THE PRODUCT OF INDEPENDENT RANDOM VARIABLES WITH SLOWLY VARYING TRUNCATED MOMENTS

TAKAAKI SHIMURA

(Received 30 October 1995; revised 1 April 1996)

Communicated by A. G. Pakes

Abstract

The Mellin-Stieltjes convolution and related decomposition of distributions in $\boldsymbol{M}(\alpha)$ (the class of distributions μ on $[0, \infty)$ with slowly varying α th truncated moments $\int_{0}^{x} t^{\alpha} \mu(d t)$) are investigated. Maller shows that if X and Y are independent non-negative random variables with distributions μ and v, respectively, and both μ and ν are in \boldsymbol{D}_{2}, the domain attraction of Gaussian distribution, then the distribution of the product $X Y$ (that is, the Mellin- Stieltjes convolution $\mu \circ v$ of μ and ν) also belongs to it. He conjectures that, conversely, if $\mu \circ \nu$ belongs to D_{2}, then both μ and ν are in it. It is shown that this conjecture is not true: there exist distributions $\mu \in \boldsymbol{D}_{2}$ and $\nu \notin \boldsymbol{D}_{2}$ such that $\mu \circ \nu$ belongs to \boldsymbol{D}_{2}. Some subclasses of \boldsymbol{D}_{2} are given with the property that if $\mu \circ \nu$ belongs to it, then both μ and v are in D_{2}.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 60E05; secondary 60E07, 60F05.
Keywords and phrases: domain of attraction; truncated moment; slowly varying function; regular variation; Mellin-Stieltjes convolution.

1. Introduction

Let X and Y be independent positive random variables with distributions μ and ν, respectively. We denote the distribution of the product $X Y$ by $\mu \circ v$ and call it the Mellin-Stieltjes convolution (MS- convolution) of μ and ν. A distribution μ_{1} is said to be a factor of a distribution μ, if $\mu=\mu_{1} \circ v$ with some v. Let $\boldsymbol{M}(\alpha)(\alpha>0)$ be the class of distributions μ on $[0, \infty)$ whose α th truncated moments $\int_{0}^{x} t^{\alpha} \mu(d t)$ are slowly varying. The purpose of this paper is to study properties of distributions in $M(\alpha)$ related to MS-convolution. Let D_{2} be the domain of attraction of Gaussian distribution. Maller [5] shows that if X and Y are independent random variables both with distributions in D_{2}, then the distribution of the product $X Y$ also belongs to it. In the converse direction, he shows that if a distribution of product of two independent

[^0]random variables belongs to \boldsymbol{D}_{2} and one of them has finite variance, then the other is in D_{2}. Furthermore, he conjectures that finite variance condition could be weakened to being in D_{2}. Since D_{2} is identical with the class of distributions μ with slowly varying truncated variances $\int_{|t|<x} t^{2} \mu(d t)$, these facts mean that $\boldsymbol{M}(2)$ is closed under MS-convolution, and that, if one factor of a distribution in \boldsymbol{D}_{2} has finite variance, then the other belongs to \boldsymbol{D}_{2}. We deal with this problem in detail. Considering the relation between the truncated moments of two distributions and that of their MS-convolution, we give some conditions for each factor of $\mu \circ v$ to belong to $M(\alpha)$. The general results on the decomposition of non-decreasing slowly varying functions are applicable. In the end of this paper, we construct a counter-example for Maller's conjecture: there exists a distribution $\mu \notin D_{2}$ such that the MS-convolution of μ and v belongs to D_{2} for every ν in D_{2} with infinite variance.

2. Preliminaries

We prepare some notations and fundamental facts, which are in Bingham et al. [1], Feller [2], Gnedenko and Kolmogorov [3], Seneta [6] and Shimura [7, 8]. The totality of all probability measures on non-negative numbers $[0, \infty)$ is denoted by \boldsymbol{P}. Through this paper, we extend MS-convolution to the all distributions in \boldsymbol{P} since the mass on 0 is not essential. A positive measurable function f is said to be slowly varying (s.v.) if $\lim _{x \rightarrow \infty} f(k x) / f(x)=1$ for each $k>0$. If f is monotone, this is equivalent to $\lim _{x \rightarrow \infty} f(2 x) / f(x)=1$. Slowly varying functions have the following representation: A function f defined on $[A, \infty), A>0$, is s.v. if and only if there exists a positive number $B \geq A$ satisfying for all $x \geq B$ we have $f(x)=$ $c(x) \exp \left(\int_{B}^{x} \varepsilon(t) t^{-1} d t\right)$, where $c(x)$ is a bounded positive measurable function on $[B, \infty)$ satisfying $\lim _{x \rightarrow \infty} c(x)=c(0<c<\infty)$, and $\varepsilon(t)$ is a continuous function on $[B, \infty)$ satisfying $\lim _{t \rightarrow \infty} \varepsilon(t)=0$. This representation leads to the following lemma.

LEMMA 2.1. If l is $s . v$, then for some $B>0,(l(x) x) /(l(y) y)$ is bounded with respect to x and y satisfying $x \leq y$ and $y \geq B$.

We say that non-negative non-decreasing f is decomposed into components f_{1} and f_{2}, if both f_{1} and f_{2} are non-negative non-decreasing and $f=f_{1}+f_{2}$. Concerning the decomposition of non-decreasing s.v. functions, the following are known. A non-negative non-decreasing function f is said to be dominatedly non-decreasing if $\lim \sup _{x \rightarrow \infty}(f(2 x)-f(x))<\infty$. Then f is s.v. and the class of dominatedly nondecreasing functions is closed under sum and decomposition. On the decomposition of non-decreasing s.v. functions, we recall the following in Shimura [7]. Related facts concerning monotone regularly varying functions are given in Shimura [8].

THEOREM 2.2. (1) Every non-zero component of f is s.v. if and only if f is dominatedly non-decreasing. In this case, every non-zero component is dominatedly non-decreasing.
(2) A component f_{1} of a non-decreasing s.v. f satisfying $\liminf _{\rightarrow \infty} f_{1}(x) / f(x)>0$ is s.v.
(3) For any unbounded non-decreasing s.v. function f, there exists a non-decreasing function \tilde{f} that is asymptotically equal to f but not dominatedly non-decreasing.
(4) For a dominatedly non-decreasing $f, \lim \sup _{x \rightarrow \infty} f(x) / \log x<\infty$.

Let $F(\alpha), S(\alpha)$, and $C(\alpha)(\alpha>0)$ denote the subclasses of P defined by the following conditions: μ is in $F(\alpha)$ if μ has dominatedly non-decreasing α th truncated moment, μ is in $S(\alpha)$ if $\lim _{x \rightarrow \infty} \int_{0}^{x^{2}} t^{\alpha} \mu(d t) / \int_{0}^{x} t^{\alpha} \mu(d t)=1 ; \mu$ is in $C(\alpha)$ if $\lim \sup _{x \rightarrow \infty} \int_{0}^{x^{2}} t^{\alpha} \mu(d t) / \int_{0}^{x} t^{\alpha} \mu(d t)<\infty$. It is easy to see that μ is in $S(\alpha)$ if and only if its truncated α th moment is written as $\int_{0}^{x} t^{\alpha} \mu(d t)=l(\log x)$ for some non-decreasing s.v. function l. Similarly, μ is in $C(\alpha)$ if and only if $\int_{0}^{x} t^{\alpha} \mu(d t)=$ $\exp f(\log x)$ with some dominatedly non-decreasing function f. Although $S(\alpha)$ is a subclass of $\boldsymbol{M}(\alpha)$ and $\boldsymbol{C}(\alpha)$, it is not a subclass of $\boldsymbol{F}(\alpha)$ (Theorem $2.2(3)$). $C(\alpha)$ is not a subclass of $M(\alpha)$ as we shall show in Section 4.

Let X_{1}, X_{2}, \ldots be \boldsymbol{R}^{1}-valued i.i.d. (independent and identically distributed) random variables with distribution v. If, for suitably chosen constants $B_{n}>0$ and $A_{n} \in \boldsymbol{R}^{1}$, the distribution of $B_{n}^{-1} \sum_{k=1}^{n} X_{k}-A_{n}$ converges to a distribution μ as $n \rightarrow \infty$, then we say that ν is attracted to μ. The totality of distributions attracted to μ is called the domain of attraction of μ. We denote the domain of attraction of Gaussian distribution by D_{2}. If, for suitably chosen constants $B_{n}>0$, the distribution of $B_{n}^{-1} \sum_{k=1}^{n} X_{k}$ converges to 1 in probability as $n \rightarrow \infty$, then we say that v is relatively stable. Those classes are characterized by truncated moments as follows: ν belongs to D_{2} if and only if v has s.v. truncated variance $\int_{|t|<x} t^{2} v(d t)$. Under the assumption that v is in P, v is relatively stable if and only if v belongs to $M(1)$.

3. Mellin-Stieltjes convolution of slow varying truncated moments

As we mentioned, Maller shows that $\boldsymbol{M}(2)$ is closed under MS-convolution. By change of variables, this implies that, for each $\alpha>0, M(\alpha)$ is closed. We give a new proof of this fact and investigate the relationship between the growth order of the truncated moment of MS-convolution and that of its factors.

THEOREM 3.1. If μ is in $M(\alpha)$, then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \int_{0}^{x} t^{\alpha} \mu \circ v(d t) / \int_{0}^{x} t^{\alpha} \mu(d t)=\int_{0}^{\infty} t^{\alpha} v(d t) \tag{3.1}
\end{equation*}
$$

If, moreover, v has finite α th moment, then $\mu \circ v$ belongs to $M(\alpha)$.
Proof. Assume that $\int_{0}^{\infty} t^{\alpha} v(d t)$ is finite. Since $\int_{0}^{x} t^{\alpha} \mu \circ v(d t)=\int_{0}^{\infty} t^{\alpha} v(d t)$ $\int_{0}^{x / t} s^{\alpha} \mu(d s)$, we have

$$
\begin{aligned}
\frac{\int_{0}^{x} t^{\alpha} \mu \circ v(d t)}{\int_{0}^{x} s^{\alpha} \mu(d s)} & =\int_{0}^{\infty} t^{\alpha} \nu(d t) \frac{\int_{0}^{x / t} s^{\alpha} \mu(d s)}{\int_{0}^{x} s^{\alpha} \mu(d s)} \\
& =\int_{0}^{1} v(d t) \frac{x^{\alpha} \int_{0}^{x / t} s^{\alpha} \mu(d s)}{(x / t)^{\alpha} \int_{0}^{x} s^{\alpha} \mu(d s)}+\int_{1}^{\infty} t^{\alpha} v(d t) \frac{\int_{0}^{x / t} s^{\alpha} \mu(d s)}{\int_{0}^{x} s^{\alpha} \mu(d s)}
\end{aligned}
$$

Since $\sup _{x \geq B} \sup _{t \in(0.1]}\left(x^{\alpha} \int_{0}^{x / t} s^{\alpha} \mu(d s)\right) /\left((x / t)^{\alpha} \int_{0}^{x} s^{\alpha} \mu(d s)\right)<\infty$ by Lemma 2.1, the first term goes to $\int_{0}^{1} t^{\alpha} \nu(d t)$ as $x \rightarrow \infty$ by the bounded convergence theorem. The second term converges to $\int_{1}^{\infty} t^{\alpha} \nu(d t)$ because $\int_{0}^{x / t} s^{\alpha} \mu(d s) / \int_{0}^{x} s^{\alpha} \mu(d s) \leq 1$ on $t \in[1, \infty)$. If $\int_{0}^{\infty} t^{\alpha} v(d t)$ is infinite, then, by Fatou's lemma

$$
\liminf _{x \rightarrow \infty} \int_{0}^{x} t^{\alpha} \mu \circ v(d t) / \int_{0}^{x} t^{\alpha} \mu(d t) \geq \int_{0}^{\infty} t^{\alpha} v(d t)=\infty
$$

THEOREM 3.2 (Maller [5, Theorem 1], if $\alpha=2$). $M(\alpha)(\alpha>0)$ is closed under MS-convolution.

Proof. Notice that

$$
\begin{aligned}
\frac{\int_{x}^{2 x} t^{\alpha} \mu \circ v(d t)}{\int_{0}^{x} t^{\alpha} \mu \circ v(d t)} & \leq \frac{\int_{0}^{\sqrt{2 x}} t^{\alpha} v(d t) \int_{x / t}^{2 x / t} s^{\alpha} \mu(d s)}{\int_{0}^{\sqrt{2 x}} t^{\alpha} v(d t) \int_{0}^{x / t} s^{\alpha} \mu(d s)}+\frac{\int_{0}^{\sqrt{2 x}} t^{\alpha} \mu(d t) \int_{x / t}^{2 x / t} s^{\alpha} v(d s)}{\int_{0}^{\sqrt{2 x}} t^{\alpha} \mu(d t) \int_{0}^{x / t} s^{\alpha} v(d s)} \\
& \leq \sup _{t<\sqrt{2 x}} \frac{\int_{x / t}^{2 x / t} s^{\alpha} \mu(d s)}{\int_{0}^{x / t} s^{\alpha} \mu(d s)}+\sup _{t<\sqrt{2 x}} \frac{\int_{x / t}^{2 x / t} s^{\alpha} v(d s)}{\int_{0}^{x / t} s^{\alpha} v(d s)}
\end{aligned}
$$

Since μ belongs to $M(\alpha)$, the first term tends to 0 as $x \rightarrow \infty$. Similarly, the second term goes to 0 . Thus we get $\lim _{x \rightarrow \infty} \int_{x}^{2 x} t^{\alpha} \mu \circ v(d t) / \int_{0}^{x} t^{\alpha} \mu \circ v(d t)=0$, which means that $\mu \circ \nu$ belongs to $M(\alpha)$.

By the above theorems, we obtain the following result.
Corollary 3.3. If μ is in $M(\alpha)$ and v is in $M(\beta)$ with $\alpha \leq \beta$, then $\mu \circ v$ belongs to $M(\alpha)$.

In the above corollary, if $\alpha<\beta$, then the growth order of the truncated moment of $\mu \circ \nu$ is given by (3.1). We will compare in the next section the truncated moment of $\mu \circ \nu$ and the product of the truncated moments of the two factors, including the case $\alpha=\beta$.

4. Decomposition problem of distributions in $\boldsymbol{M}(\alpha)$

In this section, we investigate properties of factors of distributions in $\boldsymbol{M}(\alpha)$. One purpose is to give some conditions for every factor to belong to $\boldsymbol{M}(\alpha)$. In particular, $\boldsymbol{S}(\alpha)$ is closed under MS-convolution and decomposition. Another is to prove that Maller's conjecture is not true. Namely, we will prove that if v is in $C(\alpha)$, then $\mu \circ \nu$ belongs to $\boldsymbol{M}(\alpha)$ for every μ in $\boldsymbol{M}(\alpha)$ with infinite α th moment. First, applying Theorem 2.2, we give a theorem on the decomposition problem.

THEOREM 4.1. Every factor of distribution in $\boldsymbol{F}(\alpha)$ belongs to $\boldsymbol{F}(\alpha)$.
Proof. We assume that $\mu \circ v$ has dominatedly non-decreasing α th truncated moment and $v(1, \infty)>0$ without loss of generality. Notice that

$$
\int_{0}^{x} t^{\alpha} \mu \circ v(d t)=\int_{0}^{\infty} t^{\alpha} v(d t) \int_{0}^{x / t} s^{\alpha} \mu(d s)=\sum_{k=1}^{\infty} \int_{k-1}^{k} t^{\alpha} v(d t) \int_{0}^{x / t} s^{\alpha} \mu(d s)
$$

Set $v_{k}(x)=\int_{k-1}^{k} \int_{0}^{x / t} s^{\alpha} \mu(d s) t^{\alpha} \nu(d t)$. Then $\int_{0}^{x} t^{\alpha} \mu \circ \nu(d t)=\sum_{k=1}^{\infty} v_{k}(x)$. Choose and fix an integer $k \geq 2$ such that v_{k} is not identically zero. By Theorem $2.2(1), v_{k}$ is dominatedly non-decreasing. Since

$$
\begin{equation*}
\int_{k-1}^{k} t^{\alpha} \nu(d t) \int_{0}^{x / k} s^{\alpha} \mu(d s) \leq v_{k}(x) \leq \int_{k-1}^{k} t^{\alpha} v(d t) \int_{0}^{x /(k-1)} s^{\alpha} \mu(d s) \tag{4.1}
\end{equation*}
$$

we have

$$
\int_{x}^{2 x} s^{\alpha} \mu(d s) \leq\left(\int_{k-1}^{k} t^{\alpha} v(d t)\right)^{-1}\left(v_{k}(2 k x)-v_{k}((k-1) x)\right)
$$

By the dominated non-decrease of v_{k}, we get $\lim \sup _{x \rightarrow \infty} \int_{x}^{2 x} s^{\alpha} \mu(d s)<\infty$. Hence $\mu \in F(\alpha)$. So is ν.

REMARK. In this proof, we get the dominated non-decrease of the truncated moment of μ from the dominated non-decrease of v_{k}. Similarly, if it is shown that v_{k} is s.v., then we can prove that μ belongs to $M(\alpha)$ by (4.1). But, it is impossible to show that v_{k} is s.v. under the assumption that $\int_{0}^{x} t^{\alpha} \mu \circ v(d t)=\sum_{k=1}^{\infty} v_{k}(x)$ is s.v., as will be shown in Section 4.

Lemma 4.2. If $\mu \circ v$ is in $M(\alpha)$, then

$$
\limsup _{x \rightarrow \infty} \int_{0}^{x} t^{\alpha} \mu(d t) / \int_{0}^{x} t^{\alpha} \mu \circ v(d t) \leq\left(\int_{0}^{\infty} t^{\alpha} v(d t)\right)^{-1}
$$

Proof. For arbitrary $k>0$,

$$
\begin{aligned}
\int_{0}^{k x} t^{\alpha} \mu \circ v(d t) & \geq \int_{0}^{k} t^{\alpha} v(d t) \int_{0}^{k x / t} s^{\alpha} \mu(d s) \\
& \geq \int_{0}^{k} t^{\alpha} v(d t) \int_{0}^{x} s^{\alpha} \mu(d s)
\end{aligned}
$$

Since $\int_{0}^{x} t^{\alpha} \mu \circ v(d t)$ is s.v., we get

$$
\limsup _{x \rightarrow \infty} \int_{0}^{x} t^{\alpha} \mu(d t) / \int_{0}^{x} t^{\alpha} \mu \circ v(d t) \leq\left(\int_{0}^{k} t^{\alpha} v(d t)\right)^{-1}
$$

Letting $k \rightarrow \infty$, we get the conclusion.

LEmmA 4.3. If $\mu \circ \nu$ belongs to $\boldsymbol{M}(\alpha)$, then, for arbitrary $\varepsilon>0$, there exists $\delta>0$ such that

$$
\limsup _{x \rightarrow \infty} \frac{\int_{0}^{\delta} t^{\alpha} v(d t) \int_{0}^{x / t} s^{\alpha} \mu(d s)}{\int_{0}^{x} t^{\alpha} \mu \circ v(d t)} \leq \varepsilon
$$

Proof. We can choose a positive constant C such that $\int_{0}^{x} t^{\alpha} \mu(d t) / \int_{0}^{x} t^{\alpha} \mu \circ$ $\nu(d t)<C$ for large x by Lemma 4.2. Let $V(x)=\int_{0}^{x} t^{\alpha} \mu \circ \nu(d t), U(x)=$ $\int_{0}^{\delta} t^{\alpha} \nu(d t) \int_{0}^{x / t} s^{\alpha} \mu(d s)$, where δ is a positive constant satisfying $C \int_{0}^{\delta} t^{\alpha} \nu(d t)<\varepsilon$. We have

$$
\begin{equation*}
U(x) \leq C \int_{0}^{\delta} t^{\alpha} v(d t) \int_{0}^{x / t} s^{\alpha} \mu \circ v(d s) \tag{4.2}
\end{equation*}
$$

On the other hand, by the representation theorem of s.v. function, we have $\int_{0}^{x} s^{\alpha} \mu$ 。 $v(d s)=c(x) \exp \left(\int_{B}^{x} \varepsilon(u) u^{-1} d u\right)$, where $\lim _{x \rightarrow \infty} c(x)=c(0<c<\infty)$ and $\lim _{u \rightarrow \infty} \varepsilon(u)=0$. Since

$$
\sup _{0<t \leq \delta} \int_{x}^{x / t} \frac{\varepsilon(u)-\alpha}{u} d u=\int_{x}^{x / \delta} \frac{\varepsilon(u)-\alpha}{u} d u
$$

for sufficiently large x, we get

$$
\lim _{x \rightarrow \infty} \sup _{0<t \leq \delta} \frac{\int_{0}^{x / t} s^{\alpha} \mu \circ v(d s)}{\int_{0}^{x} s^{\alpha} \mu \circ v(d s)}\left(\frac{t}{\delta}\right)^{\alpha}=1
$$

Hence

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \int_{0}^{\delta} \frac{\int_{0}^{x / t} s^{\alpha} \mu \circ v(d s) t^{\alpha}}{V(x)} v(d t) \leq \int_{0}^{\delta} t^{\alpha} \nu(d t) \tag{4.3}
\end{equation*}
$$

By (4.2) and (4.3), $\limsup _{x \rightarrow \infty} U(x) / V(x) \leq C \int_{0}^{\delta} t^{\alpha} \nu(d t)<\varepsilon$.

Using this lemma, we get the following propositions.
PROPOSITION 4.4. If $\mu \circ v$ is in $M(\alpha)$ and v has finite α th moment, then μ belongs to $\boldsymbol{M}(\alpha)$.

PROOF. Let $U^{c}(x)=V(x)-U(x)=\int_{\delta}^{\infty} t^{\alpha} v(d t) \int_{0}^{x / t} s^{\alpha} \mu(d s)$ in the proof of Lemma 4.3. From this lemma, for $0<\varepsilon<1$, we can choose $\delta>0$ such that $\liminf _{x \rightarrow \infty} U^{c}(x) / V(x)>0$ and $v(\delta, \infty)>0$. It follows from Theorem 2.2 (2) that $U^{c}(x)$ is s.v. If we choose a constant B satisfying $\int_{\delta}^{B} t^{\alpha} \nu(d t)>0$, then

$$
\liminf _{x \rightarrow \infty} \frac{\int_{\delta}^{B} t^{\alpha} v(d t) \int_{0}^{x / t} s^{\alpha} \mu(d s)}{\int_{B}^{\infty} t^{\alpha} v(d t) \int_{0}^{x / t} s^{\alpha} \mu(d s)} \geq \frac{\int_{\delta}^{B} t^{\alpha} v(d t)}{\int_{B}^{\infty} t^{\alpha} v(d t)}>0
$$

By Theorem $2.2(2), \int_{\delta}^{B} \int_{0}^{x / t} s^{\alpha} \mu(d s) t^{\alpha} v(d t)$ is an s.v. component of $U^{c}(x)$. Noticing that $\delta>0$ and
$\int_{\delta}^{B} \int_{0}^{\delta x / t} s^{\alpha} \mu(d s) t^{\alpha} v(d t) \leq \int_{\delta}^{B} t^{\alpha} \nu(d t) \int_{0}^{x} t^{\alpha} \mu(d t) \leq \int_{\delta}^{B} t^{\alpha} \nu(d t) \int_{0}^{B x / t} t^{\alpha} \mu(d t)$,
we get $\int_{0}^{x} t^{\alpha} \mu(d t)$ is s.v.

PROPOSITION 4.5. If $\mu \circ v$ belongs to $M(\alpha)$, then

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \int_{0}^{x} t^{\alpha} \mu \circ v(d t) /\left(\int_{0}^{x} t^{\alpha} \mu(d t) \int_{0}^{x} t^{\alpha} v(d t)\right) \leq 1 \tag{4.4}
\end{equation*}
$$

Proof. By Lemma 4.3, for arbitrary $\varepsilon>0$, we can take $\delta>0$ such that

$$
\limsup _{x \rightarrow \infty} \frac{\int_{0}^{\delta} t^{\alpha} v(d t) \int_{0}^{x / t} s^{\alpha} \mu(d s)}{\int_{0}^{x} t^{\alpha} \mu \circ v(d t)} \leq \varepsilon \quad \text { and } \quad \limsup _{x \rightarrow \infty} \frac{\int_{0}^{\delta} t^{\alpha} \mu(d t) \int_{0}^{x / t} s^{\alpha} v(d s)}{\int_{0}^{x} t^{\alpha} \mu \circ v(d t)} \leq \varepsilon
$$

Therefore we have

$$
\begin{gathered}
\limsup _{x \rightarrow \infty} \frac{\int_{0}^{x} t^{\alpha} \mu \circ v(d t)}{\int_{\delta}^{\infty} t^{\alpha} \nu(d t) \int_{\delta}^{x / t} s^{\alpha} \mu(d s)} \leq \frac{1}{1-2 \varepsilon}, \\
\limsup _{x \rightarrow \infty} \int_{0}^{x} t^{\alpha} \mu \circ v(d t) /\left(\int_{0}^{x} t^{\alpha} \mu(d t) \int_{0}^{x} t^{\alpha} v(d t)\right) \\
=\limsup _{x \rightarrow \infty} \int_{0}^{x} t^{\alpha} \mu \circ v(d t) /\left(\int_{0}^{x / \delta} t^{\alpha} \mu(d t) \int_{0}^{x / \delta} t^{\alpha} v(d t)\right) \\
\leq \limsup _{x \rightarrow \infty} \int_{0}^{x} t^{\alpha} \mu \circ v(d t) /\left(\int_{\delta}^{\infty} t^{\alpha} \mu(d t) \int_{\delta}^{x / t} s^{\alpha} v(d s)\right)
\end{gathered}
$$

$$
\leq \frac{1}{1-2 \varepsilon} .
$$

Letting $\varepsilon \rightarrow 0$, we have completed the proof.

The following proposition gives another condition for every factor to belong to $\boldsymbol{M}(\alpha)$.

Proposition 4.6. $\mu \circ \nu$ belongs to $S(\alpha)$ if and only if both μ and ν are in $S(\alpha)$. In this case,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \int_{0}^{x} t^{\alpha} \mu \circ v(d t) /\left(\int_{0}^{x} t^{\alpha} \mu(d t) \int_{0}^{x} t^{\alpha} v(d t)\right)=1 . \tag{4.5}
\end{equation*}
$$

Proof. Since $\boldsymbol{S}(\alpha)$ is a subclass of $\boldsymbol{M}(\alpha)$ and $\boldsymbol{M}(\alpha)$ is closed under MS-convolution, $\mu \circ \nu$ is in $M(\alpha)$. Hence it follows from Proposition 4.5 and the assumption that

$$
\limsup _{x \rightarrow \infty} \int_{0}^{x^{2}} t^{\alpha} \mu \circ v(d t) /\left(\int_{0}^{x} t^{\alpha} \mu(d t) \int_{0}^{x} t^{\alpha} \nu(d t)\right) \leq 1 .
$$

Since

$$
\begin{equation*}
\int_{0}^{x^{2}} t^{\alpha} \mu \circ v(d t) /\left(\int_{0}^{x} t^{\alpha} \mu(d t) \int_{0}^{x} t^{\alpha} v(d t)\right) \geq 1 \tag{4.6}
\end{equation*}
$$

for any distributions μ and v in \boldsymbol{P}, the left-hand side of (4.5) is not less than 1 .

Remark. Though (4.4) and (4.6) give the relation between the truncated moments of MS-convolution and the product of those of their factors, the asymptotic orders of the following three can be different from each other:

$$
\int_{0}^{x} t^{\alpha} \mu \circ v(d t), \quad \int_{0}^{x} t^{\alpha} \mu(d t) \int_{0}^{x} t^{\alpha} v(d t), \quad \int_{0}^{x^{2}} t^{\alpha} \mu \circ v(d t) .
$$

Hence if μ in $\boldsymbol{F}(\alpha)$ satisfies $\lim _{x \rightarrow \infty} \int_{0}^{x} t^{\alpha} \mu(d t) / \log x=1$, then $\lim _{x \rightarrow \infty} \int_{0}^{x} t^{\alpha} \mu \circ$ $\mu(d t) / \log x=\infty$ by (4.6) (or Lemma 4.2). Therefore, $\mu \circ \mu \notin \boldsymbol{F}(\alpha)$ by Theorem 2.2 (4) and we see that $\boldsymbol{F}(\alpha)$ is not closed under MS-convolution.

The following theorem shows that Maller's conjecture is not true.
ThEOREM 4.7. If μ is in $\boldsymbol{M}(\alpha)$ with infinite α th moment and v is in $\boldsymbol{C}(\alpha)$, then $\mu \circ v$ belongs to $M(\alpha)$.

PROOF. Let C be a constant such that $\int_{0}^{x^{2}} s^{\alpha} v(d s) / \int_{0}^{x} s^{\alpha} v(d s)<C$ for large x. In a similar way to the proof of Theorem 3.2,

$$
\frac{\int_{x}^{2 x} t^{\alpha} \mu \circ v(d t)}{\int_{0}^{x} t^{\alpha} \mu \circ v(d t)} \leq \sup _{t<\sqrt{2 x}} \frac{\int_{x / t}^{2 x / t} s^{\alpha} \mu(d s)}{\int_{0}^{x / t} s^{\alpha} \mu(d s)}+\frac{\int_{0}^{\sqrt{2 x}} t^{\alpha} \mu(d t) \int_{x / t}^{2 x / t} s^{\alpha} v(d s)}{\int_{0}^{x} t^{\alpha} \mu \circ v(d t)}
$$

The first term tends to 0 as $x \rightarrow \infty$ by $\mu \in \boldsymbol{M}(\alpha)$. Since $\int_{0}^{x} t^{\alpha} \mu \circ v(d t) \geq$ $\int_{0}^{\sqrt{x / 2}} t^{\alpha} \mu(d t) \int_{0}^{\sqrt{2 x}} t^{\alpha} v(d t)$, it is sufficient to prove that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\int_{0}^{\sqrt{2 x}} t^{\alpha} \mu(d t) \int_{x / t}^{2 x / t} s^{\alpha} \nu(d s)}{\int_{0}^{\sqrt{x / 2}} t^{\alpha} \mu(d t) \int_{0}^{\sqrt{2 x}} t^{\alpha} \nu(d t)}=0 \tag{4.7}
\end{equation*}
$$

We split the numerator into three parts and estimate each term:

$$
\begin{aligned}
& \int_{0}^{\sqrt{2 x}} t^{\alpha} \mu(d t) \int_{x / t}^{2 x / t} s^{\alpha} \nu(d s) \\
&= \int_{0}^{1} t^{\alpha} \mu(d t) \int_{x / t}^{2 x / t} s^{\alpha} \nu(d s)+\int_{1}^{\sqrt{2 x}} t^{\alpha} \mu(d t) \int_{x / t}^{2 x / t} s^{\alpha} v(d s) \\
&= \int_{2 x}^{\infty} s^{\alpha} \nu(d s) \int_{x / s}^{2 x / s} t^{\alpha} \mu(d t)+\int_{x}^{2 x} s^{\alpha} v(d s) \int_{x / s}^{1} t^{\alpha} \mu(d t) \\
&+\int_{1}^{\sqrt{2 x}} t^{\alpha} \mu(d t) \int_{x / t}^{2 x / t} s^{\alpha} v(d s) \\
& \int_{2 x}^{\infty} s^{\alpha} \nu(d s) \int_{x / s}^{2 x / s} t^{\alpha} \mu(d t)=\sum_{k=1}^{\infty} \int_{(2 x)^{2^{k-1}}}^{(2 x)^{2^{k}}} s^{\alpha} v(d s) \int_{x / s}^{2 x / s} t^{\alpha} \mu(d t) \\
& \leq \sum_{k=1}^{\infty} \int_{(2 x)^{2^{k-1}}}^{(2 x)^{2^{k}}} s^{\alpha} \nu(d s) \int_{1 / 2(2 x)^{2 k-1}}^{1 /(2 x)^{k^{k-1}-1}} t^{\alpha} \mu(d t) \\
& \leq \sum_{k=1}^{\infty} C^{k} \int_{0}^{2 x} s^{\alpha} v(d s) \int_{1 / 2(2 x)^{2^{k-1}}}^{1 /(2 x)^{2^{k-1}-1}} t^{\alpha} \mu(d t) \\
& \leq \sum_{k=1}^{\infty} \frac{C^{k}}{(2 x)^{\left(2^{k-1}-1\right) \alpha} \int_{0}^{2 x} s^{\alpha} v(d s) ;} \\
& \int_{x}^{2 x} s^{\alpha} \nu(d s) \int_{x / s}^{1} t^{\alpha} \mu(d t) \leq \int_{0}^{1} t^{\alpha} \mu(d t) \int_{x}^{2 x} s^{\alpha} v(d s) \leq \int_{0}^{1} t^{\alpha} \mu(d t) \int_{0}^{2 x} s^{\alpha} v(d s)
\end{aligned}
$$

The last term is the most important and estimated as follows. Define $n=n(x) \in N$ as $2^{n-1} \leq \sqrt{2 x}<2^{n}$. Then

$$
\begin{aligned}
\int_{1}^{\sqrt{2 x}} t^{\alpha} \mu(d t) \int_{x / t}^{2 x / t} s^{\alpha} v(d s) & \leq \sum_{k=1}^{n} \int_{2^{k-1}}^{2^{k}} t^{\alpha} \mu(d t) \int_{x / t}^{2 x / t} s^{\alpha} v(d s) \\
& \leq \sum_{k=1}^{n} \int_{2^{k-1}}^{2^{k}} t^{\alpha} \mu(d t) \int_{x / 2^{k}}^{4 x / 2^{k}} s^{\alpha} v(d s) \\
& \leq \sup _{1 \leq i \leq n} \int_{2^{i-1}}^{2^{i}} t^{\alpha} \mu(d t) \sum_{k=1}^{n} \int_{x / 2^{k}}^{4 x / 2^{k}} s^{\alpha} v(d s) \\
& \leq 2 \sup _{1 \leq i \leq n} \int_{2^{i-1}}^{2^{i}} t^{\alpha} \mu(d t) \int_{x / 2^{n}}^{2 x} s^{\alpha} \nu(d s) \\
& \leq 2 \sup _{1 \leq i \leq n} \int_{2^{i-1}}^{2^{i}} t^{\alpha} \mu(d t) \int_{0}^{2 x} s^{\alpha} v(d s)
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \int_{0}^{\sqrt{2 x}} t^{\alpha} \mu(d t) \int_{x / t}^{2 x / t} s^{\alpha} v(d s) \\
& \leq\left(2 \sup _{1 \leq i \leq n} \int_{2^{i-1}}^{2^{i}} t^{\alpha} \mu(d t)+\sum_{k=1}^{\infty} \frac{C^{k}}{(2 x)^{\left(2^{k-1}-1\right) \alpha}}+\int_{0}^{1} t^{\alpha} \mu(d t)\right) \int_{0}^{2 x} s^{\alpha} v(d s) \\
& \quad \leq C\left(2 \sup _{1 \leq i \leq n} \int_{2^{i-1}}^{2^{i}} t^{\alpha} \mu(d t)+\sum_{k=1}^{\infty} \frac{C^{k}}{(2 x)^{\left.2^{k-1}-1\right) \alpha}}+\int_{0}^{1} t^{\alpha} \mu(d t)\right) \int_{0}^{\sqrt{2 x}} s^{\alpha} v(d s)
\end{aligned}
$$

Since μ belongs to $\boldsymbol{M}(\alpha)$ and has infinite α th moment, we get $\lim _{x \rightarrow \infty} \sup _{1 \leq i \leq n}$ $\int_{2^{i-1}}^{2^{i}} t^{\alpha} \mu(d t) / \int_{0}^{\sqrt{x / 2}} t^{\alpha} \mu(d t)=0$. It is easy to show that $\lim _{x \rightarrow \infty} \sum_{k=1}^{\infty} C^{k} /(2 x)^{\left(2^{k-1}-1\right) \alpha}$ $=0$. Using these facts, we get (4.7).

REMARK. By Theorem 4.7, it can occur that $\mu \circ v$ belongs to $\boldsymbol{M}(\alpha)$ for $\mu \in \boldsymbol{M}(\alpha)$ and $v \notin \boldsymbol{M}(\alpha)$ even if $\lim _{x \rightarrow \infty} \int_{0}^{x} t^{\alpha} \mu(d t) / \int_{0}^{x} t^{\alpha} v(d t)=0$.

We construct a distribution in $\boldsymbol{C}(\alpha) \backslash \boldsymbol{M}(\alpha)$ to show that it is not empty.

EXAMPLE. Let $f(x)=\log x$ and $r=e$. Define a discrete probability measure p as follows: $p\left(\left\{e^{e^{k}}\right\}\right)=c e^{-2 e^{k}+k}$, where c is a normalized constant and $k=0,1, \ldots$ Then $V(x)$, the truncated second moment of p, is

$$
V(x)=c \sum_{k=0}^{n} e^{k}=c \frac{e^{n+1}-1}{e-1} \quad \text { for } \quad e^{e^{n}} \leq x<e^{e^{n+1}}
$$

If $x<e^{e^{n+1}}$, then $x^{2}<e^{e^{n+2}}$. Therefore we have $V\left(x^{2}\right) / V(x) \leq\left(e^{n+2}-1\right) /\left(e^{n+1}-1\right)$. Thus we conclude that

$$
\limsup _{x \rightarrow \infty} \frac{V(2 x)}{V(x)}=\limsup _{x \rightarrow \infty} \frac{V\left(x^{2}\right)}{V(x)}=e
$$

REMARK. It is still open whether there exists a distribution in D_{2} that can be decomposed into two factors neither of which belongs to \boldsymbol{D}_{2}.

We add a general result to this problem. We say that v belongs to the domain of partial attraction of a distribution μ if, for i.i.d. random variables X_{n} with disribution ν, there is an increasing sequence m_{n} of positive integers such that, for some constants $A_{n} \in \boldsymbol{R}^{1}$ and $B_{n}>0$, the distribution of $B_{n}^{-1} \sum_{k=1}^{m_{n}} X_{k}-A_{n}$ converges to μ as $n \rightarrow \infty$.

PROPOSITION 4.8. Every factor of a distribution in D_{2} belongs to the domain of the partial attraction of Gaussian distribution.

Proof. Since $\mu \circ v$ belongs to $D_{2}, \mu \circ v$ has finite absolute α th moment for every $\alpha \in(0,2)$, which is equivalent to that both μ and ν have finite absolute α th moments for each $\alpha \in(0,2)$. Maller [4] shows that this implies that both μ and ν belong to the domain of partial attraction of Gaussian distribution.

Acknowledgement

The author would like to thank Professor K. Sato, as well as the referee, for their valuable comments on earlier imperfect versions of this paper.

References

[1] N. M. Bingham, C. M. Goldie and J. L. Teugels, Regular variation, Encyclopedia Math. Appl. (Cambridge University Press, Cambridge, 1987).
[2] W. Feller, An introduction to probability theory and its applications, volume II, second edition (Willey, New York, 1971).
[3] B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, second edition (Addison Wesley, Cambridge, 1968).
[4] R. A. Maller, 'A note on domain of partial attraction', Ann. Probab. 3 (1980), 576-583.
[5] ———' 'A theorem on products of random variables, with application to regression', Austral. J. Statist. 23 (1981), 177-185.
[6] E. Seneta, Regularly varying functions, Lecture Notes in Math. 508 (Springer, Berlin, 1976).
[7] T. Shimura, 'Decomposition of non-decreasing slowly varying functions and the domain of attraction of Gaussian distributions', J. Math. Soc. Japan 43 (1991), 775-793.
[8] -. 'Decomposition of probability measures related to monotone regularly varying functions', Nagoya Math. J. 135 (1994), 87-111.

The Institute of Statistical Mathematics
4-6-7 Minami-Azabu
Minato-ku
Tokyo 106
Japan
e-mail: shimura@ism.ac.jp

[^0]: (C) 1997 Australian Mathematical Society 0263-6115/97 \$A2.00 +0.00

