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Summary

The fluctuation experiment is the preferred method for estimating microbial mutation rates. A difficult task
facing the data analyst is to infer the mean number of mutations from the number of mutant cells that only
indirectly reflects the number of mutations. Partial plating, commonly practised in the laboratory, renders this
task even more challenging by allowing only a portion of the mutant cells to be counted. In this paper, we
propose a Bayesian approach to correcting for partial plating in the analysis of fluctuation experiments.

1. Introduction

Microbial mutation rates are routinely estimated
in the laboratory using the fluctuation experiment
devised by Luria & Delbrück (1943). A fluctuation
experiment consists of a number of test tubes; each
test tube contains a liquid culture, into which a small
number (N0) of wild-type cells are seeded. In an
incubation period, wild-type cells in the tubes freely
divide and undergo the mutation of interest at an
unknown rate. Each mutation engenders a mutant
cell, and mutant cells freely divide – producing
mutant daughter cells. At the end of the incubation
period, the average number of wild-type cells per
tube (NT) is determined by titration. Meanwhile, the
number of mutant cells existing in a tube at the end of
the incubation period is determined by transferring
the contents of that tube onto a solid, selective culture
contained in a dish. This procedure is called plating.
Through plating, wild-type cells are eliminated by a
selective agent, but mutant cells proliferate and form
visible colonies on the solid culture. The number of
mutant cells in each tube prior to plating is deter-
mined by counting mutant colonies. A more detailed
account of the fluctuation experiment is given in
Foster (2006).

Of biological interest is the mean number of muta-
tions that occur in a test tube during the incubation

period, as this quantity is equivalent to the all-
important mutation rate. Since each mutation gives
rise to a first-generation mutant cell, which can spawn
a large number of mutant offspring, in general, the
number of mutant cells exceeds the number of muta-
tions. The task facing the data analyst is to infer the
mean number of mutations per test tube (customarily
denoted by the symbol m) from the number of mutant
cells, because, unlike mutant cells, mutations are not
directly observable. This inference task is effected by
means of so-called mutant distributions. A mutant
distribution models the number of mutant cells in
terms of the fundamental parameter m or some simi-
lar parameter. A well-known mutant distribution is
the Luria–Delbrück distribution, obtained by Lea &
Coulson (1949). This distribution, denoted by LD(m),
is defined by the probability generating function (p.g.f.)

g(z; m)= exp m
1

z
x1

� �
log (1xz)

� �
: (1)

Ma et al. (1992) derived a recursive algorithm for
computing the probability function of the distribution
determined by this p.g.f. An algorithm for comput-
ing the maximum likelihood estimate (m.l.e.) of m
using the Newton–Raphson procedure was derived
by Zheng (2005), and is available in the software
package SALVADOR 2.3 (Zheng, 2008b). Other
more elementary methods for estimating m have been
catalogued by Rosche & Foster (2000).

Inference about the parameter m is sometimes
hindered by so-called imperfect plating efficiency,
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which refers to the phenomenon that a mutant cell
existing in a tube succeeds in forming a visible colony
with a probability e<1. We call e the plating effi-
ciency. Imperfect plating efficiency can be caused by
deliberately transferring only a proportion of a tube’s
contents to a dish during plating or by a cell’s inability
to survive the physical trauma of plating or by a
combination of both. The former cause of imperfect
plating efficiency is called partial plating. As microbial
cells are highly efficient in forming colonies after being
plated, it is justifiable to focus on partial plating
when correcting for plating efficiency in estimating
microbial mutation rates. Partial plating dates back to
Luria & Delbrück (1943), who performed partial
plating in 9 out of the 10 experiments reported in
their classic paper. Today partial plating is still com-
monly practised because the requirement to plate
the entire cultures can sometimes pose a formidable
logistic challenge to the experimentalist. The necessity
to relax this requirement by partial plating is well
explained in Foster (2006, p. 200) :

… this requirement restricts the volume of culture that can be
used without concentrating the cells (which can be tedious
with many cultures). However, if several mutant phenotypes
are to be assayed in the same cultures, sampling is un-
avoidable. In addition, because a large culture contains
more ‘‘ information’’ than a small culture, it is better to
plate a small aliquot from a large culture than all of a small
culture if a proper correction can be applied …

The latest method for such a correction is a
likelihood-based estimator of m proposed in Zheng
(2008a). However, all exiting correction methods
rely on the assumption that the precise value of e is
known. In practice, the actual plating efficiency is
likely to be slightly different from the intended plating
efficiency, however meticulous the experimentalist
may be. To appreciate the consequence of this as-
sumption, consider one of the two recent fluctuation
experiments performed by Crane et al. (1996) to study
a mutation of Salmonella Typhimurium. Each of
these two experiments consists of 11 2.0-ml liquid
cultures, but only a portion of 0.2 ml from each cul-
ture was plated for the detection of mutant colonies.
We shall focus on the experiment that produced the
following data.

121 129 146 173 181 185 193 207

222 241 287
(2)

In principle, from the above data maximum likeli-
hood estimates of m and e can be computed simul-
taneously. However, in practice, the joint likelihood
function often causes numerical instability (Angerer,
2001). Even if one could overcome the numerical
instability problem, the classic likelihood approach
still does not seem to be the optimal way of estimating
mutation rates in the setting of partial plating. In
such a setting, the experimentalist intends to plate

a prescribed portion e0 of contents from each tube.
The joint likelihood function approach ignores this
knowledge about e0 and is thus unacceptable from a
philosophical perspective. One strategy for account-
ing for this knowledge is to maximize the likelihood
function along the line e=e0 in the me-plane. Zheng
(2008a) gives a Newton–Raphson type method to
implement this strategy. In the experiment whose data
are given in eqn (2), e0=0.1. Using SALVADOR 2.3,
one finds that the m.l.e. of m is m̂=283�93. However,
we also note that the m.l.e. of m is extremely sensitive
to changes in the presumed plating efficiency. As-
suming the plating efficiency to be 0.08, one obtains
an m.l.e. of 343.04. Changing the plating efficiency to
0.12, one has an m.l.e. of 243.42. Thus, the second
strategy seems to be too restrictive. Here we propose
a Bayesian middle ground between the two extreme
strategies. We postulate that the actual plating
efficiency may not be precisely e0, but is instead a
realization of a random variable centred at e0 with a
relatively small variance. Thus, two experiments with
the same intended plating efficiency e0 may have
different actual plating efficiencies due to different
laboratory conditions, different experimentalists con-
ducting the experiments or some other factors. Note
that Asteris & Sarkar (1996) proposed a Bayesian
approach to estimating m under the assumption of
perfect plating efficiency.

2. Bayesian formulation and Markov chain simulation

A natural way to model imperfect plating efficiency is
to view the plating procedure as a binomial thinning
process applied to an LD(m) distribution (Armitage,
1952). Thus, the p.g.f. of the number of mutant
colonies can be obtained by replacing z in eqn (1) with
1xe+ez, which gives the p.g.f.

G(z; m, e)= exp
me(1xz) log [e(1xz)]

1xe+ez

� �
: (3)

A distribution having the above p.g.f. is called an
LDx(m, e) distribution. (The latest work on this dis-
tribution is by Gerrish (2008).) If YyLDx(m, e), the
probability mass function p(k ; m, e)=Prob(Y=k)
does not have a closed-form expression. Using results
obtained by Stewart (1991), Jones (1993a, b, 1994)
and Angerer (2001), Zheng (2008a) gives the follow-
ing recursive algorithm for computing p(k ; m, e) for
k=0, 1, … , K. First, if ef0.5, computing the fol-
lowing auxiliary sequence:

g1=x1x(1xe)x1 log e,

gk+1=x
e

1xe
gk+

1

k(k+1)
(for k=1, . . . ,Kx1):

(4)

A variation of the above equations is recommended
for e>0.5 (Zheng, 2008a), but we need not consider
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such cases in the context of partial plating. Next,
compute the probabilities recursively as follows:

p(0; m, e)= exp (me(1xe)x1 log e),

p(k; m, e)=
me

k(1xe)
g
k

j=1
jgjp(kxj; m, e)

(k=1, . . . ,K):

(5)

The above algorithm permits relatively fast calcula-
tions of the joint likelihood function of m and e.

Now let y1, … , yn be the number of mutant
colonies observed in an n-tube fluctuation experiment
in which an e-portion of liquid culture from each tube
is plated. Thus, the yi are an iid sample from an
LDx(m, e) distribution. The likelihood function is of
the form

L(m, ejdata)=
Yn
j=1

p(yj; m, e), (6)

where p(. ; m, e) is the probability mass function of
an LDx(m, e) distribution. The likelihood function
can be computed by first calculating p(k ; m, e) for
k=0, 1, … , max1fjfn yj recursively using eqns (4)
and (5) and then forming the product in eqn (6) using
relevant terms. We relied on SALVADOR 2.3 (Zheng,
2008b) to compute the probability mass function.

An important issue in modelling the data is the
choice of a prior distribution for the plating efficiency
e. As cell death caused by plating is assumed to be
negligible, it appears a basic requirement that the
prior concentrate in a relatively small neighborhood
of e0 and be symmetrical about e0. The beta distri-
bution is widely used to model proportions. One
strategy is to match the mean; that is, let e have a
Beta(a, b) distribution with a/(a+b)=e0. Another
strategy is to match the mode; that is, use a Beta
distribution with (ax1)/(a+bx2)=e0. However,
neither approach produces a distribution that is
strictly symmetrical about e0. To meet the basic re-
quirement, we depart from convention and choose
a truncated normal distribution as a prior for e. We
employ the notation Ntrunc(e0, u, a, b) to denote a
distribution whose density function has the form

p(e) / (2p�)x1=2 exp x
(exe0)

2

2�

� �
(a<e<b):

We further let bxe0=e0xa to ensure symmetry of the
truncated normal density function.

To complete the prior specification, we assign to the
parameter m a relatively diffuse prior distribution of
the form

g(m)=
m0

(m+m0)
2 (m>0): (7)

The median of this distribution is m0 (Albert, 2007,
p. 146). One can assign an empirical value to m0.

For example, an accepted representative mutation
rate for Escherichia coli cells is 10x9 per cell division.
Therefore, for simplicity, one can set m0=10x9 NT. A
sensible value for m0 can also be chosen by consider-
ing independent but similar existing experiments.
From such an independent experiment one can derive
several estimates ofm, e.g., the m.l.e. ofm, that can be
used as parameter values for m0 in the prior density in
eqn (7). A third option, which appears most useful
in practice, is to derive a value for m0 directly from
the data to be analysed. For example, one can easily
obtain a candidate for m0 by utilizing Jones’ formula

~mm=
ĵ0�5=ex log 2

log ( ĵ0�5 =e)x log ( log 2)
, (8)

where ĵ0�5 is the median of the data (Jones et al.,
1994). By replacing e with the intended plating
efficiency e0=0.1 in the above equation and applying
the resulting formula to the data in eqn (2), we arrive
at a sensible value for m0 which we denote by
~mm=234�402. This method of assigning a value to the
parameter m0 in the prior in eqn (7) was inspired by
the empirical Bayes idea (e.g. Carlin & Louis, 2009,
p. 225). We found that posterior inference about m is
not sensitive to the choice of a value for m0.

Following convention, we further assume that
the prior distributions of e and m are independent.
Consequently, the posterior joint density ofm and e is
proportional to

Yn
j=1

p(yj; m, e)

" #
(m+m0)

x2 exp x
(exe0)

2

2�

� �

(m>0 and 0<afefb<1):

To facilitate posterior simulation, wemake a change
of variables

h1= log (m),

h2= log
exa

bxe

� �
,

(9)

which transforms the parameter space onto the entire
Euclidean plane. The Jacobian of this transform is

J=(bxa)
eh1+h2

(1+eh2 )2
:

Accounting for the Jacobian of this transformation,
the logarithm of the posterior density is, up to a con-
stant term independent of h1 and h2,

h(h1, h2)=g
n

j=1
log p(yj; e

h1 , logitx1
a, b(h2))

x2 log (eh1+m0)x
( logitx1

a, b(h2)xe0)
2

2�

+h1+h2x2 log (1+eh2),

(10)
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where

logitx1
a, b(x) �

a+bex

1+ex
:

Posterior simulation can be further facilitated by
reducing the correlation between h1 and h2 via the
following linear transform:

f1=h1,

f2=ch1+h2:
(11)

Here c is a real constant to be chosen by trial and
error. Since the Jacobian of the transform in eqn (11)
is a constant, the logarithm of the posterior density
for f1 and f2 is, up to an additive constant, given by

hc(f1, f2) � h(f1, f2xcf1): (12)

Our inference about the fundamental parameter m is
based on the log posterior joint density of f1 and f2
given in eqn (12). Using eqns (4) and (5), we adapted
the standard ‘Metropolis within Gibbs ’ method as
outlined in the appendix to perform posterior infer-
ence. A simple way of choosing initial values for this
algorithm is to set m= ~mm and e=e0 in eqn (9). Since
log((e0xa)/(bxe0))=0, it follows from eqn (11) that
the initial states of the chain are

f(0)1 = log ( ~mm),

f(0)2 =c log ( ~mm):
(13)

3. Illustration and discussion

We illustrate the above algorithm by analysing the
data given in eqn (2). We first choose a truncated
normal distribution as a prior for m. Recall that the
experimentalist intended to plate 10% of the contents
from each tube, which dictates that we set e0=0.1. We
assume that the actual plating efficiency falls within
50% of either side of the intended plating efficiency,

and hence we set a=0.05 and b=0.15. The choice of
a value for the variance parameter u can reflect the
experimentalist’s uncertainty about the actual plating
efficiency, which can be guided by a simple graphical
approach. By inspection of plots of various truncated
normal density functions like Fig. 1, we choose
u=10x4 to reflect our uncertainty about the actual
plating efficiency. To get a feel for this particular
prior, Ntrunc(0.1, 10

x4, 0.05, 0.15), we calculated the
following two prior probabilities : P(0.09<e<0.11)=
0.68 and P(0.08<e<0.12)=0.95. The second prob-
ability implies that the experimentalist is 95% certain
that the actual plating efficiency falls within 20% of
either side of the intended plating efficiency. We next
focused attention on the choice of the linear trans-
form constant c appearing in eqn (11) and the two
scale parameters, c1 and c2, defined in the appendix.
For each trial triplet (c, c1, c2), we ran the algorithm
for a few thousands of iterations to examine the
two acceptance rates and the sample correlation co-
efficient, r=corr(f1, f2). We aimed at obtaining ac-
ceptance rates of around 0.44 (see, e.g. Albert, 2007,
p. 105) and a correlation r of relatively small magni-
tude. In addition, we examined contour plots, trace
plots and autocorrelation plots to assess convergence
of the chain. We finally chose c=2.15, c1=0.30 and
c2=0.75. We then started our ‘final ’ Markov chain by
settingm0= ~mm=234�402 in eqn (10) and using eqn (13)
with the same ~mm value. We ran the algorithm outlined
in the appendix for 50 000 iterations after a burn-in
of 5000 iterations. Every 10th iterate is saved for
summaries and inferences (see Figs. 2–4 for more
details about these saved draws). This recipe yielded
r=x0.013 and acceptance rates of 0.44 and 0.43 for
f1 and f2, respectively. Inference about m is based on
the induced chain of ef1. The mean of this induced
chain is m̄=284�1 and the median is 282.3. Both
are close to the m.l.e., m̂=283:9, obtained using the

Fig. 1. Three truncated normal density functions
Ntrunc(0.1, u, 0.05, 0.15) with different values of u, which
can be considered as prior distributions for e when the
intended plating efficiency is e0=0.1.

Fig. 2. Contour plot of the posterior joint density of f1
and f2 along with the last 500 draws of a simulated chain
for the data given in eqn (2).
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existing method of Zheng (2008a). Since the present
approach takes into account a degree of uncertainty
about the actual plating efficiency, the 95% credible
interval form, which is (218.2, 359.7), is wider than the
corresponding confidence interval (Zheng, 2008b),
which is (232.5, 332.4).

Although the proposed method cannot be auto-
mated to the extent to which the maximum likelihood
method can, the method is still simple enough for
routine practical use. Sensible choice of the three
tuning parameters, c, c1 and c2, might require time and
experience on the part of the data analyst, but it is
worth noting that the above simulation recipe, i.e., the
length of a burn-in period and the number of itera-
tions after the burn-in period, can tolerate a relatively
wide range of values of the tuning parameters. As an
illustration, we re-ran the above simulation for 1000
times. Each time we followed the same recipe, but
allowed the three tuning parameters to be determined
by the following equations:

c=2�15r(1+0�5(r1x0�5)),
c1=0�30r(1+0�5(r2x0�5)),
c2=0�75r(1+0�5(r3x0�5)),

where r1, r2 and r3 were drawn from Uniform(0,1).
The 0.025, 0.500 and 0.975 posterior quantiles are

summarized in Fig. 5. The box plots clearly indicate
that all the simulations led essentially to the same
inference about m.

The proposed approach makes explicit a subjective
ingredient in the estimator of m, which was hidden
in all non-Bayesian estimators as the assumption of
absolute certainty about actual plating efficiency is
also subjective. The new approach offers a practical
recipe for obtaining a better indication of the range of
m that can be expected in view of the data at hand.

The bulk of the simulations were performed on an IBM
iDataPlex machine managed by Texas A&M Super-
computing facility. The author is grateful for technical
assistance provided by staff at the facility. The author also
deeply appreciates the helpful comments offered by an
anonymous referee.

Appendix

We propose simulating the posterior distribution
of (f1, f2) by a standard ‘Metropolis within Gibbs ’
algorithm (e.g. Gelman et al., 2004, p. 292; Carlin
& Louis, 2007, p. 141). Specifically, at the tth itera-
tion, we

1. Draw z from Normal(0,1) and set f*=f (tx1)+c1z.
2. Let r=min{0, hc(f

*, f 2
(tx1))xhc(f1

(tx1), f 2
(tx1))}.

3. Draw u from Uniform(0,1) ; if log u<r then set
f 1
(t)=f*, and otherwise set f1

(t)=f1
(tx1).

4. Draw z from Normal(0,1) and set f*=f 2
(tx1)+c2z.

5. Let r=min{0, hc(f 1
(t), f*)xhc(f1

(t), f 2
(tx1))}.

6. Draw u from Uniform(0,1) ; if log u< r then set
f 2
(t)=f*, and otherwise set f 2

(t)=f 2
(tx1).

Here c1 and c2 are two positive scale parameters
chosen by trial and error to control acceptance rates.

Fig. 5. The same simulation recipe described in the last
section were repeated 1000 times with random tuning
parameters. From the top panel to the bottom, the box
plots describe the 0.025, 0.500 and 0.975 posterior
quantiles, respectively, for the data given in eqn (2).

Fig. 3. Trace plot of the last 2000 f1 draws for the analysis
of data given in eqn (2).

Fig. 4. Histogram of 5000 simulated values of the
mean number of mutations m=ef1. In this simulation
for the data in eqn (2) the prior for e was
Ntrunc(0.1, 10

x4, 0.05, 0.15).
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