(t) - G + %)x(t - %) - (% + %)x(t - 1))
1 1

where
1 2 1 1 1 1 1
=n=2cat)= +:>um=— ot)=c+-Su=2;r=x,
m=n i (t) 4+t Uy 1 ca(t) 8+t Uy 3 71 5
1 1 1 1 2
rr=Lpt)=q =, pt)=-+2t>2q==;s1==, sp=—.
2 8 8 e e
Note that

3 3 r + T +

Then condition (d) (or (a), or (c), or (e)) of Theorem 3.2 holds when m = n = 2, so it
follows from Theorem 3.2 that all solutions of (4.5) are oscillatory.
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