
12 Supersymmetric grand unification

In this brief chapter we discuss one of the most compelling pieces of circumstantial
evidence in favor of supersymmetry: the unification of coupling constants. Earlier, we
introduced grand unification without supersymmetry. In this chapter we consider how
supersymmetry modifies that story.

12.1 A supersymmetric grand unified model

Just as in theories without supersymmetry, the simplest group into which one can unify the
gauge group of the Standard Model is SU(5). The quark and lepton superfields of a single
generation again fit naturally into a 5̄ and a 10.

To break SU(5) down to SU(3)×SU(2)×U(1), we can again consider a 24-dimensional
representation of the Higgs field �. If we wish supersymmetry to be unbroken at high
energies, the superpotential for this field should not lead to supersymmetry breaking. The
simplest renormalizable superpotential is

W(�) = m Tr�2 + λ

3
Tr�3. (12.1)

Treating this as a globally supersymmetric theory (i.e. ignoring supergravity corrections),
the equations

∂W
∂�

= 0 (12.2)

are conveniently studied by introducing a Lagrange multiplier to enforce Tr� = 0. The
resulting equations have three solutions:

� = 0, � = m
λ

diag(1, 1, 1, −4), � = m
λ

diag(2, 2, 2, −3, −3). (12.3)

These solutions either leave SU(5) unbroken or break SU(5) down to SU(4)× U(1) or the
Standard Model group. Each solution is isolated; you can check that there are no massless
fields from � in any of these states. At the classical level they are degenerate.

If we include supergravity corrections, however, these states are split in energy. Provided
that the unification scale m is substantially below the Planck scale, these corrections
can be treated perturbatively. In order to make the cosmological constant vanish in the
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178 Supersymmetric grand unification

SU(3)× SU(2)× U(1) (in brief, (3, 2, 1)) vacuum, it is necessary to include a constant in
the superpotential such that, in this vacuum, the expectation value of the superpotential is
zero. As a result the other two states have negative energy (as we will see in the chapter on
gravitation, they correspond to solutions in which space–time is not Minkowski but anti-de
Sitter).

We will leave working out the details of these computations to the exercises and turn to
other features of this model. It is necessary to include Higgs fields to break SU(2)× U(1)
down to U(1). The simplest choice for the Higgs is the 5-dimensional representation. As in
the MSSM, it is actually necessary to introduce two sets of fields so as to avoid anomalies:
a 5 and 5̄ are the minimal choice. We denote these fields by H and H̄.

Once again it is important that the color triplet Higgs fields in these multiplets be massive
in the (3, 2, 1) vacuum. The most general renormalizable superpotential that couples the
Higgs to the adjoint is

mHHH̄ + yH̄�H. (12.4)

By carefully adjusting y (or m) we can arrange that the Higgs doublet is massless. As
a result the triplet is automatically massive, with a mass of order mH. Of course, this
represents an extreme fine tuning. We will see that the unification scale is about 1016 GeV,
so this is a tuning of one part in 1013 or so. But it is curious that this tuning only needs be
done classically. Because the superpotential is not renormalized, radiative corrections do
not lead to large masses for the doublets.

12.2 Coupling constant unification

The calculation of coupling constant unification in supersymmetric theories is quite
similar to that in non-supersymmetric theories. We assume that the threshold for the
supersymmetric particles is somewhere around 1 TeV. So, up to that scale, we run the
renormalization group equations just as in the Standard Model. Above that scale there are
new contributions from the superpartners of ordinary particles. The leading terms in the
beta functions are as follows:

SU(3), b0 = 3; SU(2), b0 = −1; U(1), b0 = −33
5

. (12.5)

One can be more thorough, including two-loop corrections and threshold effects. The
result of such an analysis are shown in Fig. 12.1. One has:

Mgut = 1.2 × 1016GeV, αgut ≈ 1
25

. (12.6)

The agreement in the figure is striking. One can view this as a successful prediction of αs
(see below Eq. (3.100)), given the values of the SU(2) and U(1) couplings.
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Fig. 12.1 In the Standard Model the couplings do not unify at a point. In the MSSM they do, provided that the threshold for
new particle production is at about 1 TeV. Reprinted with permission from P. Langacker and N. Polonsky,
Uncertainties in coupling constant unification, Phys. Rev. D, 47, 4028, 1993. Copyright (1993) by the American
Physical Society.

12.3 Dimension-five operators and proton decay

We have seen that, in supersymmetric theories, there are dangerous dimension-four
operators. These can be forbidden by a simple Z2 symmetry, i.e. R-parity. But there are
also operators of dimension five which can potentially lead to proton decay rates far larger
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180 Supersymmetric grand unification

than the experimental limits. The MSSM possesses B- and L-violating dimension-five
operators which are permitted by all symmetries. For example, R-parity does not forbid
such operators as

O a
5 = 1

M

∫
d 2θ ūūd̄e+, Ob

5 = 1
M

∫
d 2θ QQQL. (12.7)

These are still potentially very dangerous. When one integrates out the squarks and
gauginos they will lead to dimension-six B- and L-violating operators in the Standard
Model with coefficients (optimistically) of order

α

4π
1

Mmsusy
. (12.8)

Comparing with the usual minimal SU(5) prediction, and supposing that M ∼ 1016 GeV,
one sees that a suppression of order 109 or so is needed.

Fortunately, such a suppression is quite plausible, at least in the framework of super-
symmetric GUTs. In a simple SU(5) model, for example, the operators in Eq. (12.7)
will be generated by exchange of the color triplet partners of ordinary Higgs fields, and
thus one obtains two factors of Yukawa couplings. Also, in order that the operators be
SU(3) invariant the color indices must be completely antisymmetrized, so more than one
generation must be involved. This suggests that suppression by factors of order the CKM
angles is plausible. So we can readily imagine a suppression by factors 10−9–10−11.
Proton decay can be used to restrict – and does severely restrict – the parameter space
of particular models. The simplest SU(5) model, with TeV-scale squarks and gauginos and
the simplest Higgs structure, can be ruled out, for example. But what is quite striking is
that we are automatically in the right range to be compatible with experimental constraints,
and perhaps even to see something. It is not obvious that things would work out like this.

So far we have phrased this discussion in terms of baryon-violating physics at Mgut.
But, whatever the underlying theory at Mp may be, there is no reason to think that it
should preserve baryon number. So one expects that already at scales just below Mp
these dimension-five terms are present. If their coefficients were simply of order 1/Mp,
the proton decay rate would be enormous, five orders of magnitude or more faster than
the current bounds. In any such theory one must also explain the smallness of the Yukawa
couplings. One popular approach is to postulate approximate symmetries. Such symmetries
could well suppress the dangerous operators at the Planck scale. One might expect that
there would be further suppression in any successful underlying theory. After all, the rate
from Higgs exchange in GUTs is very small because the Yukawa couplings are small. We
do not really know why the Yukawa couplings are small, but it is natural to suspect that
this is a consequence of (approximate) symmetries. These same symmetries, if present,
would also suppress dimension-five operators from Planck-scale sources, presumably by a
comparable amount.

Finally, we mentioned earlier that one can contemplate symmetries that would suppress
dimension-four operators beyond a Z2 R-parity. Such symmetries, as we will see, are
common in string theory. One can write down R-symmetries which forbid not only all
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the dangerous dimension-four operators but some or all the dimension-five operators as
well. In this case, proton decay could be unobservable in feasible experiments.

Suggested reading

A good introduction to supersymmetric GUTs is provided in Witten (1981). The reviews
and texts which we have mentioned on supersymmetry and grand unification all provide
good coverage of the topic. The Particle Data Group website has an excellent survey,
including up-to-date unification calculations and constraints on dimension-five operators.
Murayama and Pierce (2002) discussed the constraints on minimal SU(5) unification from
dimension-five operators.

Exercises

(1) Work through the details of the simplest SU(5) supersymmetric grand unified model.
Solve the equations

∂W
∂�

= 0.

Couple the system to supergravity, and determine the value of the constant in the
superpotential required to cancel the cosmological constant in the (3, 2, 1) minimum.
Determine the resulting value of the vacuum energy in the SU(5) symmetric minimum.

(2) In the simplest SU(5) model, include a 5 and a 5̄ representation of Higgs fields.
Write down the most general renormalizable superpotential for these fields and
the 24-dimensional representation, �. Find the condition on the parameters of the
superpotential such that there is a single light doublet. Using the fact that only
the Kahler potential is renormalized, show that this tuning of parameters at tree
level ensures that the doublet remains massless to all orders of perturbation theory.
Now consider the couplings of quarks and leptons required to generate masses
for the fermions. Show that exchanges of 5 and 5̄ Higgs lead to baryon- and
lepton-number-violating dimension-five couplings.

(3) Show how various B-violating four-fermion operators are generated by squark and
slepton exchange, starting with the general set of B- and L-violating terms in the
superpotential.
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