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Abstract

For a given set S ⊂ N, RS (n) is the number of solutions of the equation n = s + s′, s < s′, s, s′ ∈ S .
Suppose that m and r are integers with m > r ≥ 0 and that A and B are sets with A ∪ B = N and
A ∩ B = {r + mk : k ∈ N}. We prove that if RA(n) = RB(n) for all positive integers n, then there exists
an integer l ≥ 1 such that r = 22l − 1 and m = 22l+1 − 1. This solves a problem of Chen and Lev [‘Integer
sets with identical representation functions’, Integers 16 (2016), A36] under the condition m > r.
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1. Introduction

For a given set S ⊂ N, the representation function RS (n) is the number of solutions
of the equation n = s + s′ with s < s′, s, s′ ∈ S . For a nonnegative integer a and a
set of nonnegative integers S , we define the sumset a + S = {a + s : s ∈ S }. Define
RA,B(n) to be the number of solutions of a + b = n with a ∈ A,b ∈ B. The representation
function was studied by Erdős, Sárközy and Sós in a series of papers many years ago
(see [3–7]). Sárközy asked whether there exist two integer sets A and B with infinite
symmetric difference and RA(n) = RB(n) for all large enough integers n. In 2002,
Dombi [2] proved that the set of positive integers can be partitioned into two subsets
C and D such that RC(n) = RD(n) for every positive integer n.

Let A be the set of those nonnegative integers that contain an even number of
ones in their binary representation and B = N \ A. Put Al = A ∩ [0, 2l − 1] and
Bl = B ∩ [0, 2l − 1]. In 2017, Kiss and Sándor [8] gave the following extensions of
Dombi’s result.

The second author was supported by the National Natural Science Foundation of China, Grant No.
11471017. The third author was supported by the National Natural Science Foundation for Youth
of China, Grant No. 11501299, the Natural Science Foundation of Jiangsu Province, Grant Nos.
BK20150889 and 15KJB110014, and the Startup Foundation for Introducing Talent of NUIST, Grant
No. 2014r029.
c© 2018 Australian Mathematical Publishing Association Inc.

15

https://doi.org/10.1017/S0004972718001107 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718001107


16 S.-Q. Chen, M.Tang and Q.-H. Yang [2]

Theorem 1.1 [8, Theorem 2]. Let C and D be sets of nonnegative integers such that
C ∪ D = N and C ∩ D = ∅, 0 ∈ C. Then RC(n) = RD(n) for every positive integer n if
and only if C =A and D = B.

Theorem 1.2 [8, Theorem 3]. Let C and D be sets of nonnegative integers such that
C ∪ D = [0,m] and C ∩ D = ∅, 0 ∈ C. Then RC(n) = RD(n) for every positive integer n
if and only if there exists a natural number l such that C =Al and D = Bl.

In 2016, Chen and Lev [1] obtained the following result.

Theorem 1.3 [1, Theorem 1]. Let l be a positive integer. There exist sets C and D such
that N = C ∪ D, C ∩ D = (22l − 1) + (22l+1 − 1)N and RC(n) = RD(n) for every positive
integer n.

There are many investigations of partitions and their representation functions (see,
for example, [9, 11–15]). In [1], Chen and Lev posed the following two problems.

Problem 1.4. Given that RC(n) = RD(n) for every positive integer n, C ∪ D = N and
C ∩ D = r + mN with integers r ≥ 0 and m ≥ 2, must there exist an integer l ≥ 1 such
that r = 22l − 1,m = 22l+1 − 1?

Problem 1.5. Given that RC(n) = RD(n) for every positive integer n, C ∪ D = [0,m]
and C ∩ D = {r} with integers r ≥ 0 and m ≥ 2, must there exist an integer l ≥ 1 such
that r = 22l − 1,m = 22l+1 − 2,C =A2l ∪ (22l − 1 +B2l) and D = B2l ∪ (22l − 1 +A2l)?

In 2017, Kiss and Sándor solved Problem 1.5 affirmatively.

Theorem 1.6 [8, Theorem 7]. Let C and D be sets of nonnegative integers such that
C ∪ D = [0,m] and |C ∩ D| = 1, 0 ∈ C. Then RC(n) = RD(n) for every positive integer
n if and only if there exists a natural number l such that C =A2l ∪ (22l − 1 + B2l) and
D = B2l ∪ (22l − 1 +A2l).

Recently, Li and the second author of this paper focused on Problem 1.4 and
obtained the following result.

Theorem 1.7 [10, Theorem 1.2]. Let m > r ≥ 0 be integers. Let A and B be sets of
nonnegative integers such that A ∪ B = N and A ∩ B = {r + mk : k ∈ N}. If RA(n) =

RB(n) for every positive integer n, then there exists an integer l ≥ 1 such that r = 22l − 1.

In this paper, we solve Problem 1.4 affirmatively under the condition m > r.

Theorem 1.8. Let m > r ≥ 0 be integers. Let A and B be sets such that A ∪ B = N and
A ∩ B = {r + mk : k ∈ N}. If RA(n) = RB(n) for every positive integer n, then there exists
an integer l ≥ 1 such that r = 22l − 1 and m = 22l+1 − 1.

Throughout this paper, the characteristic function of the set C is denoted by

χC(t) =

0 if t < C,
1 if t ∈ C,

and C(x) denotes the set of integers in C that are less than or equal to x.
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2. Lemmas

Lemma 2.1 [8, Claim 1]. Let 0 < r1 < · · · < rs ≤ m be integers. Then there exists at
most one pair of sets (C,D) such that C ∪ D = [0,m],C ∩ D = {r1, . . . , rs}, 0 ∈ C and
RC(k) = RD(k) for every k ≤ m.

Lemma 2.2. Let l ≥ 1 be a positive integer and let E, F be sets of nonnegative integers
such that E ∪ F = [0, 3 · 22l − 2], 0 ∈ E and E ∩ F = {22l − 1}. Then RE(n) = RF(n) for
every positive integer 1 ≤ n ≤ 3 · 22l − 2 if and only if

E :=A2l ∪ (22l − 1 + B2l) ∪ (22l+1 − 1 + (B2l ∩ [0, 22l − 2])) ∪ {3 · 22l − 2}, (2.1)

F :=B2l ∪ (22l − 1 +A2l) ∪ (22l+1 − 1 + (A2l ∩ [0, 22l − 2])). (2.2)

Proof. Sufficiency. It is easy to verify that E ∪ F = [0, 3 · 22l − 2], 0 ∈ E and E ∩ F =

{22l − 1}.
First, if 1 ≤ n ≤ 22l+1 − 2, then

RE(n) = RA2l (n) + RA2l,B2l (n − (22l − 1)), RF(n) = RB2l (n) + RA2l,B2l (n − (22l − 1)).

By Theorem 1.2, RE(n) = RF(n).
Next, if 22l+1 − 2 < n ≤ 3 · 22l − 3, then

RE(n) = RA2l,B2l (n − (22l − 1)) + RA2l,B2l (n − (22l+1 − 1)) + RB2l (n − 2(22l − 1)),

RF(n) = RA2l,B2l (n − (22l − 1)) + RA2l,B2l (n − (22l+1 − 1)) + RA2l (n − 2(22l − 1)).

Again, by Theorem 1.2, RE(n) = RF(n).
Finally, suppose that n = 3 · 22l − 2. Since 0 and 3 · 22l − 2 ∈ E, 22l − 1 and

22l+1 − 1 ∈ F,

RE(3 · 22l − 2) = 1 + RA2l,B2l (2
2l − 1) + RB2l (2

2l),

RF(3 · 22l − 2) = 1 + RA2l,B2l (2
2l − 1) + RA2l (2

2l).

By Theorem 1.2, RE(3 · 22l − 2) = RF(3 · 22l − 2).
Necessity. The necessity follows from Lemma 2.1 and the sufficiency.
This completes the proof of Lemma 2.2. �

Lemma 2.3. Let (S 1, S 2) and (A1, A2) be two pairs of finite sets such that S 1 ⊆ A1,
S 2 ⊆ A2, S 1 ∩ S 2 = A1 ∩ A2 and S 1 ∪ S 2 = A1 ∪ A2. Then S 1 = A1 and S 2 = A2.

Proof. Noting that, for any two finite sets A and B, |A ∪ B| = |A| + |B| − |A ∩ B|, we
have |S 1| + |S 2| = |A1| + |A2|. It follows from S 1 ⊆ A1 and S 2 ⊆ A2 that |S 1| = |A1| and
|S 2| = |A2|, and then S 1 = A1 and S 2 = A2. �
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3. Proof of Theorem 1.8

By Theorem 1.7, there exists an integer l ≥ 1 such that r = 22l − 1. Let E and F be
as in (2.1) and (2.2). If m ≥ 22l+1 and 0 ∈ A, then

A(3 · 22l − 2) ∪ B(3 · 22l − 2) = [0, 3 · 22l − 2],
A(3 · 22l − 2) ∩ B(3 · 22l − 2) = {22l − 1}.

Moreover, for 1 ≤ n ≤ 3 · 22l − 2,

RA(3·22l−2)(n) = RA(n) = RB(n) = RB(3·22l−2)(n).

By Lemma 2.2,
A(3 · 22l − 2) = E, B(3 · 22l − 2) = F.

Noting that 0 ∈ A, 1 ∈ B2l, 22l − 1 ∈ A2l and 3 · 22l − 2 ∈ A,

RA(3 · 22l − 1) = RA2l,B2l (2
2l) + RB2l (2

2l + 1) + χA(3 · 22l − 1).

RB(3 · 22l − 1) = RA2l,B2l (2
2l) + RB2l (2

2l + 1) − 1.

By Theorem 1.2, RA(3 · 22l − 1) > RB(3 · 22l − 1), which is a impossible. Hence
m < 22l+1. It is sufficient to prove that if 22l − 1 < m < 22l+1 − 1, then RA(n) = RB(n)
cannot hold for all positive integers n.

Now we assume that 22l ≤ m ≤ 22l+1 − 2 and 0 ∈ A. Let

M = 22l − 1 + m.

Since 22l+1 − 1 ≤ M ≤ 3 · 22l − 3, by Lemma 2.2,

E(M) ∪ F(M) = [0,M], E(M) ∩ F(M) = {22l − 1}, (3.1)
RE(M)(n) = RE(n) = RF(n) = RF(M)(n) for 1 ≤ n ≤ M. (3.2)

Moreover,

A(M) ∪ B(M − 1) = [0,M], A(M) ∩ B(M − 1) = {22l − 1}. (3.3)

Since RA(n) = RB(n) for every positive integer n and 0 < B, for 1 ≤ n ≤ M,

RA(M)(n) = RA(n) = RB(n) = RB(M−1)(n). (3.4)

By (3.1)–(3.4) and Lemma 2.1,

A(M) = E(M), B(M − 1) = F(M). (3.5)

Hence, χF(M) = 0.
Let t be be an arbitrary nonnegative integer such that the conditions M ≤ M + t and

M + t + 1 ≤ 3 · 22l − 2 both hold. Then 0 ≤ t ≤ 22l − 2. Write

S 1 : = (E ∩ A)(M + t) ∪ (F(M + t) \ B(M + t)),
S 2 : = (F ∩ B)(M + t) ∪ (E(M + t) \ A(M + t)).
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Noting that

E(M + t) ∪ F(M + t) = [0,M + t] = A(M + t) ∪ (B(M + t) \ {M}),

we find

S 1 ⊆ A(M + t), S 2 ⊆ B(M + t) \ {M},
S 1 ∪ S 2 = E(M + t) ∪ F(M + t) = A(M + t) ∪ (B(M + t) \ {M}).

S 1 ∩ S 2 = A(M + t) ∩ (B(M + t) \ {M}) = {22l − 1}.

By Lemma 2.3,
S 1 = A(M + t), S 2 = B(M + t) \ {M}. (3.6)

For M + t ≤ n ≤ 3 · 22l − 2, write

T1(t, n) = RE(22l−2),E(M+t)\A(M+t)(n),
T2(t, n) = RF(22l−2),E(M+t)\A(M+t)(n),
T3(t, n) = RE(22l−2),F(M+t)\B(M+t)(n),
T4(t, n) = RF(22l−2),F(M+t)\B(M+t)(n).

Then

|E(M + t) \ A(M + t)| = T1(t, n) + T2(t, n), (3.7)
|F(M + t) \ B(M + t)| = T3(t, n) + T4(t, n). (3.8)

In fact, if E(M + t) \ A(M + t) = ∅, then T1(t, n) = T2(t, n) = 0 and (3.7) holds. If
E(M + t) \ A(M + t) , ∅, then write

E(M + t) \ A(M + t) = {e1, . . . , eh}.

By (3.5), e1, . . . , eh ≥ M + 1, and it follows that

0 ≤ n − ei ≤ 3 · 22l − 2 − (M + 1) ≤ 22l − 2 for i = 1, . . . , h.

Noting that

E(22l − 2) ∪ F(22l − 2) = [0, 22l − 2], E(22l − 2) ∩ F(22l − 2) = ∅,

we see that

T1(t, n) + T2(t, n) =

h∑
i=1

χE(22l−2)(n − ei) +

h∑
i=1

χF(22l−2)(n − ei) = h.

Hence, (3.7) holds. Similarly, we can obtain (3.8).
Since M + t < 3 · 22l − 2 < 22l+2 ≤ 2M + 2,

RE(M+t)(n) = R(E∩A)(M+t)(n) + RE(22l−2),E(M+t)\A(M+t)(n)
= R(E∩A)(M+t)(n) + T1(t, n).
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Thus, by (3.6),

RA(M+t)(n) = R(E∩A)(M+t)(n) + T3(t, n)
= RE(M+t)(n) − T1(t, n) + T3(t, n). (3.9)

Similarly, by (3.6),

RB(M+t)(n) = RB(M+t)\{M}(n) + χF(n − M)
= R(F∩B)(M+t)(n) + T2(t, n) + χF(n − M)
= RF(M+t)(n) − T4(t, n) + T2(t, n) + χF(n − M). (3.10)

By (3.9) and (3.10),

RA(M+t+1)(M + t + 1) = RA(M+t)(M + t + 1) + χA(M + t + 1)
= RE(M+t+1)(M + t + 1) − χE(M + t + 1) − T1(t,M + t + 1)

+ T3(t,M + t + 1) + χA(M + t + 1), (3.11)
RB(M+t+1)(M + t + 1) = RB(M+t)(M + t + 1)

= RF(M+t+1)(M + t + 1) − T4(t,M + t + 1)
+ T2(t,M + t + 1) + χF(t + 1). (3.12)

Noting that
RA(n)(n) = RB(n)(n), RE(n)(n) = RF(n)(n),

by (3.9) and (3.10),

T1(t,M + t) + T2(t,M + t) + χF(t) = T3(t,M + t) + T4(t,M + t),

and by (3.11) and (3.12),

T3(t,M + t + 1) + T4(t,M + t + 1) + χA(M + t + 1)
= T1(t,M + t + 1) + T2(t,M + t + 1) + χE(M + t + 1) + χF(t + 1).

By (3.7) and (3.8),

|E(M + t) \ A(M + t)| + χF(t) = |F(M + t) \ B(M + t)|. (3.13)
|F(M + t) \ B(M + t)| + χA(M + t + 1)

= |E(M + t) \ A(M + t)| + χE(M + t + 1) + χF(t + 1). (3.14)

By (3.13) and (3.14),

χF(t) + χA(M + t + 1) = χE(M + t + 1) + χF(t + 1). (3.15)

If M is odd, we can write

M = 22l+1 − 1 +

2l−1∑
i=1

bi2i,
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where bi ∈ {0, 1}. Since χF(M) = 0, it follows that χB2l (
∑2l−1

i=1 bi2i) = 1 and so

χF(3 · 22l − 2 − M) = χB2l

( 2l−1∑
i=1

(1 − bi)2i + 1
)

= 1,

χF(3 · 22l − 3 − M) = χB2l

( 2l−1∑
i=1

(1 − bi)2i
)

= 0.

But then by (3.15), χA(3 · 22l − 2) = 2, which is impossible.
If M is even, then there exists an integer f ∈ {0, 1, . . . , 2l − 2} such that

M = 22l+1 − 1 +

f∑
i=0

2i +

2l−1∑
i= f +2

bi2i,

where bi ∈ {0, 1}. Since χF(0) = 0, χF(1) = 1, it follows from (3.15) that χE(M + 1) = 0
and so

χA2l

(
2 f +1 +

2l−1∑
i= f +2

bi2i
)

= 1. (3.16)

Moreover, χF(M) = 0, so that

χB2l

( f∑
i=0

2i +

2l−1∑
i= f +2

bi2i
)

= 1. (3.17)

By (3.16) and (3.17), it follows that f is odd, so that

χF(3 · 22l − 2 − M) = χB2l

( 2l−1∑
i= f +2

(1 − bi)2i + 2 f +1
)

= 1,

χF(3 · 22l − 3 − M) = χB2l

( 2l−1∑
i= f +2

(1 − bi)2i + 2 f +1 − 1
)

= 0.

By (3.15), χA(3 · 22l − 2) = 2, which is impossible.
This completes the proof of Theorem 1.8.
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