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Abstract

The Mellin-Stieltjes convolution and related decomposition of distributions in M(a) (the class of distribu-
tions \x, on [0, oo) with slowly varying ath truncated moments f£ t" ix(dt)) are investigated. Mailer shows
that if X and Y are independent non-negative random variables with distributions /J. and v, respectively,
and both /x and v are in D2, the domain attraction of Gaussian distribution, then the distribution of the
product XY (that is, the Mellin- Stieltjes convolution /xovof/i and v) also belongs to it. He conjectures
that, conversely, if /x o v belongs to D2, then both \JL and v are in it. It is shown that this conjecture is not
true: there exist distributions \x e D2 and v g D2 such that fi o v belongs to D2. Some subclasses of D2

are given with the property that if fi o v belongs to it, then both \x. and v are in D2.

1991 Mathematics subject classification (Amer. Math. Soc): primary 60E05; secondary 60E07, 60F05.
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1. Introduction

Let X and Y be independent positive random variables with distributions /J. and v,

respectively. We denote the distribution of the product X Y by /x o v and call it the

Mellin-Stieltjes convolution (MS- convolution) of /J, and v. A distribution [i\ is said

to be & factor of a distribution \x, if /x = /Lt, o v with some v. Let M{a) (a > 0)

be the class of distributions /x on [0, oo) whose ath truncated moments f* taix(dt)

are slowly varying. The purpose of this paper is to study properties of distributions

in M(a) related to MS-convolution. Let D2 be the domain of attraction of Gaussian

distribution. Mailer [5] shows that if X and Y are independent random variables both

with distributions in D2, then the distribution of the product XY also belongs to it. In

the converse direction, he shows that if a distribution of product of two independent
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random variables belongs to D2 and one of them has finite variance, then the other is
in D2. Furthermore, he conjectures that finite variance condition could be weakened
to being in D2. Since D2 is identical with the class of distributions /x with slowly
varying truncated variances f t2fj,(dt), these facts mean that A/(2) is closed under
MS-convolution, and that, if one factor of a distribution in D2 has finite variance, then
the other belongs to D2. We deal with this problem in detail. Considering the relation
between the truncated moments of two distributions and that of their MS-convolution,
we give some conditions for each factor of /x o v to belong to M(a). The general results
on the decomposition of non-decreasing slowly varying functions are applicable. In
the end of this paper, we construct a counter-example for Mailer's conjecture: there
exists a distribution fj. g D2 such that the MS-convolution of fi and v belongs to D2

for every v in D2 with infinite variance.

2. Preliminaries

We prepare some notations and fundamental facts, which are in Bingham et al.
[1], Feller [2], Gnedenko and Kolmogorov [3], Seneta [6] and Shimura [7, 8]. The
totality of all probability measures on non-negative numbers [0, oo) is denoted by P.
Through this paper, we extend MS-convolution to the all distributions in P since the
mass on 0 is not essential. A positive measurable function / is said to be slowly
varying (s.v.) if lim^oo f(kx)/f{x) = 1 for each k > 0. If / is monotone, this is
equivalent to lirnl_0O f(2x)/f(x) = 1. Slowly varying functions have the following
representation: A function / defined on [A,oo), A > 0, is s.v. if and only if
there exists a positive number B > A satisfying for all x > B we have f(x) =
c(jc)exp(/* s{t)t~ldt}, where c(x) is a bounded positive measurable function on
[B, oo) satisfying linr^oc c(x) = c (0 < c < oo), and e(t) is a continuous function
on [B, oo) satisfying lim^^eit) = 0. This representation leads to the following
lemma.

LEMMA 2.1. If I is s.v., then for some B > 0, {l{x)x)/(l{y)y) is bounded with
respect to x and y satisfying x < y and y > B.

We say that non-negative non-decreasing / is decomposed into components f\ and
f2, if both /j and f2 are non-negative non-decreasing and f = fy + f2. Concerning
the decomposition of non-decreasing s.v. functions, the following are known. A
non-negative non-decreasing function/ is said to be dominatedly non-decreasing if
limsupI_>oo(/(2;c) — f(x)) < oo. Then / is s.v. and the class of dominatedly non-
decreasing functions is closed under sum and decomposition. On the decomposition
of non-decreasing s.v. functions, we recall the following in Shimura [7]. Related facts
concerning monotone regularly varying functions are given in Shimura [8].
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THEOREM 2.2. (1) Every non-zero component of f is s.v. if and only if f is dom-
inatedly non-decreasing. In this case, every non-zero component is dominatedly
non-decreasing.

(2) A component f\ of a non-decreasing s.v. f satisfying lim inf ̂ .^ f\ (x)/f(x) > 0
is s.v.

(3) For any unbounded non-decreasing s. v. function f, there exists a non-decreasing
function f that is asymptotically equal to f but not dominatedly non-decreasing.

(4) For a dominatedly non-decreasing f, lim s u p ^ ^ f(x)/ log x < oo.

Let F(a), S(a), and C(a) (a > 0) denote the subclasses of P defined by the
following conditions: fi is in F{a) if /x has dominatedly non-decreasing ath trun-
cated moment, /n is in S{a) if lim^oo /„* tafi(dt)/f*tan(dt) = 1; n is in C(a)

if lim s u p , . ^ /„* tafj,(dt)/ f* tafi(dt) < oo. It is easy to see that fi is in S(a) if
and only if its truncated ath moment is written as f* taix{dt) = /(log*) for some
non-decreasing s.v. function /. Similarly, \JL is in C(a) if and only if f* t"n(dt) =
exp /(logx) with some dominatedly non-decreasing function / . Although S(a) is a
subclass of M(a) and C(a), it is not a subclass of F(a) (Theorem 2.2 (3)). C(ot) is
not a subclass of M(a) as we shall show in Section 4.

LetXi, X2,... be/?1-valued i.i.d. (independent and identically distributed) random
variables with distribution v. If, for suitably chosen constants Bn > 0andAn 6/J',the
distribution of B~l YH=\ ̂ * ~ ^« converges to a distribution /̂  as n —• oo, then we say
that v is attracted to \x. The totality of distributions attracted to /x is called the domain
of attraction of fi. We denote the domain of attraction of Gaussian distribution by D2.
If, for suitably chosen constants Bn > 0, the distribution of B~x Yll=\ ^* converges
to 1 in probability as n —> oo, then we say that v is relatively stable. Those classes
are characterized by truncated moments as follows: v belongs to D2 if and only if v
has s.v. truncated variance t, t2v(dt). Under the assumption that v is in P, v is
relatively stable if and only if v belongs to Af(l).

3. Mellin-Stieltjes convolution of slow varying truncated moments

As we mentioned, Mailer shows that Mil) is closed under MS-convolution. By
change of variables, this implies that, for each a > 0, M{a) is closed. We give a
new proof of this fact and investigate the relationship between the growth order of the
truncated moment of MS-convolution and that of its factors.

THEOREM 3.1. If fi is in M(a), then

(3.1) lim f tan,ov{dt)/ I taix(dt)= I tav{dt).
x^°° Jo Jo Jo
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If, moreover, v has finite ath moment, then /x o v belongs to M(a).

PROOF. Assume that f™tav(dt) is finite. Since fitan o v(dt) = f™tav(dt)
f* ' san(ds), we have

= / v(dt) Jo „ * +
Jo \ / t y * ° ( d )(x/ty f l

Since sup^B sup,e(0„ (xa f*" safi(ds)) / ((x/t)a fi s"n(ds)) < oo by Lemma 2.1,

the first term goes to /0 tav(dt) as x -»• oo by the bounded convergence theorem.

The second term converges to f™ tav(dt) because f* saix(ds)/ f* san(ds) < 1 on

t e [1, oo). If/0°° tav(dt) is infinite, then, by Fatou's lemma

ta/x o v{dt)/ / tan(dt) > / tav(dt) = oo.

Jo Jo

THEOREM 3.2 (Mailer [5, Theorem 1], if a = 2). M(a) (a > 0) is closed under
MS -convolution.

PROOF. Notice that

fi! ,
< sup —jj-t h sup

J a ( d )

C
j j t h sup j T l .

Jo safi(ds) ,<V2l f0 sav(ds)

Since fi belongs to M(a), the first term tends to 0 as x —> oo. Similarly, the second
term goes to 0. Thus we get lim^oo ff* tafi o v(dt)/ f* tafi o v(dt) = 0, which
means that /x o v belongs to M(a).

By the above theorems, we obtain the following result.

COROLLARY 3.3. If n is in M(a) and v is in M(y8) with a < ft, then /x o v belongs
to M (a).

In the above corollary, if a < ft, then the growth order of the truncated moment of
/x o v is given by (3.1). We will compare in the next section the truncated moment of
ix o v and the product of the truncated moments of the two factors, including the case
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4. Decomposition problem of distributions in Mia)

In this section, we investigate properties of factors of distributions in M(a). One
purpose is to give some conditions for every factor to belong to M(a). In particular,
S(a) is closed under MS-convolution and decomposition. Another is to prove that
Mailer's conjecture is not true. Namely, we will prove that if v is in C(a), then
/ iov belongs to M(or) for every /x in M (a) with infinite ath moment. First, applying
Theorem 2.2, we give a theorem on the decomposition problem.

THEOREM 4.1. Every factor of distribution in F(a) belongs to F(a).

PROOF. We assume that /x o v has dominatedly non-decreasing ath truncated mo-
ment and v(l, oo) > 0 without loss of generality. Notice that

nx /»oo px/t oo r>k px/t

/ ra/x o v(dt) = / t"v(dt) / saii(ds) = V / tav(dt) / safi(ds).
Jo Jo Jo k=\ Jk~l J°

Set vk(x) = //_, j * " s"ti(ds)tav(dt). Then /* t"fi o v(dt) = J2Zi vkW- Choose
and fix an integer k > 2 such that vk is not identically zero. By Theorem 2.2 (1), vk is
dominatedly non-decreasing. Since

fk px/k pk rx/(k-\)
(4.1) / tav(dt) / san(ds) < vk(x) < / tav(dt) / safi(ds),

Jk-1 Jo Jk-l Jo

we have

saix(ds) < (f tav(dt)\ (vk(2kx) - vk((k - 1)JC)).

By the dominated non-decrease of vk, we get l imsup^^ fx* saix{ds) < oo. Hence
fi € F(ae). So is v.

REMARK. In this proof, we get the dominated non-decrease of the truncated moment
of //. from the dominated non-decrease of vk. Similarly, if it is shown that vk is s.v.,
then we can prove that /x belongs to M(a) by (4.1). But, it is impossible to show that
vk is s.v. under the assumption that /„' t"ix o v(dt) = Y1T=\ vk(x) ' s s-v» a s wiH be
shown in Section 4.

LEMMA 4 .2 . If> o v is in M(a), then

l i m s u p / tafx(dt)/ I taixov{dt) <([ t"v(dt)) .
JT^-OO Jo Jo \Jo /
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PROOF. For arbitrary k > 0,

/

kx nk rkx/t

tan o v{dt) > / tav(dt) / s"fi(ds)
Jo Jo

> f tav{dt) [ san(ds).
Jo Jo

Since f* tafj. o v(dt) is s.v., we get

limsup / taii(dt)/ I ta[j,ov
x—oo Jo Jo

(dt) <([ tav(dt)
Jo

Letting k -*• oo, we get the conclusion.

LEMMA 4.3. If ii o v belongs toM(a), then, for arbitrary s > 0, there exists 8 > 0

such that

tirV{dt)£ sn{ds)
lim sup ———. — < e.

x^oo f0 tajU. O V(dt)
PROOF. We can choose a positive constant C such that f*taij,(dt)/f*ta(i o

v(dt) < C for large x by Lemma 4.2. Let V(*) = j^f"M o v(dt), U(x) =

f0 t
av(dt) f*fl s"ix(ds), where S is a positive constant satisfying C f0 tav(dt) < s.

We have

(4.2) £/(*) < C /" tav(dt) [ saix o v(d*).
Jo Jo

On the other hand, by the representation theorem of s.v. function, we have f* s°(io
v(ds) = c(x)exp(f* s{u)u~xdu), where lim^oocC*) = c (0 < c < oo) and
lim^ooeCw) = 0. Since

/•*" s(u)-aJ r/ss(u)-a
sup / du = I du

0<t<& Jx u Jx u

for sufficiently large x, we get

lim sup „
X-J"xo<t<& Jo saixov(ds)

Hence

~'' saixov(ds)ta

G)' - -
fd ]:' sa[j,ov(ds)ta f

(4.3) limsup/ ^ ^ — v(dt)< tav{dt).

By (4.2) and (4.3), l i m s u p ^ [/(JC)/ V(JC) < C j J t"v(dt) < e.
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192 Takaaki Shimura [7]

Using this lemma, we get the following propositions.

PROPOSITION 4.4. Iffi o v is in M(a) and v has finite ath moment, then \x belongs
to M(a).

PROOF. Let Uc(x) = V(x) - U(x) = fs°° tav(dt) f*" safi(ds) in the proof of
Lemma 4.3. From this lemma, for 0 < e < 1, we can choose 8 > 0 such that
liminf^oo Uc(x)/ V(x) > 0 and v(8, oo) > 0. It follows from Theorem 2.2 (2) that
Uc(x) is s.v. If we choose a constant B satisfying fs tav(dt) > 0, then

By Theorem 2.2 (2), / / /Q
x/' s"ix{ds)tav{dt) is an s.v. component of Uc(x). Noticing

that S > 0 and

/

B f&x/t pB px pB pBx/t

/ satx(ds)tav(dt) < / tav(dt) I tav(dt) < / tav(dt) / ta

Jo Js Jo Js Jo
we get f* ta(j,(dt) is s.v.

PROPOSITION 4.5. If > o v belongs to M(a), then

(4.4) limsup / taiiov{dt)/( I tan(dt) [ tav(dt)) < 1.

X-HX Jo \Jo Jo )
PROOF. By Lemma 4.3, for arbitrary s > 0, we can take 8 > 0 such that

fQtV{dt)f;s^ds) fitrtdt)fisHds)
hm sup — — T J — < e and hm sup ——Tx — < s.

x^oo fQ taIX O V(dt) x^oo /„ t"fl O V{dt)

Therefore we have

m s u

™S"P / ~ t"v(dt) fs
x/' s"fi(ds)

limsup f tan o v{dt)/ ( I ta/x(dt) I tav(dt))
J:̂ OO Jo \Jo Jo )

= limsup [ tanov(dt)l( [ ta\x{dt) I tav(dt))
J:-!-OO JO \JO JO )

< limsup / taiM o v(dt)/ ( I tafi(dt) f sav(ds) )
jc-i-oo Jo \Js Js /
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1

limsup [ taixov(dt)/( [ tav(dt) [ t"v(dt)) <
Jo J )

~ 1 - 2 e "

Letting e —> 0, we have completed the proof.

The following proposition gives another condition for every factor to belong to
M(a).

PROPOSITION 4.6. n o v belongs to S(a) if and only if both \x and v are in S(a). In
this case,

(4.5) lim f taixov(dt)/( [ tan(dt) [ fv(dt)) = l.
*^°°Jo \Jo Jo )

PROOF. Since S(a) is a subclass of M(a) and M(a) is closed under MS-convolution,
H o v is in M(a). Hence it follows from Proposition 4.5 and the assumption that

( [ tav(dt) [ t"v(dt))
\J0 Jo )

Since

(4.6) [ tan o V(dt)/ ( I taix(dt) [ tav(dt)) > 1
Jo \Jo Jo /

for any distributions /x and v in P, the left-hand side of (4.5) is not less than 1.

REMARK. Though (4.4) and (4.6) give the relation between the truncated moments
of MS-convolution and the product of those of their factors, the asymptotic orders of
the following three can be different from each other:

[ t"ii o v(dt), I tan(dt) [ tav(dt), [ fix o v{dt).
Jo Jo Jo Jo

Hence if \i in F(a) satisfies limx^,oo f^ t"ii(dt)/logx = 1, then lim^oo f* tafi o
fi(dt)/ log x = oo by (4.6) (or Lemma 4.2). Therefore, \x o fi g F(a) by Theorem
2.2 (4) and we see that F(a) is not closed under MS-convolution.

The following theorem shows that Mailer's conjecture is not true.

THEOREM 4.7. If ii is in M(a) with infinite ath moment and v is in C(a), then
belongs to M(a).
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194 Takaaki Shimura [9]

PROOF. Let C be a constant such that ff sav(ds)/ f* sav(ds) < C for large x. In
a similar way to the proof of Theorem 3.2,

The first term tends to 0 as x —>• oo by /z e M(a). Since f£ ta/u, o

, it is sufficient to prove that

(4.7) Hm "" " ^ _ — = 0.

We split the numerator into three parts and estimate each term:

/ tafi(dt) / sav(ds)

Jo Jx/t

/

I f2x/t py/2x f2x/t

t"ix(dt) / sav(ds) + / tan(dt) / sav(ds)
Jx/I Jl Jx/I

poo pixjs f^x C'

= / sav(ds) / tan(dt) + / s"v(ds) / r"/
J2x Jx/s J x Jx/s

/ /
A/s Jx Jx/s

taix(dt) / sav(ds);
Jx/t

2x/s oo Mix)2 fix/s

V / /
/•oo f2x/s oo Mix)2 fix

/ 5°v(J5) / t"fi(dt) = V / 5av(^) /

l/(2*)2*~'-'

»2J;

I sa

^0
v{ds)

/

2x p \ pi p2x pi plx

sav(ds) / fiiidt) < / tan(dt) / 5av(rfi) < / t"fi(dt) / j"v(<ij).
JJ/I JO Jx Jo Jo

The last term is the most important and estimated as follows. Define n = n(x) e N
as2"-' < V2x < 2". Then
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•Jlx f2x/l " p2k f2x/t

tan(dt) / sav(ds) < J^ / t"n(dt) / sav(ds)
Jx/t k=i J2k-> Jx/t

n «2k Mx/2k

< T / taii{dt) / s"v(ds)
t = 1 J2k-< Jx/2*

/.2' n »4x/2k

< sup / f>(rff)r / sav(ds)

< 2 sup / r/i(rfr) / s"v{ds)
i<i<n J2'-1 A/2"

< 2 sup / ?a^(^O / sav(ds).
I<i<nj2'-' JO

Thus we have

rlx/t

sav(ds)
x/t

^ l x ,1

I ta/j.(dt) I
Jo Jx/

I f2' ~ c* /"

< I 2 sup / tan(dt) + 2_^ -^—y_|_ a + I taix(dt) J / s"v(ds)

2 sup / /VtfO + y" „ ^ . , 1W + / ra/x(^) 1 / s"v(*).

' - ' • - " •
/ 2

' "
1

Since n belongs to M(a) and has infinite ath moment, we get l im^
/2

2'_, tafx(dt)/ jf^fnidt) = 0. It is easy to show that l i m ^ ^ ^ Ck/(2x)^''~l)a

= 0. Using these facts, we get (4.7).

REMARK. By Theorem 4.7, it can occur that /xov belongs to M(a) for [i e M{a)
and v $ M{a) even if limM30 £ ta/x(dt)/ f* tav(dt) = 0.

We construct a distribution in C(a)\M(a) to show that it is not empty.

EXAMPLE. Let f(x) = log* and r = e. Define a discrete probability measure p
as follows: p (\eek}) = ce~lek+k, where c is a normalized constant and k = 0, 1,
Then V(x), the truncated second moment of p, is

for

https://doi.org/10.1017/S1446788700000756 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000756


196 Takaaki Shimura [11]

If* < <?<"+1,then;c2 < e^2. Therefore we have V(x2)/V(x) < (en+2 - 1) / (en+1 - 1).
Thus we conclude that

V(2x) V(x2)
1 ™ l u p "

REMARK. It is still open whether there exists a distribution in D2 that can be
decomposed into two factors neither of which belongs to D2.

We add a general result to this problem. We say that v belongs to the domain of
partial attraction of a distribution fi if, for i.i.d. random variables Xn with disribution
v, there is an increasing sequence mn of positive integers such that, for some constants
An e Rl and Bn > 0, the distribution of B~x Y^kL\ ** ~ ^« converges to /x as n ->• oo.

PROPOSITION 4.8. Every factor of a distribution in D2 belongs to the domain of the
partial attraction of Gaussian distribution.

PROOF. Since fi o v belongs to D2, ixov has finite absolute ath moment for every
a € (0, 2), which is equivalent to that both /x and v have finite absolute ath moments
for each a e (0, 2). Mailer [4] shows that this implies that both \x and v belong to the
domain of partial attraction of Gaussian distribution.
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