GEOMETRY OF A SIMPLEX INSCRIBED IN A NORMAL RATIONAL CURVE

SAHIB RAM MANDAN *

(Received 6 August 1985)

In 1959, Professor N. A. Court [2] generated synthetically a twisted cubic C circumscribing a tetrahedron T as the poles for T of the planes of a coaxal family whose axis is called the Lemoine axis of C for T. Here is an analytic attempt to relate a normal rational curve r^{n} of order n, whose natural home is an n-space [n], with its Lemoine [$n-2] L$ such that the first polars of points in L for a simplex S inscribed to r^{n} pass through \boldsymbol{r}^{n} anf the last polars of points on r^{n} for S pass through L. Incidently we come across a pair of mutually inscribed or Moebius simplexes but as a privilege of odd spaces only. In contrast, what happens in even spaces also presents a case, not less interesting, as considered here.

1. Polarity for a simplex

(a) If P be a point ($p_{0}, p_{1}, \cdots, p_{n}$) referred to a simplex $S=A_{0} A_{1} \cdots A_{n}$, the first polar of P for S is the primal $(P) \equiv \sum\left(p_{i} / x_{i}\right)=0$ of order n, and the last or $n^{\text {th }}$ polar is the prime $p \equiv \sum\left(x_{i} / p_{i}\right)=0(i=0,1, \cdots, n)$ as a well known fact. Thus: If the polar prime $q \equiv \sum\left(x_{i} / q_{i}\right)=0$ of a point $Q\left(q_{i}\right)$ for S pass through P; i.e., $\left(p_{i} / q_{i}\right)=0,(P)$ passes through Q. Or, (P) is the locus of the poles for S of the primes through P.
(b) Let the secant through P to an edge $A_{i} A_{j}$ of S and its opposite $[n-2] a^{i j}$ meet the edge in a point $P_{i j}$, and $Q_{i j}$ be the point on this edge as the harmonic conjugate of $P_{i j}$ w.r.t. the pair of the vertices A_{i}, A_{j}. That is, $H\left(A_{i} A_{j}, P_{i j} Q_{i j}\right)$ or $\left(A_{i} P_{i j} A_{j} Q_{i j}\right)=-1$. The $\binom{n+1}{2}$ points $Q_{i j}$ then all lie in the polar prime p of P for $S[4 ; 7-11]$. Conversely, if a prime p cuts $A_{i} A_{i}$ in $Q_{i j}$ and $P_{i j}$ be such that $H\left(A_{i} A_{j}, P_{i j} Q_{i j}\right)$, the $\binom{n+1}{2}$ primes $a^{i j} p_{i j}$ concur at the pole P of p for S.

Hence, if p pass through $A_{i}, Q_{i j}$ and therefore $P_{i j}$ both coincide at A_{i} which then becomes the pole of p for S. Or, the pole of a prime through a vertex of S for S lies at this vertex.

[^0]
2. Normal rational curve

(a) The normal rational curve (n.r.c.) r^{n} is generated by the corresponding primes of n related pencils whose n vertices [$n-2$]'s form its chordals [14]. As the prime p in l(b) varies in a pencil cutting the n edges $A_{i} A_{j}$ of the simplex S through its vertex A_{i} in the n points $Q_{i j}$, the n corresponding primes $a^{i j} P_{i j}$ of the n pencils with vertices as the $[n-2]$'s $a^{i j}$ of the prime a^{i} of S opposite A_{i} generate r^{n} as the locus of the poles of primes p of the given pencil for S. From the symmetry of the result follows the following:

Theorem 1. The locus of the poles of the primes of pencil for a simplex S in $[n]$ is an n.r.c. r^{n} through its vertices.
(b) Conversely we may have the following:

Theorem 2. The polar primes of the points of an n.r.c. r^{n} circumscribing a simplex S for S form a coaxal family.

Proof 1. Following Court [2], we can prove synthetically the proposition by induction. For it is true in plane ($n=2$) and solid ($n=3$).

Proof 2. Let r^{n} be represented parametrically by the $n+1$ coordinates $x_{i}=1 /\left(k-u_{i}\right)$ of a point P on r^{n}, k being the parameter [14; p. 220]. The polar prime p of P for S by $1(\mathrm{a})$ is

$$
\begin{equation*}
\sum\left(k-u_{i}\right) x_{i}=0, \quad \text { or } \quad k \sum x_{i}-\sum u_{i} x_{i}=0 \tag{i}
\end{equation*}
$$

This equation shows that p passes through the [$n-2] L$ common to the 2 primes: $\sum x_{i}=0, \sum u_{i} x_{i}=0$, thus proving the proposition.

Remark 1. Theorem 1 could be proved by taking the vertex [$n-2$] of the pencil as L above and deduce the parametric equations $x_{i}=1 /\left(k-u_{i}\right)$ of the r^{n}.

Definition. L is said to be the Lemoine [$n-2$] of r^{n} for the simplex S.
Theorem 3. Any $n+3$ general points in $[n]$ determine an n.r.c. r^{n} in $\binom{n+3}{2}$ ways by choosing any $n+1$ of them to form a simplex inscribed to it thus giving us $\binom{n+3}{2}$ Lemoine $[n-2]$'s, one for each simplex.

Proof. Theorem 2 tells us that an r^{n} is determined by $n+3$ points, $n+1$ forming a simplex S and the other two points being the poles for S of a couple of primes through the Lemoine [$n-2$] of r^{n} for S.

3. Polar and Cevian quadrics

The polar quadric of a point P on an r^{n} circumscribing a simplex S with coordinates $x_{i}=1 /\left(k-u_{i}\right)$ for S is

$$
\begin{equation*}
\sum\left(k-u_{i}\right)\left(k-u_{j}\right) x_{i} x_{j}=0 \tag{ii}
\end{equation*}
$$

or

$$
k^{2} \sum x_{i} x_{j}-k \sum\left(u_{i}+u_{j}\right) x_{i} x_{j}+\sum u_{i} u_{j} x_{i} x_{j}=0
$$

showing that it belongs to a special net [5] determined by the $\mathbf{3}$ quadrics:

$$
\sum x_{i} x_{j}=0, \quad \sum\left(u_{i}+u_{j}\right) x_{i} x_{j}=0, \quad \sum u_{i} u_{j} x_{i} x_{j}=0 .
$$

The cevian quadric [10] of P for S touching the edges of S at the feet thereat of its bicevians through P is

$$
\sum\left(k-u_{i}\right)^{2} x_{i}^{2}-2 \sum\left(k-u_{i}\right)\left(k-u_{j}\right) x_{i} x_{j}=0,
$$

or,

$$
\begin{equation*}
4 \sum\left(k-u_{i}\right)\left(k-u_{j}\right) x_{i} x_{j}-\left(\sum \overline{k-u_{i}} x_{i}\right)^{2}=0 \tag{iii}
\end{equation*}
$$

showing that it too belongs to a special net, and has ring contact with the corresponding quadric of the net (ii) along the polar prime p (i) of P for S. Thus we have

Theorem 4. The polar as well as cevian quadrics of the points of an n.r.c. r^{n} circumscribing a simplex S for S belong respectively to two special nets such that the pair of quadrics corresponding to a point P on r^{n} have ring contact along the polar prime p of P for S.

4. Lemoine axes

Theorem 5. The Lemoine [q-2]'s of the n.r. curves in the [q]'s of a simplex S in $[n]$, which are projections therein of an n.r.c. r^{n} circumscribing S from the opposite $[n-q-1]$'s, all lie in the Lemoine $[n-2] L$ of r^{n}. In particular, the Lemoine axes of the cubic projections of r^{n} in the solids of S from the opposite [n-4]'s and the Lemoine points of the conic projections of r^{n} in the planes of S from the opposite $[n-3]$'s lie in L.

Proof. The polar prime p of a point P for simplex S in [n] passes through the polar $[q-1] p_{q}$ of the projection P_{q} of P in a [q] of S from its opposite $[n-q-1]$ for its q-simplex in this [q]. If p varies in a pencil through an $[n-2] L, p_{q}$ too varies in a pencil through the $[q-2] L_{q}$ which is a section of L by the [q]. Thus P_{q} traces an n.r.c. r^{q}, as a projection of r^{n} traced by P from the chordal $[n-q-1]$, having Lemoine $[q-2]$ as L_{q}. Conversely we have

Theorem 6. If the Lemoine $[q-2]$'s of certain n.r.c.s. in the [q]'s of a simplex S in $[n]$ all lie in an $[n-2] L$, every such r_{q} is then the projection of an r^{n} circumscribing S from its $[n-q-1]$ opposite its [q] of the $r^{\boldsymbol{a}}$.

5. First polars

Theorem 7. The $n-1$ first polars for a simplex S in $[n]$ of any $n-1$ independent points determining an $[n-2] L$ determine or have an n.r.c. r^{n} common such that the first polar of any point of L for S passes through r^{n}.

Proof. The first polar of a point for a simplex in [n] is a primal of order n and dimension $n-1$, and contains the $\binom{n+1}{2}[n-2]$'s of S once, the $\binom{n+1}{3}[n-3]$'s twice, \cdots, the $\binom{n+1}{r}[n-r]$'s $(r-1)$-times, \cdots and $\binom{n+1}{2}$ edges of $S(n-1)$-times. Thus the intersection of the first polars of 2 points for S is of dimension $n-2$ but order $n^{2}-\binom{n+1}{2}=\binom{n}{2}$, that of 3 independent points is of dimension $n-3$ but order $n\binom{n}{2}-2\binom{n+1}{3}=\binom{n}{3}, \cdots$, that of r independent points is of dimension $n-r$ but order $n\binom{n}{r-1}-(r-1)\binom{n+1}{r}=\binom{n}{r}, \cdots$ and that of $n-1$ independent points is of dimension 1 but order $\binom{n}{n-1}=n$.

Theorem 8. L of the preceding theorem is the Lemoine $[n-2]$ of the r^{n} for the simplex S.

Proof. Let us take L to be the $[n-2]$ given by the pair of linear equations: $\sum x_{i}=0, \sum u_{i} x_{i}=0$, and P be a point $\left(p_{0}, p_{1}, \cdots, p_{n}\right)$ in L such that $\sum p_{i}=0=\sum u_{i} p_{i}$. Now the first polar of P is $(P) \equiv \sum\left(p_{i} / x_{i}\right)=0$ which obviously passes through the r^{n} given by the coordinates $x_{i}=1 /\left(k-u_{i}\right)$ of any point on it because of the two conditions satisfied by P. Hence, by the definition of the Lemoine $[n-2]$ of an r^{n}, follows the theorem.

6. Tangents

Theorem 9. The meets of the primes a^{i} of a simplex S in [n] with the tangents, at its opposite vertices A_{i}, of an n.r.c. r^{n} circumscribing S are the poles of the $[n-2]$ projections therein, of the Lemoine $[n-2] L$ of r^{n} for S from A_{i}, for the respective $(n-1)$-simplexes of S.

Proof. The equations of the tangent line of an n.r.c. r^{n} at any point with coordinates $x_{i}=\left(k-u_{i}\right)^{-1}$ on it are given by

$$
0=\left(\begin{array}{ccccc}
x_{0} & \cdots & x_{i} & \cdots & x_{n} \tag{iv}\\
\left(k-u_{0}\right)^{-1} & \cdots & \left(k-u_{i}\right)^{-1} & \cdots & \left(k-u_{n}\right)^{-1} \\
\left(k-u_{0}\right)^{-2} & \cdots & \left(k-u_{i}\right)^{-2} & \cdots & \left(k-u_{n}\right)^{-2}
\end{array}\right)_{2}
$$

following the notations of Professor T. G. Room [14]. To find the tangents at the vertices of the simplex S of reference, we may write (iv) as

$$
0=\left(\begin{array}{ccccc}
x_{0}\left(k-u_{0}\right)^{2} & \cdots & x_{i}\left(k-u_{i}\right)^{2} & \cdots & x_{n}\left(k-u_{n}\right)^{2} \tag{v}\\
\left(k-u_{0}\right) & \cdots & \left(k-u_{i}\right) & \cdots & \left(k-u_{n}\right) \\
1 & \cdots & 1 & \cdots & 1
\end{array}\right)_{2}
$$

and put $k=u_{i}$ in (v) to find one at the vertex A_{i} of S. Thus the tangent of r^{n} at A_{i} is given by the equations

$$
x_{0}\left(u_{i}-u_{0}\right)=\cdots=x_{i-1}\left(u_{i}-u_{i-1}\right)=x_{i+1}\left(u_{i}-u_{i+1}\right)=\cdots=x_{n}\left(u_{i}-u_{n}\right)
$$

meeting the opposite prime $x_{i}=0$ of S in the point A_{i}^{\prime} whose n coordinates other than x_{i} are then $x_{j}=\left(u_{i}-u_{j}\right)^{-1}$.

The equation of the [$n-2$] projection in the prime $x_{i}=0$ of S, of the Lemoine [$n-2$] of the r^{n} for S from the opposite vertex A_{i} is found to be $\sum_{j \neq i}\left(u_{i}-u_{j}\right) x_{j}=0$ showing it to be the last polar (1a) of A_{i}^{\prime} for the ($n-1$)-simplex of S in the prime under consideration.

Remark 2. $\boldsymbol{r}^{\boldsymbol{n}}$ being the locus (Theorem 1) of the poles, for S, of the primes through L, A_{i} being the pole of the prime $L A_{i}$ for $S(\mathrm{lb})$ and the tangent of r^{n} at A_{i} being the limit of the chords of r^{n} through A_{i}, the Theorem 9 follows immediately from the definition of the pole and polar for a simplex ($2 ; 4 ; 7-11$).

Theorem 10. The n tangents of the $n r^{n-1}$ projections of an n.r.c. r^{n} circumscribing a simplex S in [n], in its n primes through a vertex A_{i} of S from the opposite vertices, at their common point A_{i} meet its n opposite $[n-2]$'s in the n points $A_{i j}^{\prime}$ which form a Cevian $(n-1)$-simplex of the $(n-1)$-simplex of S opposite A_{i} for the meet A_{i}^{\prime} of its prime a^{i} with the tangent of r^{n} at $A_{i}[10]$.

Proof. The tangent of the n.r.c. r^{n-1} projection of r^{n}, in the prime $x_{j}=0$ of S from the opposite vertex A_{j}, at the vertex A_{i} meets the opposite $[n-2] a^{i j}$ (lb) in the point $A_{i j}^{\prime}$ whose coordinates referred to S are $x_{i}=0=x_{j}, x_{k}=1 /\left(u_{i}-u_{k}\right)$ for all values of k other than $i, j(7 \mathrm{a})$. Thus $A_{j}, A_{i}^{\prime}, A_{i j}^{\prime}\left(\neq A_{j i}^{\prime}\right)$ are collinear.

Remark 3. In view of Remark 2, Theorem 10 can also be deduced from the definition of the pole and polar for a simplex [2].

7. Even spaces

If we put down the $n+1$ coordinates (6 a) of the meet A_{i}^{\prime} of a prime a^{i} of the simplex S of reference with the tangent of an n.r.c. r^{n} circumscribing S at its opposite vertex A_{i} as the i th row of a matrix $M(i=0, \cdots, n)$, we find M to be skew symmetric such that its determinant $|M|=0$, thus showing that the $n+1$ points A_{i}^{\prime} are co-primal if n is even. Hence follows the following:

Theorem 11. The $2 m+1$ meets of the $2 m+1$ primes of a simplex S in $[2 m]$ with the tangents of an n.r.c. $r^{2 m}$ circumscribing S at its opposite vertices all lie in a prime which coincides with the Lemoine axis of a triangle for a conic circumscribing it when $m=1$ [11].

8. Odd spaces

Theorem 12. The $2 m$ meets of the $2 m$ primes of a simplex S in [$2 m-1]$ with the tangents of an n.r.c. $r^{2 m-1}$ circumscribing S at its opposite vertices form another simplex S^{\prime} Moebius or mutually inscribed with $S[\mathbf{1 - 3 ; 6 ; 1 2]}$.

Proof. The first minor of a skew symmetric matrix obtained by crossing its $i^{\text {th }}$ row and $i^{\text {th }}$ column is also skew symmetric. Hence if we substitute the $n+1$ coordinates $x_{i}=1, x_{j}=0$ (for all $j \neq i$) of a vertex A_{i} of a simplex S in the i th row of the matrix M of the preceding section, we find $|M|=0$ thus showing that A_{i} lies in the prime determined by the n points A_{j}^{\prime} if n is odd.

Thanks are due to the referee for the present presentation of the paper.

References

[1] H. F. Baker, Principles of Geometry 4 (Cambridge, 1940).
[2] N. A. Court, Sur la Cubique Gauche, Application de la Transformation Harmonique, Mathesis 68 (1959), 110-127.
[3] H. S. M. Coxeter, 'Twelve points in $P G(5,3)$ with 95040 self-transformations', Proc. Roy. Soc. A 247 (1958), 279-293.
[4] Sahib Ram Mandan, 'Properties of Mutually Self-polar Tetrahedra', Bul. Cal. Math. Soc. 33 (1941), 147-155.
[5] Sahib Ram Mandan, 'A Set of 8 Associated Points (Q. 1809)', Math. St. 10 (1942), 104.
[6] Sahib Ram Mandan, 'Moebius Tetrads', Amer. Math. Mon. 64 (1957), 471 - 478.
[7] Sahib Ram Mandan, 'An S-configuration in Euclidean and Elliptic n-space', Can. J. Math. 10 (1958).
[8] Sahib Ram Mandan, 'Harmonic Inversion', Math. Mag. 33 (1959-60), 71-78.
[9] Sahib Ram Mandan, 'Medial Simplex', Math. St. 28 (1960), 49-52.
[10] Sahib Ram Mandan, 'Cevian Simplexes', Proc. Amer. Math. Soc. 11 (1960), $837-845$.
[11] Sahib Ram Mandan, 'Isodynamic and Isogonic Simplexes (To Enrico Bompiani on his Scientific Jubilee)', Ann. Mat. Pura ed app. (4) 53 (1961), 45-56.
[12] Sahib Ram Mandan, 'Tetrads of Moebius Tetrahedra', J. Australian Math. Soc. 3 (1963), 68-78.
[13] Sahib Ram Mandan, 'On Configuration of Arguesian Spaces', Cas. Pes. Mat. 90 (1965), 54-57.
[14] T. G. Room, The Geometry of Determinantal Loci (Cambridge, 1938).
Indian Institute of Technology, Kharagpur and
College of Science, University of Baghdad

[^0]: * Attached at present to the College of Science, University of Baghdad, as a Visiting Professor for the Academic year 1965-1966.

