
16
Gallery of definitions

16.1 Units

SI units are used throughout this book unless otherwise stated. Most books on
modern field theory choose natural units in which h̄ = c = ε0 = µ0 = 1. With
this choice of units, very many simplifications occur, and the full beauty of the
covariant formulation is apparent. The disadvantage, however, is that it distances
field theory from the day to day business of applying it to the measurable world.
Many assumptions are invalidated when forced to bow to the standard SI system
of measurements. The definitions in this guide are chosen, with some care, to
make the dimensions of familiar objects appear as intuitive as possible.

Some old units, still encountered, include electrostatic units, rather than
coulombs; ergs rather than joules; and gauss rather than tesla, or webers per
square metre:

Old SI

1 e.s.u. 1
3 × 10−9 C

1 erg 10−7 J

1 eV 1.6× 10−19 J

1 Å 10−10 m

1 G 10−4 Wb m−2

1 γ 10−5 G
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400 16 Gallery of definitions

16.2 Constants

Planck’s constant h̄ = 1.055× 10−34 J s
speed of light in a vacuum c = 2.998× 108 m s−1

electron rest mass me = 9.1× 10−31 kg
proton rest mass mp = 1.67× 10−27 kg
Boltzmann’s constant kB = 1.38× 10−23 J K−1

Compton wavelength h̄/mc

structure constant α = e2

4πε0h̄c = 1
137.3

classical electron radius r0 = e2

4πε0mc2 = 2.2× 10−15 m

Bohr radius a0 = 4πε0h̄2

e2me
= 0.5292 Å

electron plasma frequency ωp =
√

Ne2

ε0me
s−1

ωp ∼ 56
√

N rad s−1

cyclotron frequency ωc = ωB = eB
m s−1

16.3 Engineering dimensions

In n spatial dimensions plus one time dimension, we have the following
engineering dimensions for key quantities (note that square brackets denote the
engineering dimension of a quantity):

velocity (of light) [c] LT−1

Planck’s constant [h̄] ML2T−1

electric charge [e] L(n+1)/2T−2

gravitational constant G M−1L3T−2

permittivity [ε0] M−1LT−2

permeability [µ0] MT4L−3

structure constant [α] Ln−3

The dynamical variables have dimensions:

Schrödinger field [ψ] L−n/2

Dirac field [ψ] L−n/2

Klein–Gordon [φ] L−n/2T
1
2 [h̄]−

1
2

= L−(n+2)/2T−
1
2 M− 1

2

Maxwell [Aµ] L1−nT[h̄] = MTL−(n−1)/2

electric current density Jµ = δS
δAµ [e]L1−nT−1

particle number density N L−n
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16.3 Engineering dimensions 401

The plasma distributions are defined from the fact that their integral over a phase
space variable gives the number density:

N (x) =
∫

dv fv(v, x) (16.1)

=
∫

dnp f p(p, x) (16.2)

and so on. One is generally interested in the distribution as a function of velocity
v, the momentum p or the wavenumber k. In common units, where h̄ = c = 1,
the above may be simplified by setting L = T = M−1. Notice that all coupling
constants scale with spacetime dimension.

The constants ε0 and µ0 are redundant scales; it is not possible to identify the
dimensions of the fields and couplings between matter and radiation uniquely.
Dimensional analysis of the action, allows one to determine only two combina-
tions: [

eAµ
] = MLT−1[

e2

ε0

]
= LnMT−2. (16.3)

These may be determined by identifying JµAµ as an energy density and from
Maxwell’s equations, respectively. If we assume that ε0 and µ0 do not change
their engineering dimensions with the dimension of space n, then we can
identify the scaling relations [

Aµ
] ∼ L−

n
2

[e] ∼ L
n
2 , (16.4)

where ∼ means ‘scales like’. The former relation is demanded by the dimen-
sions of the action; the latter is demanded by the dimensions of the coupling
between matter and radiation, since the product eAµ must be independent of the
dimension of spacetime. Although the dimensions of e, Aµ, ε0 and µ0 are not
absolutely defined, a solution is provided in the relations above.

From the above, one determines that the cyclotron frequency is independent
of the spacetime dimension [

eB

m

]
= T−1, (16.5)

and that the structure constant α has dimensions[
e2

4πε0h̄c

]
= Ln−3. (16.6)
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402 16 Gallery of definitions

The so-called plasma frequency is defined only for a given plasma charge
density ρ, since [

e2

ε0m

]
= LnT−2. (16.7)

Thus, ω2
p = eρN

ε0m = eN
ε0m .

The Hall conductivity is a purely two-dimensional quantity. The dimensional
equation J = σH E can be verified for n = 2 and σH = e2/h̄, but it is noted
that each of the quantities scales in a way which requires an additional scale for
n �= 2.

16.4 Orders of magnitude

16.4.1 Sizes

Planck length Lp

√
Gh̄/c3 = 1.6× 10−35 m

Planck time Tp = Lp/c
√

Gh̄/c5 = 5.3× 10−44 s
Planck mass Mp

√
h̄c/G = 2.1× 10−8 kg

Planck energy Ep = Mpc2 1.8× 109 J = 1.2× 1019 GeV
Hall conductance in n = 2 σH = e2/h̄
Landau length at kBT l = e2/(4πε0kBT ) = 1.67× 10−5/T m
Debye length h =

√
εK T/Ne2 = 69×√T/N m

The Landau length is that length at which the electrostatic energy of electrons
balances their thermal energy.

16.4.2 Densities and pressure

number density (‘particles’ per unit volume) N (x) or ρN

number current N 0 = Nc, N i = Nvi . Nµ or JN µ

mass density current J m
µ = m Nµ

charge density current J e
µ = eNµ

charge density or other sources Jµ

interstellar gas 106 m−3

ionosphere 108–1012 m−3

solar corona 1013 m−3

solar atmosphere 1018 m−3

laboratory plasma 1018–1024 m−3

mean density of Earth 5520 kg m−3

mean density of Jupiter/Saturn 1340/705 kg m−3

solar wind particle number density 3–20 cm−3

magneto-pause number density 105–106 m−3
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Pressure is denoted by P and has the dimensions of energy density or force
per unit area.

16.4.3 Temperatures

interstellar gas 102 K
Earth ionosphere 104 K
solar corona 106 K
solar atmosphere 104 K
laboratory plasma 106 K
super-conducting transition 0–100 K
Bose–Einstein condensation µK–nK

16.4.4 Energies

first ionization energies ∼ 10 eV
Van der Waals binding energy 2 keV
covalent binding energy 20 keV
hydrogen bond binding energy 20 keV
plasma energies, solar wind 1–100 keV
Planck energy Ep = Mpc2 1.8× 109 J = 1.2× 1019 GeV

Lorentz energy–momentum tensor θµν
conformal energy–momentum tensor Tµν

16.4.5 Wavelengths

radio waves > 10−2 m
microwaves 10−2 m
infra-red (heat) 10−3–10−6 m
visible light 10−6–10−7 m
ultra-violet 10−7–10−9 m
X-rays 10−9–10−13 m
gamma rays < 1011 m

thermal de Broglie wavelength λ =
√

h̄2

2mkBT

hydrogen atom at 273 K 2.9× 10−11 m
hydrogen atom at 1 K 4.9× 10−10 m
electron at 273 K 1.27× 10−9 m
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404 16 Gallery of definitions

16.4.6 Velocities

speed of light in vacuum c 2.9× 108 m s−1

solar wind 300–800 km s−1

phase velocity ω
ki
= vi

ph(k)

group velocity ∂ω
∂ki
= vi

g(k)

energy transport velocity T0i
T00
= vi

en

16.4.7 Electric fields

geo-electric field at surface (fine weather) 100 V m−1

geo-electric field at surface (stormy weather) 1000 V m−1

auroral field 10−3–10−2 V m−1

16.4.8 Magnetic fields

intense laboratory field H H ∼ 106 A m−1 [102]
highest coercive field H in minerals H ∼ 106 A m−1 [102]
geo-magnetic field H ∼ 10 A m−1 [102]
geo-magnetic field B0 = 1.88× 10−5 tesla
vertical geo-magnetic field Bv = B0 tan δ, δ = declination from north
Earth dipole moment 7.95× 1022 A m−2

16.4.9 Currents

atmospheric current from ionosphere to ground 10−12 A m−2 [50]
auroral current aligned with field 10−7 A m−2

ionospheric dynamo 500 000 A (eastward)

16.5 Summation convention

Einstein’s summation convention is used throughout this book. This means that
repeated indices are summed over implicitly:∑

A

φAφA → φAφA, (16.8)

and ∑
µ

AµAµ→ AµAµ. (16.9)

In other words, summation signs are omitted for brevity.
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16.6 Symbols and signs

16.6.1 Basis notation

gµν the spacetime metric with signature −+++ · · ·
ηµν the constant Minkowski spacetime metric

with value diag(−1, 1, 1, 1, . . .)

g = −detgµν the unsigned determinant of the metric
which appears in volume measures

µ, ν, λ, ρ . . . Greek indices are spacetime-covariant and
run from 0, . . . , n in n + 1 dimensions

i, j, k = 1, . . . , n Latin indices refer to spatial dimensions

∂t shorthand for ∂
∂t etc.

A, B = 1, . . . , dR upper case Latin indices are the components
of a group multiplet for non-spacetime
groups, e.g. charge, colour,
in a general representation G R

a, b = 1, . . . , dG lower case Latin indices are group
indices which belong to the adjoint
representation Gadj

σ signifies space

dσ = dx1 . . . dxn the spatial volume element

dσµ volume element for a spacelike hyper-surface

∂σ derivative normal to a spacelike hyper-surface
has the canonical interpretation ∂0

U ν
µ or U B

A matrix element of a transformation group

Some books make the abbreviation, (∂µφ)2, when – in fact – they mean
(∂µφ)(∂

µφ). In this text (∂µφ)2 means only (∂µφ)(∂µφ) which differs by
a factor of the metric. Note that, because of the choice of metric above,
(∂iφ)

2 = (∂ iφ)(∂iφ) = (∂iφ)(∂iφ).
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406 16 Gallery of definitions

16.6.2 Volume elements

dVx invariant volume element in (n + 1) dimensional
spacetime; dVx = dx0dx1dx2 . . . dxn√g

dVt = 1
c dVx the volume element which appears in

in most dynamical contexts, such as
the action

(dx) = dVt alternative notation for dVt

dσµ the volume element on spacelike hyper-surface
with a unit normal nµ parallel to dσµ

dσ ≡ (dx) an abbreviation for dσ 0, the ‘canonical’ spacelike

hyper-surface; dσ = dx1 . . . dxn
√−detgi j

The volume element appearing in the action, and in most transformations, is
(dx), which differs from the spacetime volume element by a factor of 1/c. This
is because the action has dimensions of energy × time. Had the action been
defined with an extra factor of c one could have avoided this blemish, but that is
not traditionally the case. In natural units, h̄ = c = 1, this problem is concealed.

16.6.3 Symmetrical and anti-symmetrical combinations

A bar (like a mean value) is used for objects which are symmetrical, e.g.

x = 1

2
(x1 + x2), (16.10)

whereas a tilde is used to signify anti-symmetry:

x̃ = (x1 − x2). (16.11)

Similarly, tensor parts T i j and T̃i j are, by assumption, symmetrical and anti-
symmetrical parts.

16.6.4 Derivatives

Field theory abounds with derivatives. Since we often have use for more
symbols than are available, some definitions depend on context.
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d
dxµ the total derivative (this object is seldom used)

∂
∂xµ = ∂µ the partial derivative acting on x , e.g.

x
∂µ G(x, x ′)

Dµ a generic derivative; it commonly denotes the gauge-
covariant derivative Dµ = ∂µ − ieAµ

∇µ the Lorentz-covariant derivative, which includes the ‘affine
connection’ ∇µ is the same as ∂µ when acting on scalar fields,
but for a vector field ∇µAν = ∂µAν + �λµν Aλ

∇2 = ∇ i∇i the spatial Laplacian

= ∇µ∇µ the d’Alambertian operator; in Cartesian coordinates,
= − 1

c2
∂2

∂t2 + ∂2
i , but generally = 1√

g∂µ
(√

ggµν∂ν
)

∂̂µ a partial derivative in which the speed of light is replaced by
an effective speed of light; also used for higher-dimensional
indices in Kaluza–Klein theory.

16.6.5 Momenta

pi the kinetic momentum also denoted p;
the generalization of mass × velocity in classical mechanics
Quantum theory replaces this by −ih̄∂i

pµ the n + 1 dimensional spacetime momentum,
a covariant representation of energy and momentum
The µ = 0 component is E/c and the spatial
components are pi

πµ the covariant momentum. It is the analogue of
pµ but includes any covariant connections,
e.g. the electromagnetic vector potential, or the
spacetime ‘affine’ connection
e.g. πµ is −ih̄ Dµ or −ih̄∇µ

!σ (or simply !) is the canonical momentum, defined
by the surface term of the variation of the action (see eqn. (4.23))
The covariant definition of the momentum conjugate
to q(x) is !σ = ∂L

∂(Dσ q(x)) , where σ is a timelike direction;

e.g. ! = ∂L
∂(D0q(x))

. This quantity does not have the dimensions of
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408 16 Gallery of definitions

momentum: it is referred to only as a momentum in the sense of
being canonically conjugate to the field variable q(x) (which does
not have the dimensions of position)

q̂, p̂i coordinates and momenta which are re-scaled so as
to have common engineering dimensions

(dk) Schwinger notation for the integration measure dn+1k
(2π)n+1

(dk) Schwinger notation for the integration measure dnk
(2π)n

16.6.6 Position, velocity and acceleration

ri = xi − x ′i a ray between spatial position x and x′

r̂ i a hat can indicate a unit vector
vi components of the velocity of an object in the

laboratory frame
β i same as above in units of the speed of light β i = vi/c
β2 β iβi where β i = vi/c
γ relativistic contraction factor 1/

√
1− β2

Uµ, βµ velocity (n + 1)-vector; Uµ = γ (c, vi ) = γ cβµ

Uµ = ∂τ xµ is not directly measurable, but
transforms as a vector under Lorentz transformations
βµ = ∂t xµ does not because ∂t is not invariant

aµ = ∂0β
µ components of the acceleration

in the laboratory frame ai = v̇i/c2.
This quantity does not transform as an (n + 1)-vector

Aµ = ∂2
τ xµ acceleration vector, transforms

as a tensor of rank 1
ωk
ki
= vi

ph(k) phase velocity
∂ωk
∂ki
= vi

g(k) group velocity
T0i
T00

energy transport velocity

16.7 Limits

It is natural to check derived expressions in various limits to evaluate their
reliability. Here we list a few special limits which might be taken in this
context and caution against possibly singular limits. While it might be possible
to set quantities such as the mass and magnetic field strength to zero without
incurring any explicit singularities, one should not be surprised if these limits
yield inconsistent answers compared with explicit calculations in their absence.
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In many cases the singular nature of these limits is not immediately obvious,
and one must be careful to set these to zero, only at the end of a calculation, or
risk losing terms of importance:

c →∞ non-relativistic limit
h̄ → 0 classical limit
B → 0 the limit of zero magnetic field is often singular
m → 0 the limit of zero mass is often singular
R → 0 the limit of zero curvature is often singular.
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