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Abstract. In this paper we study nilmanifolds which are modeled on a quotient
of a free 2-step nilpotent Lie group by a 1-dimensional subgroup. In fact we obtain
a very easy criterion to decide whether or not such a nilmanifold admits an Anosov
diffeomorphism.
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1. Anosov diffeomorphisms on nilmanifolds. By a nilmanifold we shall always
mean a quotient space M of the form M = N\G, where G is a connected and simply
connected nilpotent Lie group and N is a lattice of G (i.e. a discrete and cocompact
subgroup of G). If G is a c-step nilpotent Lie group, we say that M is a c-step nilmanifold
and that M is modeled on G. Note that N is the fundamental group of M.

It is known that any such N is a torsion free, finitely generated nilpotent group
and conversely, for any such torsion free, finitely generated group N, there is exactly
one connected and simply connected nilpotent Lie group G containing N as a lattice.
This G is often referred to as the Malcev completion of N ([9], [5]). Let g denote the
Lie algebra of G. Then any automorphism ϕ of N has a unique lift to a continuous
automorphism ϕ̃ of G. Moreover, Aut(G) ∼= Aut(g), where the isomorphism is given by
taking the differential of the automorphism (this means that ϕ̃ ∈ Aut(G) is identified
with dϕ̃ ∈ Aut(g)).

DEFINITION 1.1. Let K be a subfield of C and let g be a Lie algebra over K .
An automorphism ψ ∈ Aut(g) is said to be hyperbolic if all of its eigenvalues are of
modulus different from 1.

More generally, we shall say that ϕ or ϕ̃ as above are hyperbolic if the corresponding
automorphism dϕ̃ is hyperbolic.

Any automorphism ϕ̃ of G arising from an automorphism ϕ of N induces a self-
diffeomorphism of the nilmanifold N\G. If moreover, ϕ is hyperbolic, we refer to such
a self-diffeomorphism as a hyperbolic nilmanifold automorphism. These hyperbolic
nilmanifold automorphisms are standard examples of Anosov diffeomorphisms. Let
us recall the definition of an Anosov diffeomorphism.

DEFINITION 1.2. A diffeomorphism f : M → M on a smooth manifold M is said
to be Anosov if there is a continuous splitting of the tangent bundle TM = Es ⊕ Eu

with df (Es) = Es and df (Eu) = Eu and there exist constants C > 0 and λ > 1 such that
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for all positive integers m we have

‖(df )m(v)‖ ≥ Cλm‖v‖, if v ∈ Eu and ‖(df )m(v)‖ ≤ C−1λ−m‖v‖, if v ∈ Es.

Hence if f is Anosov, one can split the tangent bundle into a contracting and an
expanding part.

In [7], A. Manning proved that any Anosov diffeomorphism on a nilmanifold
is topologically conjugated to a hyperbolic nilmanifold automorphism. Therefore,
the geometric question of which nilmanifolds admit an Anosov diffeomorphism is
translated into the group theoretic question of which finitely generated torsion free
nilpotent groups admit a hyperbolic automorphism.

This group theoretic question can in turn be translated into a linear algebra
problem concerning a rational Lie algebra. To obtain this link, we consider the group
NQ, which is the divisible closure (or rational Malcev completion) of N. This is the
unique divisible group (in which each element has a unique k-th root for any positive
integer k) containing N and such that for any element n ∈ NQ, there exists a positive
integer k such that nk ∈ N. (The reader can consult [10] for details on this matter.)
Analogously, as for the (real) Malcev completion, we can identify the group NQ (via
exp and log) with a Lie algebra gQ over the rationals.

The following translation of the original problem was obtained in
[3, Corollary 3.5].

N admits a hyperbolic automorphism if and only if gQ admits a hyperbolic
automorphism, for which the corresponding characteristic polynomial has integer
coefficients and unit constant term.

Although we have this nice result and the possibility of studying Anosov
diffeomorphisms on several mathematical levels, very little is known about the nature
of the class of nilmanifolds (nilpotent groups) admitting an Anosov diffeomorphism
(hyperbolic automorphism).

Indeed, the problem is solved completely for free abelian groups ([8]) and for
finitely generated nilpotent groups of Hirsch length at most 6 ([1], [6]). It is therefore
natural to study the situation for 2-step nilmanifolds (2-step nilpotent groups) first.

DEFINITION 1.3. A torsion free, finitely generated, 2-step nilpotent group N is said
to be a T(n, k) group if h( N

[N,N] ) = n and h([N, N]) = k. (Here h(G) denotes the Hirsch
length of a group G.) Analogously, a 2-step nilpotent Lie algebra g over a field K is a
T(n, k) Lie algebra if dimK ( g

[g,g] ) = n and dimK ([g, g]) = k.

Let N be a torsion free, finitely generated, 2-step nilpotent group, with
corresponding rational Lie algebra gQ and corresponding real Lie algebra g. Then

N is a T(n, k) group ⇔ gQ is a T(n, k) Lie algebra

⇔ g is a T(n, k) Lie algebra.

Moreover, we always have that k ≤ n(n − 1)
2 .

Concerning hyperbolic automorphisms, the following properties are known.
1. No T(n, 1) group admits a hyperbolic automorphism.
2. A T(n,

n(n − 1)
2 ) group admits a hyperbolic automorphism if and only if n > 2

([4]).
3. The situation for T(n, 2) groups is rather complicated, as is already seen in the

case of T(4, 2) groups ([1], [6]).
These examples indicate that the following reasonable class to investigate is the

class of T(n,
n(n − 1)

2 − 1) = T(n,
(n + 1)(n − 2)

2 ) groups.
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In this paper we completely solve this case for arbitrary n, and find a very easy
condition to determine whether or not a T(n,

(n+1)(n−2)
2 ) group admits a hyperbolic

automorphism.

2. Classification of the T(n,
(n + 1)(n − 2)

2 ) Lie algebras. As the problem of hyperbolic
automorphisms on T(n,

(n + 1)(n − 2)
2 ) groups is actually a problem for the corresponding

Lie algebras, we start by studying these Lie algebras. The following notion will be used
frequently in the rest of the paper.

DEFINITION 2.1. Let g be a free 2-step nilpotent Lie algebra over a field K and let
0 
= X ∈ [g, g]. We define the length of X by

length(X) = min

{
k ∈ �0

∣∣∣∣∣ X = [V1, W1] + . . . + [Vk, Wk],

for some V1, V2, . . . , Vk, W1, W2, . . . , Wk ∈ g

}
.

Note that for any automorphism ϕ of g, we have that

∀ 0 
= X ∈ [g, g] : length(X) = length(ϕ(X)).

LEMMA 2.2. Let g be a free 2-step nilpotent Lie algebra over a field K and let

0 
= X =
k∑

i=1

[Vi, Wi] for some Vi, Wi ∈ g.

Let p : g → g

[g,g] denote the natural projection. If length(X) = k, then {p(V1), p(V2),
. . . , p(Wk)} is a set of linearly independent vectors.

Proof. Let k = 1 and assume that {p(V1), p(W1)} is linearly dependent. Without
loss of generality, we may assume that p(W1) = k p(V1), for some k ∈ K , or W1 =
k V1 + Y , for some Y ∈ [g, g]. But then

X = [V1, W1] = [V1, k V1 + Y ] = k [V1, V1] = 0,

which is a contradiction.
Now assume that k > 1 and suppose that {p(V1), p(V2), . . . , p(Wk)} is not linearly

independent. Again without loss of generality we may assume that

Wk =
k∑

i=1

αiVi +
k−1∑
i=1

βiWi + Y, for some Y ∈ [g, g] and some αi, βi ∈ K.

It follows that

[Vk, Wk] =
k−1∑
i=1

([Vk, αiVi] + [Vk, βiWi])
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and thus

X =
k−1∑
i=1

([Vi, Wi] + [Vk, αiVi] + [Vk, βiWi]) . (1)

Now we fix an i (between 1 and k − 1) and consider the term

[Vi, Wi] + [Vk, αiVi] + [Vk, βiWi]. (2)

If αi = βi = 0, this sum actually consists of one Lie bracket.
If αi 
= 0, this sum equals

[
Vk − Wi

αi
, αiVi + βiWi

]
.

Also if βi 
= 0, this sum equals

[
Vk + Vi

βi
, αiVi + βiWi

]
,

showing that in every case the term (2) can be written as a single Lie bracket.
Now (1) implies that length(X) ≤ k − 1 which is a contradiction. �
COROLLARY 2.3. Let g be a free 2-step nilpotent Lie algebra on n generators. Then

for any X ∈ [g, g], we have

length(X) ≤
⌊

n
2

⌋
.

Any T(n,
(n + 1)(n − 2)

2 ) Lie algebra is isomorphic to a quotient g

h
, where g is the free

2-step nilpotent Lie algebra on n generators and h is a 1-dimensional subspace of [g, g].
Conversely, if 0 
= X ∈ [g, g], then 〈X〉 (the vector space spanned by X) is a 1-

dimensional ideal of g and g

〈X〉 is a T(n,
(n + 1)(n − 2)

2 ) Lie algebra. In the next theorem
we show that the isomorphism type of such a Lie algebra is completely determined by
length(X).

THEOREM 2.4. Let 0 
= X, Y ∈ [g, g], where g is a free 2-step nilpotent Lie algebra
on n generators over a field K. Then

g

〈X〉
∼= g

〈Y〉 ⇐⇒ length(X) = length(Y ).

Proof. There exists an isomorphism

ϕ :
g

〈X〉 → g

〈Y〉
if and only if there exists an automorphism

ϕ̃ : g → g with ϕ̃(〈X〉) = 〈Y〉.
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Assume that ϕ̃ exists; then ϕ̃(X) = kY for some k ∈ K\{0} and so

length(X) = length(ϕ̃(X)) = length(kY ) = length(Y ).

Now, assume that length(X) = length(Y ) = k ∈ �0. Then, there exist vectors
V1, V2, . . . , V2k, W1, W2, . . . , W2k ∈ g with

X = [V1, V2] + [V3, V4] + . . . + [V2k−1, V2k]

and

Y = [W1, W2] + [W3, W4] + . . . + [W2k−1, W2k].

By Lemma 2.2, we can choose vectors V2k+1, V2k+2, . . . , Vn, W2k+1, W2k+2, . . . , Wn ∈
g such that both V1 + [g, g], V2 + [g, g], . . . , Vn + [g, g] and W1 + [g, g], W2 +
[g, g], . . . , Wn + [g, g] are bases of g

[g,g] . As g is free 2-step nilpotent on n generators,
there is a unique automorphism ϕ̃ of g such that

ϕ̃(Vi) = Wi for i = 1, 2, . . . , n.

It is obvious that ϕ̃(X) = ϕ̃(Y ), which finishes the proof. �
Now, we prove the converse of Lemma 2.2.

LEMMA 2.5. Let g be a free 2-step nilpotent Lie algebra on n generators
over a field K and denote by p : g → g

[g,g] the natural projection. If V1, V2, . . . , Vk,

W1, W2, . . . , Wk ∈ g are such that p(V1), p(V2), . . . , p(Vk), p(W1), p(W2), . . . , p(Wk)
are linearly independent vectors of g

[g,g] , then

X = [V1, W1] + [V2, W2] + . . . + [Vk, Wk]

is an element of length k in [g, g].

Proof. We proceed by induction on k to show that X cannot be written as a sum
of fewer Lie brackets. The lemma is obvious for k = 1.

Let k > 1. Suppose that the lemma is valid for smaller values of k.
Assume that length(X) 
= k. Then there exist vectors Ṽ1, Ṽ2, . . . , Ṽk−1, W̃1, W̃2, . . . ,

W̃k−1, with W̃k−1 
= 0, such that

X = [Ṽ1, W̃1] + . . . + [Ṽk−1, W̃k−1].

Note that it is possible to choose all the vectors Ṽi, W̃i in the vector space spanned
by V1, V2, . . . , Vk, W1, W2, . . . , Wk. Let I be the ideal of g generated by W̃k−1 and
let q denote the natural projection of g onto g

[g,g] + I . Then q(V1), q(V2), . . . , q(Vk),

q(W1), q(W2), . . . , q(Wk) form a linearly dependent set of vectors (q(W̃k−1) = 0)
generating a (2k − 1)-dimensional subspace of g

[g,g] + I . (Use the fact that dim( g

[g,g] ) =
dim( g

[g,g] + I ) + 1.)
We can assume that q(Wk) is a linear combination of q(V1), . . . , q(Vk),

q(W1), . . . , q(Wk−1) and that the vectors q(V1), . . . , q(Vk), q(W1), . . . , q(Wk−1) are
linearly independent. It follows that

[V1, W1] + . . . + [Vk, Wk] + I = [Ṽ1, W̃1] + . . . + [Ṽk−1, W̃k−1] + I

= [Ṽ1, W̃1] + . . . + [Ṽk−2, W̃k−2] + I.
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In the proof of Lemma 2.2 we showed that (in case q(Wk) is written as a linear
combination of the q(Vi) and the other q(Wi), and the Lie algebra we are working in is
g

I ), how to rewrite the expression [V1, W1] + . . . + [Vk, Wk] + I as a sum of k − 1 Lie
brackets

[V ′
1, W ′

1] + . . . + [V ′
k−1, W ′

k−1] + I.

The reader can check that (during and) after this rewriting process, the elements
obtained q(V ′

1), . . . , q(V ′
k−1), q(W ′

1), . . . , q(W ′
k−1) are linearly independent (because

we started from a linear independent set q(V1), . . . , q(Vk), q(W1), . . . , q(Wk−1)).
Note that g

I is still a free 2-step nilpotent Lie algebra (on n − 1 generators). We
have established that in g

I there are 2(k − 1) vectors

V ′
1 + I, . . . , V ′

k−1 + I, W ′
1 + I, . . . , W ′

k−1 + I

for which the natural projections onto
g

I
[ g

I ,
g

I ] = g

[g,g]+I are linearly independent and

such that

[V ′
1, W ′

1] + . . . + [V ′
k−1, W ′

k−1] + I = [Ṽ1, W̃1] + . . . + [Ṽk−2, W̃k−2] + I.

This contradicts the truth of the lemma for k − 1. �
COROLLARY 2.6. Over any field K there are up to isomorphism exactly � n

2� Lie
algebras of type T(n,

(n + 1)(n − 2)
2 ).

Proof. Let g be the free 2-step nilpotent Lie algebra on n generators (i.e. the
unique T(n,

n(n − 1)
2 ) Lie algebra). Then, for each k ∈ {1, 2, . . . , � n

2�} there is an element
X of length k in [g, g]. (Choose 2k linearly independent vectors in g

[g,g] and form the
corresponding sum of k Lie brackets.) For each such element X we obtain a Lie algebra
g

〈X〉 whose isomorphism type is determined completely by length (X). �

3. Hyperbolic automorphisms on T(n,
(n + 1)(n − 2)

2 ) Lie algebras. In [3, Lemma 5.1]
it was shown that T(3, 2) groups and T(4, 5) groups do not admit any hyperbolic
automorphism. In this section, we shall see that for any n ≥ 5 there are T(n,

(n + 1)(n − 2)
2 )

groups admitting a hyperbolic automorphism. In fact, we shall characterize exactly
when such a group admits a hyperbolic automorphism. Therefore we need some results
on the Lie algebra level.

From now on h will denote a rational Lie algebra which is obtained as a quotient
of the form h = g

〈X〉 , where g is a free 2-step nilpotent Lie algebra on n generators over
Q and 0 
= X ∈ [g, g].

Any automorphism ϕ ∈ Aut(h) is induced by a ϕ̃ ∈ Aut(g), with ϕ̃(〈X〉) = 〈X〉;
this means that

∃λ ∈ Q0 : ϕ̃(X) = λX.

Let ϕ(=ϕ̃) denote the automorphism of h

[h,h] (= g

[g,g] ) induced by ϕ (resp. ϕ̃). Also let ϕ0

(resp. ϕ̃0) denote the restriction of ϕ to [h, h] (resp. of ϕ̃ to [g, g]).
Let λ1, λ2, . . . , λn denote the eigenvalues of ϕ (eigenvalues of multiplicity > 1 are

listed as many times as their multiplicity). In [4] (see also [3]) the following lemma was
proved.

https://doi.org/10.1017/S001708950300123X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950300123X


ANOSOV DIFFEOMORPHISMS 275

LEMMA 3.1. With the notation above, the following properties hold.
1. The eigenvalues of ϕ̃0 are λ1λ2, λ1λ3, . . . , λ1λn, λ2λ3, . . . , λn−1λn.
2. If we denote the characteristic polynomial of a linear map ψ by pψ (x), then we

have

pϕ̃(x) ∈ Z[x] ⇐⇒ pϕ(x) ∈ Z[x] ⇐⇒ pϕ(x) ∈ Z[x].

Also if pϕ̃(x) ∈ Z[x], then
(a) pϕ̃(x) has unit constant term ⇐⇒ pϕ(x) has unit constant term

⇐⇒ pϕ(x) has unit constant term.
(b) pϕ̃0 (x) ∈ Z[x] and pϕ0 (x) ∈ Z[x].

Having this information in mind, we can now prove the main result of our paper on
the Lie algebra level.

THEOREM 3.2. Let g be a free 2-step nilpotent Lie algebra over Q on n generators and
let 0 
= X ∈ [g, g]. Then h = g

〈X〉 admits a hyperbolic automorphism whose characteristic
polynomial has integer coefficients and with unit constant term if and only if n ≥ 5 and
length(X) = 1.

Proof. First suppose that h admits a hyperbolic automorphism ϕ with pϕ(x) ∈ Z[x]
and where pϕ(x) has unit constant term. By [3, Lemma 5.1], we know that n ≥ 5.

Let ϕ̃, ϕ, λ, . . . have the same meaning as before. We claim that the eigenvalue λ

(belonging to the eigenvector X for ϕ̃) is equal to ±1. This follows from the fact that

pϕ̃(x) = (x − λ)pϕ(x).

As pϕ(x) ∈ Z[x], the previous lemma implies that pϕ̃(x) ∈ Z[x] and therefore also
(x − λ) ∈ Z[x]. As both pϕ̃(x) and pϕ(x) have unit constant term, also (x − λ) must
have unit constant term, and thus λ = ±1.

By considering ϕ2 instead of ϕ (and thus ϕ̃2 instead of ϕ̃), we can assume that
λ = 1. (Note that by the hyperbolicity of ϕ, λ = 1 is an eigenvalue of multiplicity 1.)
Again, by the lemma above, we may assume that λ = λ1λ2.

Now, let gC denote the complexification of g; i.e. gC = C ⊗ g (tensor over Q).
There is a natural embedding of g into gC and we shall consider g as a subset of gC.
Let X ∈ [g, g] of length k (seen as an element of [g, g]!). Then

X = [V1, W1] + . . . + [Vk, Wk], with V1, . . . , Wk ∈ g

such that the canonical projections p(V1), p(V2), . . . , p(Wk) in g

[g,g] are linearly
independent. But then, also the natural projections of V1, V2, . . . , Wk onto gC

[gC,gC]
are linearly independent, showing that length(X) = k, where now X is seen as an
element of [gC, gC].

The automorphisms ϕ, ϕ̃, ϕ can all be considered on the complex level too. In gC,
there exist an eigenvector V (resp. W ) corresponding to the eigenvalue λ1 (resp. λ2).
Then

ϕ̃[V, W ] = [ϕ̃(V ), ϕ̃(W )] = λ1λ2[V, W ] = λ[V, W ].

This implies that X belongs to the space spanned by [V, W ] and therefore X is of
length 1.
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Now, assume that length(X) = 1 and n ≥ 5. Consider the following matrices with
determinant 1:

A =
(

2 1

1 1

)
, B1 =




1 1 1

1 2 2

1 2 3


,

B2 =




0 1 0 0

0 0 1 0

0 0 0 1

−1 6 −1 −5


, B3 =




1 1 1 1 1

1 2 2 2 2

1 2 3 3 3

1 2 3 4 4

1 2 3 4 5




.

Let λ1, λ2 denote the eigenvalues of A and let λ3, λ4, . . . , λ14 be the eigenvalues of
B1, B2 and B3. One computes that

λ1λ2 = 1 and |λiλj| 
= 1 if {i, j} 
= {1, 2}.

As n ≥ 5, n can be written as n = i + 4 + 3k for some i ∈ {1, 2, 3} and k ∈ �. Consider
the block diagonal matrix

C =




A 0 0 0 . . . 0
0 Bi 0 0 . . . 0
0 0 B1 0 . . . 0
0 0 0 B1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . B1







k times B1

This matrix can be seen as a matrix representation of a linear isomorphism ϕ of
g

[g,g] . This isomorphism ϕ can be lifted to a Lie algebra automorphism ϕ̃ of g. By
construction ϕ̃ has one eigenvalue equal to 1 (and of multiplicity 1). Let Y 
= 0 be an
eigenvector corresponding to this eigenvalue. Then Y is of length 1. (It is just the Lie
bracket [V1, V2], if p(V1), p(V2), . . . , p(Vn) is the basis of g

[g,g] , with respect to which C
is the matrix representation of ϕ.) The induced automorphism on g

〈Y〉 is a hyperbolic
automorphism, whose characteristic polynomial has unit constant term and integer
coefficients. As g

〈X〉
∼= g

〈Y〉 the proof is finished. �

4. Back to Anosov diffeomorphisms. We now interpret the result obtained in
terms of Anosov diffeomorphisms on nilmanifolds. Theorem 3.2 can be rephrased as
follows.

THEOREM 4.1. Let M = N\G be a 2-step nilmanifold, where N is a T(n,
(n + 1)(n − 2)

2 )
group. Suppose that the Lie algebra gQ, corresponding to N, is written as a quotient of a
free 2-step nilpotent Lie algebra by a 1-dimensional ideal 〈X〉. Then M admits an Anosov
diffeomorphism if and only if n ≥ 5 and length(X) = 1.
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It has been brought to our attention by S. G. Dani that one direction of the above
theorem can be proved in a more general setting. To explain this, we need a little more
notation.

Let g be the real free 2-step nilpotent Lie algebra on n generators V1, V2, . . . , Vn.
For each k we define

hn,k = g

Ik
, with Ik = span{[Vp, Vq] | 1 ≤ p, q ≤ k}.

Let Hn,k denote the connected and simply connected nilpotent Lie group
corresponding to hn,k.

THEOREM 4.2. Let 2 ≤ k ≤ n − 3. If N is a lattice of the Lie group Hn,k, then the
nilmanifold N\Hn,k admits an Anosov diffeomorphism.

Proof. By Theorem 2.2 of [2], it suffices to show that there exists a semisimple group
of Lie algebra automorphisms of hn,k containing a hyperbolic element. We claim that
we can take this semisimple group to be the group S = SLk(R) × SLn−k(R). Indeed,
this group S acts on the vector space with basis V1, V2, . . . Vn, in such a way that the
SLk(R)-part (resp. SLn−k(R)-part) acts on the first k (resp. last n − k) basis vectors.
This action extends to an action on g, and Ik is invariant under this action. It follows
that the group S acts on the Lie algebra hn,k. It is easy to see that this action contains
hyperbolic elements when k ≥ 2 and n − k ≥ 3, which proves the theorem. �

Part of Theorem 4.1 is recovered from this theorem, by taking k = 2 and n ≥ 5.
The reader may wonder whether or not the criterion of Theorem 4.1 is useful in

practice. We claim that it is and the rest of this paper is devoted to illustrate this claim.
Let N be a torsion free, finitely generated, 2-step nilpotent group. Then N has a

presentation of the form

N = 〈a1, a2, . . . , an, b1, b2, . . . , bk | [ai, aj] = bαi,j,1

1 bαi,j,2

2 . . . bαi,j,k

k (1 ≤ i < j ≤ n)
[ai, bj] = 1 (1 ≤ i ≤ n, 1 ≤ j ≤ k)
[bi, bj] = 1 (1 ≤ i < j ≤ k)〉.

It is then an easy application of the Campbell-Baker-Hausdorff formula to see that

gQ = 〈A1, A2, . . . , An, B1, B2, . . . , Bk | [Ai, Aj] = ∑k
l=1 αi,j,lBl (1 ≤ i < j ≤ n)

[Ai, Bj] = 0 (1 ≤ i ≤ n, 1 ≤ j ≤ k)
[Bi, Bj] = 0 (1 ≤ i < j ≤ k)〉

so it is really easy to change from the group to the Lie algebra level.
Note that a presentation like the above suggests that gQ is of type T(n, k). This

is indeed true if [gQ, gQ] = 〈B1, B2, . . . , Bk〉. As [gQ, gQ] is spanned by the brackets
[Ai, Aj], we must check whether or not the space spanned by the vectors

∑k
l=1 αi,j,lBl

(1 ≤ i < j ≤ n) is k-dimensional. This comes down to checking whether or not

rank




α1,2,1 α1,2,2 . . . α1,2,k

α1,3,1 α1,3,2 . . . α1,3,k
...

...
. . .

...
αn−1,n,1 αn−1,n,2 . . . αn−1,n,k


 = k.
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Now, assume that k = (n + 1)(n − 2)
2 . We know that N (gQ) is actually a T(n, k) group

(T(n, k) Lie algebra) and so gQ can be written as a quotient of a free 2-step nilpotent
Lie algebra by a 1-dimensional ideal 〈X〉. We need to know X .

To see how this works, let h be the rational free 2-step nilpotent Lie algebra on n
generators C1, C2, . . . , Cn, so that h has a vector space basis

C1, C2, . . . , Cn, [C1, C2], [C1, C3], . . . , [Cn−1, Cn]

and there exists a Lie algebra morphism

ψ : h → gQ, with ψ(Ci) = Ai and kernel(ψ) = 〈X〉.

Therefore, we need to know a non-zero X ∈ [h, h] with ψ(X) = 0. In other words we
search for a non-zero linear combination

X = β1,2[C1, C2] + β1,3[C1, C3] + · · · + βn−1,n[Cn−1, Cn] with ψ(X) = 0.

As ψ([Ci, Cj]) = [Ai, Aj], this is the same as looking for a set of βi,j, which are not all
zero and such that

β1,2(α1,2,1, α1,2,2, . . . , α1,2,k) +
β1,3(α1,3,1, α1,3,2, . . . , α1,3,k) +

...
...

βn−1,n(αn−1,n,1, αn−1,n,2, . . . , αn−1,n,k) = (0, 0, . . . , 0).

Hence the problem is reduced to finding a solution to a linear system of equations,
which is a trivial linear algebra problem. Once this solution is found, it remains to find
out if the length of X = β1,2[C1, C2] + β1,3[C1, C3] + · · · + βn−1,n[Cn−1, Cn] is equal to
1 or not. The length of X can be obtained by using iteratively and as long as possible
the process in the proof of Lemma 2.2 to write X as a sum of fewer Lie brackets. The
moment this becomes impossible, we have found the length of X .

Let us illustrate the above remarks by means of a concrete example. Let N be a
2-step nilpotent group, such that the corresponding gQ is given by

gQ = 〈 A1, A2, A3, A4, A5, B1, B2, B3, B4, B5, B6, B7, B8, B9 |
[Ai, Bj] = 0 (1 ≤ i ≤ 5), (1 ≤ j ≤ 9)
[Bi, Bj] = 0 (1 ≤ i < j ≤ 9)
[A1, A2] = B1

[A1, A3] = B2

[A1, A4] = B3

[A1, A5] = B4

[A2, A3] = B5 + 2B6

[A2, A4] = B4 + B5 + B6

[A2, A5] = B7 + 3B8 + B9

[A3, A4] = B8 + 5B9

[A3, A5] = B9

[A4, A5] = −2B1 − B2 − 7B8 − 35B9〉.
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The matrix consisting of the parameters αi,j,l is of the form


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 2 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 3 1
0 0 0 0 0 0 0 1 5
0 0 0 0 0 0 0 0 1

−2 −1 0 0 0 0 0 −7 −35




for which it is easy to see that it is of rank 9, so that the Lie algebra is a T(5, 9)
Lie algebra. To find the corresponding X = ∑

βi,j[Ci, Cj] in the free 2-step nilpotent
Lie algebra on 5 generators, we must find a non-zero solution of the system of linear
equations

β1,2(1, 0, 0, 0, 0, 0, 0, 0, 0) +
β1,3(0, 1, 0, 0, 0, 0, 0, 0, 0) +
β1,4(0, 0, 1, 0, 0, 0, 0, 0, 0) +
β1,5(0, 0, 0, 1, 0, 0, 0, 0, 0) +
β2,3(0, 0, 0, 0, 1, 2, 0, 0, 0) +
β2,4(0, 0, 0, 1, 1, 1, 0, 0, 0) +
β2,5(0, 0, 0, 0, 0, 0, 1, 3, 1) +
β3,4(0, 0, 0, 0, 0, 0, 0, 1, 5) +
β3,5(0, 0, 0, 0, 0, 0, 0, 0, 1) +

β4,5(−2,−1, 0, 0, 0, 0, 0,−7,−35) = (0, 0, . . . , 0).

One non-zero solution is given by β1,2 = 2, β1,3 = 1, β3,4 = 7, β4,5 = 1 and βi,j = 0 in
all other cases. Thus

X = 2[C1, C2] + [C1, C3] + 7[C3, C4] + [C4, C5]

= [C1, 2C2 + C3] + [C4,−7C3 + C5].

This last expression cannot be reduced any further (by Lemma 2.5) and therefore
length(X) = 2. We conclude that N does not admit a hyperbolic automorphism and
that the corresponding nilmanifold N\G does not admit an Anosov diffeomorphism.
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