2

Basic Probability Inequalities for Sums
of Independent Random Variables

In machine learning, the observations contain uncertainty, and to incorporate un-
certainty, these observations are modeled as random variables. When we observe
many data, a basic quantity of interest is the empirical mean of the observed
random variables, which converges to the expectation according to the law of
large numbers. We want to upper bound the probability of the event when the
empirical mean deviates significantly from the expectation, which is referred to as
the tail probability. This chapter studies the basic mathematical tools to estimate
tail probabilities by using exponential moment estimates.

Let Xi,...,X, be n real-valued independent and identically distributed (iid)
random variables, with expectation y = EXj;. Let

_ 1 <&
X, =— X;. 2.1
- ;:1 (2.1)

Given € > 0, we are interested in estimating the following tail probabilities:

Pr(X, > p+e),
Pr(X, < p—e).

In machine learning, we can regard X, as the training error observed on the
training data. The unknown mean g is the test error that we want to infer from
the training error. Therefore in machine learning, these tail inequalities can be
interpreted as follows: with high probability, the test error is close to the training
error. Such results will be used to derive rigorous statements of generalization
error bounds in subsequent chapters.

2.1 Normal Random Variable

The general form of tail inequality for the sum of random variables (with relatively
light tails) is exponential in €2. To motivate this general form, we will consider
the case of normal random variables. The bounds can be obtained using simple
calculus.

Theorem 2.1 Let Xy, ..., X, ben iid Gaussian random variables X; ~ N (i, a?),
and let X,, =n~*>" | X,. Then given any € > 0,

0.5¢ ™t /VR 20" < Pr(X, > 4 €) < 0.5e /27

9
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Proof We first consider a standard normal random variable X ~ N(0, 1), which
has probability density function

1
p(:v):me /2,

Given € > 0, we can upper bound the tail probability Pr(X > €) as follows:

<1 2
Pr(X >¢) = / ——e " 2dx
n e V2w

N /OC L gy < /Oo L g,
0o V2w 0 27
= 0.5¢ /2.
We also have the following lower bound:
<1

e V21

Pl o
> — e @) 2y
_/0 v 21

1
S / 1 e—w2/2€—(2e+62)/2dx > 0.346—(2e+62)/2
B 0 27 N

Pr(X >¢) = e " Py

> 0.5e(<+D*/2,
Therefore we have
0.5e(“FD*/2 < Pr(X > €) < 0.5e /2.
Since /n(X,, — u)/o ~ N(0,1), by using
Pr(X, > pu+¢) = Pr(vn(X, — p)/o > V/ne/o),

we obtain the desired result. O

We note that the tail probability of a normal random variable decays exponen-
tially fast, and such an inequality is referred to as an exponential inequality. This
exponential bound is asymptotically tight as n — oo in the following sense. For
any € > 0, we have

2

. 1 _ €

nlggo - InPr(| X, —ul >¢€) = 52"
Such a result is also called a large deviation result, which is the regime when
the deviation € of the empirical mean from the true mean p is much larger than
the standard deviation o/y/n of X,, (Deuschel and Stroock, 2001). The analysis
of normal random variables can rely on standard calculus. For general random
variables with exponentially decaying tail probabilities, we can use the technique
of exponential moment to derive similar results. This leads to a general technique
to estimate the probability of large deviation of the empirical mean from the true
mean.
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2.2 Markov’s Inequality

A standard technique to estimate the tail inequality of a random variable is
the Markov inequality. Let Xi,..., X, be n real-valued iid random variables
(which are not necessarily normal random variables) with mean p. Let X,, be the
empirical mean defined in (2.1). We are interested in estimating the tail bound
Pr(X, > u+ ¢), and Markov’s inequality states as follows.

Theorem 2.2 (Markov’s Inequality) Given any nonnegative function h(x) > 0,
and a set S C R, we have

. E h(X.)
< .
Pr(X, € §) < Wl h(2)

Proof Since h(z) is nonnegative, we have
E h(Xn) > Ex,es h(Xn) > Ex,es hs = Pr(Xn € S) hs,
where hg = inf,c5 h(x). This leads to the desired bound. O

In particular, we may consider the choice of h(z) = 22, which leads to Cheby-
shev’s inequality.

Corollary 2.3 (Chebyshev’s Inequality) We have
Var(Xl)

Pr(|X, — ul >¢€) <
r(| pl =€) < o2

(2.2)

Proof Let h(x) = z*, then
- - 1
Eh(X, —p) =E(X, —p)? = EVar(Xl).

The desired bound follows from the Markov inequality with S = {|X,, —u| > €}.
O

Note that Chebyshev’s inequality employs h(z) = z?, which leads to a tail
inequality that is polynomial in n~! and e. It only requires that the variance
of a random variable is bounded. In comparison, the Gaussian tail inequality
has a much faster exponential decay. Exponential tail inequality is important for
analyzing learning algorithms. In the following, we show that such an inequality
can be established for sums of random variables with exponentially decaying tail
probabilities.

2.3 Exponential Tail Inequality

Anz

In order to obtain exponential tail bounds, we will need to choose h(z) = e*"* in
Markov’s inequality with some tuning parameter A € R. Similar to Chebyshev’s
inequality, which requires that the variance of a random variable is bounded,
we assume exponential moment Ee**1 < oo for some A # 0. This requires that
the random variable X; has tail probability that decays exponentially fast. The
following definition is helpful in the analysis.
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Definition 2.4 Given a random variable X, we may define its logarithmic
moment generating function as

Ax(A) = InEe**.
Moreover, given z € R, the rate function Ix(z) is defined as

supyao Az — Ax(N)] 2> g,
[X(Z) = 0 Z = [,
supy o [Az — Ax(N)] 2z <p,

where p = E[X].

This definition can be used to obtain exponential tail bounds for sums of in-
dependent variables as follows.

Theorem 2.5 For anyn and € > 0,
1 _
—InPr(X,>pu+e) <—Ix(n+e) = ;\I;% [-A(1+€) + InEe* ],
n

1 _
—InPr(X, <p—e€) <—Ix(n—c¢ = /i\n% [—A(n—¢€) +InEeM].
n <

Proof We choose h(z) = e\* in Theorem 2.2 with S = {X,, —u > €}. For A > 0,
we have

EeAan ]EeAZ?:l X;

PI‘(Xn > % + E) < ekn(#""f) = e)\n(,u—l-e)

E[l, e An(ute) [ AXL R
= eAn(u+e) =€ g [Ee 1] :

The last equation used the independence of X; as well, as they are identically
distributed. Therefore by taking the logarithm, we obtain

InPr(X, >p+e) <n[-Ap+e +InEe].

Taking inf over A > 0 on the right-hand side, we obtain the first desired bound.
Similarly, we can obtain the second bound. O

The first inequality of Theorem 2.5 can be rewritten as
Pr(X, > p+e€) < exp[—nlx, (u+¢)].

It shows that the tail probability of the empirical mean decays exponentially fast,
if the rate function I, () is finite. More concrete exponential tail inequalities can
be obtained by applying Theorem 2.5 to specific random variables. For example,
for Gaussian random variables, we can derive a tail inequality using Theorem 2.5,
and compare it to that of Theorem 2.1.

Example 2.6 (Gaussian Random Variable) Assume that X; ~ N(p,0?), then
the exponential moment is
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A X1—p) OO 1 A& —a? /20>
EeM 1 —H) = Te e dzx
o To

1 202 2 2 2

/2 —(x/o—Xo) /2d A40?/2

= —€ & Xr/o =€ .
/_oo V2T /

Therefore,

)\20.2 62
Ix, (4 €) =sup [)\e - ln]EeMXl_”)] = sup [)\6 - } =—,
A>0 A>0 2 20

where the optimal A is achieved at A = €/0?. Therefore

2
Pr(X, 2 i €) < explonl (u-+ o] = exp | .
(o2

This leads to the same probability bound as that of Theorem 2.1 up to a constant
factor.

This Gaussian example, together with Theorem 2.1, implies that the exponen-
tial inequality derived from Theorem 2.5 is asymptotically tight. This result can
be generalized to the large deviation inequality for general random variables. In
particular, we have the following theorem.

Theorem 2.7 For alle¢ > ¢ >0,
1 _
himn—woi In PI'(X" >+ 6) > _IX1 (/’L + 6/)'
n
Similarly,

T

1 _
m —>ooﬁ hlPI“(Xn < H—= 6) > _IX1(M - 6/)'

Proof We only need to prove the first inequality. Consider Pr(X; < z) as a
function of x, and define a random variable X with density at x as

dPr(X] < x) = A NgPr(X; < ).
This choice implies that

iA () = [ xerdPr(X, < z)
ATV T [ededPr(X, < )

We now take A such that

A = argmax [N+ ¢) = Ax, (V)]

By setting the derivative to zero, we obtain

d
]EX{X{ = anl ()‘) =p+ 6/3 (23)
“Ap+€)+AN) =—I(p+€). (2.4)
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Let X! =n=t3"  X/. Then, by the law of large numbers, we know that for
€ > €', we obtain from (2.3)

lim Pr(X! — p € [e,€']) = 1. (2.5)
n—roo
Since the joint density of (X7,..., X/ ) satisfies
e A Xim mitnAx, () HdPr(X,Z <) = HdPr(XZ- <), (2.6)

by using 1(-) to denote the set indicator function, we obtain

Pr(X, > p+e) >Pr(X, —puc€lee))

o A(X, e e, )
= B, O] - e fe, )
> e AN Pr(X g€ [e, ')

The first equality used the definition of Pr(:). The second equality used (2.6).
The last inequality used Markov’s inequality. Now by taking the logarithm, and
dividing by n, we obtain

1 _
- InPr(X, > pu+e) (2.7)
1 _
> M) AW+ (] - e [ed)
1 _
=—I(p+e)=Me" =€)+ - InPr(X, — p € [e,€"]). (2.8)

The equality used (2.4). Now we obtain the desired bound by letting n — oo,
applying (2.5), and letting €’ — € so that A(¢” — ¢') — 0 (this is true because A
depends only on €). O

The combination of Theorem 2.5 and Theorem 2.7 shows that the large devia-
tion tail probability is determined by the rate function. This result is referred to
as Cramér’s theorem (Cramér, 1938; Deuschel and Stroock, 2001).

For specific cases, one can obtain an estimate of Pr(X/ —u € [¢,€”]) in (2.8) with
finite n at € = e+ 2/ Var(X;)/n and ¢’ = e+4/Var(X;)/n. Using Chebyshev’s
inequality, we expect that Pr(X! — u € [e,€"]) is lower bounded by a constant.
This means that as n — oo, the exponential tail inequality of Theorem 2.5 is gen-
erally loose by no more than O(y/Var(X;)/n) in terms of deviation e. A concrete
calculation will be presented for bounded random variables in Section 2.5.

Before we investigate concrete examples of random variables, we state the fol-
lowing property of the logarithmic generating function of a random variable,
which provides intuitions on its behavior. The proof is left as an exercise.

Proposition 2.8 Given a random variable with finite variance, we have
dAx (M) *Ax (M)

Ax(N| =0, - — E[X], e
A=0

= Var[X].

A=0
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In the application of large deviation bounds, we are mostly interested in the
case that deviation e is close to zero. As shown in Example 2.6, the optimal \ we
shall choose is A = O(€) = 0. It is thus natural to consider the Taylor expansion
of the logarithmic moment generating function around A = 0. Proposition 2.8
implies that the leading terms of the Taylor expansion are

2
Ax(AN) = \u+ %Var[X] +0(\?),

where p = E[X]. The first two terms match that of the normal random variable
in Example 2.6. When € > 0 is small, to obtain the rate function
2

A
Ix(n+€) = sup | A(p+€) = A — - Var[X] — o(X%) |,
A>0
we should set the optimal A\ approximately as A &~ ¢/Var[X], and the correspond-
ing rate function becomes

62

Ix(p+e) = Var[X] + o(€?).

For specific forms of logarithmic moment generation functions, one may obtain
more precise bounds of the rate function. In particular, the following general esti-
mate is useful in many applications. This estimate is what we will use throughout
the chapter.

Lemma 2.9 Consider a random variable X so that E[X]| = p. Assume that
there exists a > 0 and 8 > 0 such that for X € [0,371),
a?
Ax(N) <A —_— 2.9
then for e > 0,
62
.y <
At 9= o B
Be? €2
T PP« &
X <M + e+ 20 ) = o4
Proof Note that
I(p+€) < inf |=A(u+e) it N
xS b [ A+ Mk 5
We can take A at A = ¢/(a + Be). This implies that a)/(1 — S)\) = e. Therefore
a\? _& €?

Moreover, with the same choice of A\, we have

B, - 6 a\? €2
-1 —e | < — 1+ — — = .
X(M+6+2a6 < —Xe +2046 +2(1—5)\) %0
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This proves the second desired bound. O
Lemma 2.9 implies the following generic theorem.

Theorem 2.10 If X| has a logarithmic moment generating function that sat-
isfies (2.9) for A > 0, then for all e > 0,

Pr(X, > p+e) < [—”62 ]
r(X, > €) <ex )

s P12(a+ Be)
Moreover, fort >0, we have

— 2ot t
Pr(XnZ,u—i— a—|—6>§e_t.
n n

Proof The first inequality of the theorem follows from the first inequality of
Lemma 2.9 and Theorem 2.5. The second inequality of the theorem follows from
the second inequality of Lemma 2.9 and Theorem 2.5, with € = \/2at/n. O

2.4 Sub-Gaussian Random Variable

The logarithmic moment generating function of a normal random variable is
quadratic in A\. More generally, we may define a sub-Gaussian random variable as
a random variable with logarithmic moment generating function dominated by
a quadratic function in A. Such random variables have light tails, which implies
that they have a tail probability inequality similar to that of a Gaussian random
variable.

Definition 2.11 A sub-Gaussian random variable X has quadratic logarithmic
moment generating function for all A € R:
2

A
InEe ™ < A+ ?b. (2.10)

Using (2.10), we can obtain an upper bound of the rate function for sub-
Gaussian random variables, which imply the following tail inequality.

Theorem 2.12 If X, is sub-Gaussian as in (2.10), then for all t > 0,

_ 2bt

Pr <Xn >+ \/) <e ™',
n
_ [ 2bt

Pr (Xn <pu-— ) <e™t.
n

Proof The result follows from Theorem 2.10 with a = b and g = 0. O

Common examples of sub-Gaussian random variables include Gaussian random
variables and bounded random variables.
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Example 2.13 A Gaussian random variable X; ~ N(u,0?) is sub-Gaussian
with b = o2

Example 2.14 Consider a bounded random variable: X; € [, 8]. Then X; is
sub-Gaussian with b = (8 — «)?/4.

The tail probability inequality of Theorem 2.12 can also be expressed in a
different form. Consider § € (0, 1) such that § = exp(—t), so we have t = In(1/9).
This means that we can alternatively express the first bound of Theorem 2.12 as
follows. With probability at least 1 — §, we have

_ 2bIn(1/6
X, <p+ n;/)

This form is often preferred in the theoretical analysis of machine learning algo-
rithms.

2.5 Hoeffding’s Inequality

Hoeffding’s inequality (Hoeffding, 1963) is an exponential tail inequality for bounded
random variables. In the machine learning and computer science literature, it is
often referred to as the Chernoff bound.

Lemma 2.15 Consider a random variable X € [0,1] and EX = u. We have
the following inequality:

InEe™ < Inf(1 — p)e’ + pet] < A+ \?/8.

Proof Let hp(\) = Ee* and hr(\) = (1 — p)e® + pe*. We know that hy(0) =
hr(0). Moreover, when A > 0,

Ry (A\) = EXeM <EXe = pet = hz(N),
and similarly A’ (A) > h/z(A) when A < 0. This proves the first inequality.
Now we let
h(A) = In[(1 — p)e’ + pe?].
It implies that
A

, pie
W\ =
*) (1= p)e® + per’

and

(1—p)ed +per [(1— p)e® + per]?
= WML =[P (V)]) < 1/4.

Using Taylor expansion, we obtain the inequality h(A\) < h(0) + AA/(0) + A\?/8,
which proves the second inequality. O

B() = pe (pet)?
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The lemma implies that the maximum logarithmic moment generating func-
tion of a random variable X taking values in [0, 1] is achieved by a {0, 1}-valued
Bernoulli random variable with the same mean. Moreover, the random varia-
ble X is sub-Gaussian. We can then apply the sub-Gaussian tail inequality in
Theorem 2.12 to obtain the following additive form of Chernoff bound.

Theorem 2.16 (Additive Chernoff Bounds) Assume that X, € [0,1]. Then for
all € > 0,

Proof We simply take b = 1/4 and t = 2ne? in Theorem 2.12 to obtain the first
inequality. The second inequality follows from the equivalence of X,, <y —¢€ and
X, < —u+e O

In some applications, one may need to employ a more refined form of Chernoff
bound, which can be stated as follows.

Theorem 2.17 Assume that X; € [0,1]. Then for all e > 0, we have
Pr(Xn >+ e) < e—nKL(u+eHu)’
Pr()?n <p— e) < e*”KL(M*GHM)’
where KL(z||p) is the Kullback—Leibler divergence (KL-divergence) defined as
—z
—u

1
KL(z||n) = 2In 4+ (1—-2)ln .
i

Proof Consider the case z = i1 + €. We have
I (2) < inf[-A + In((1— e + e
>
Assume that the optimal value of A on the right-hand side is achieved at A,. By

setting the derivative to zero, we obtain the expression
A

pe
Zz =

(1 — p)e 4 per-’
which implies that

ro_ 2(L—p)

e = ———=.
p(l—2)

This implies that —Ix, (2) < —KL(z||u). The case of z = p1 — € is similar. We can
thus obtain the desired bound from Theorem 2.5. U

In many applications, we will be interested in the situation p ~ 0. For ex-
ample, this happens when the classification error is close to zero. In this case,
Theorem 2.17 is superior to Theorem 2.16, and the result implies a simplified
form stated in the following corollary.
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Corollary 2.18 (Multiplicative Chernoff Bounds) Assume that X; € [0,1].
Then for all € > 0,

2

_ —njie
Pr(X, > (1 < ,
r( > ( +6)u)_exp[2+e]

Pr (X, < (1= €)u) < exp [H;GQ] :

Moreover, fort >0, we have

2 t
Pr (X >+ 2 —|—>§et.
n 3n

Proof The first and the second results can be obtained from Theorem 2.17 and
the inequality KL(z||u) > (2 — p)?/ max(2u, u + z) (which is left as an exercise).
We then take z = (1 + €)p and z = (1 — €)pu, respectively, for the first and the
second inequalities.

For the third inequality (which is sharper than the first inequality), we may
apply Theorem 2.10. Just observe from Lemma 2.15 that when \ > 0,

Ax,(\) <In[(1 = p)e® + pe’]

<u(er —1) ,u/\—l—uZ—

k>2
A

2(1—\/3)

In this derivation, the equality used the Taylor expansion of exponential function.

The last inequality used k! > 2-3¥=2 and the sum of infinite geometric series. We
may take @ = g and 5 = 1/3 in Theorem 2.10 to obtain the desired bound. [

< pA +

The multiplicative form of Chernoff bound can be expressed alternatively as
follows. With probability at least 1 — 9,

_ 2uln(1/6
< X4 MTEH

It implies that for any v € (0,1),
In(1/6)

X, >0 —7y)pu- 2o

(2.11)

Moreover, with probability at least 1 — ¢,
2uIn(1/4) L In(1/4)

n 3n

X, < p+

It implies that for any v > 0,

(3+29) In(1/9)

X, < (1
(14+y)p+ oo

(2.12)
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For Bernoulli random variables with X; € {0, 1}, the moment generating function
achieves equality in Lemma 2.15, and thus the proof of Theorem 2.17 implies that
the rate function is given by

I, (2) = KL(z][).

We can obtain the following lower bound from (2.8), which suggests that the KL
formulation of Hoeffding’s inequality is quite tight for Bernoulli random variables
when n is large.

Corollary 2.19 Assume that X; € {0,1}. Then for all € > 0 that satisfy

¢=ct2/(utol—(ute)fn<l—p
andn > (1—p—e€)/(n+¢€), we have
Pr(X, > p+e€) > 0.25 exp [-nKL(u + €||n) — v/nAIl,

where

_ (n+ €)1 —p)
AI_Q\/(M+€)(1ME)ID(1—(M‘+—EI)),U‘

Proof 1In (2.8), we let € = 2¢’ — €. Since X € {0,1} and EX] = p + €, we have
Var(X]) = (u+ €)(1 — u — €). Using Chebyshev’s inequality, we obtain
pte)dl—p—¢)
n(e — e)?
€ —¢

1+ e€)
=025+ -—.
(k+e) A(p + €)

Pr (X, — (4 )| > ) < &

_ ptd-p—e)

dp+e)(l—(u+e)

(

4

Therefore
Pr(X,e(ptep+e)=1-Pr(X, - (u+e)>e—¢

/_ 1 _ _
> 075 — —— ¢ —075-05,]—" "> 0.25.
4(p+e€) n(p+ e€)

The choice of X in (2.4) is given by
MR (G D)
(1= (p+€)p

By using these estimates, we can obtain the desired bound from (2.8). O

2.6 Bennett’s Inequality

In Bennett’s inequality, we assume that the random variable is upper bounded
and has a small variance. In this case, one can obtain a more refined estimate
of the moment generating function by using the variance of the random variable
(Bennett, 1962).
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Lemma 2.20 If X —EX < b, then VA > 0:
InEe < AEX + A2¢(\b)Var(X),
where ¢(z) = (e* — z — 1) /22,

Proof Let X' = X —EX. We have
InEe*X = AEX + InEe™Y’
<AEX +EeM —1
=\EX + )\21[436/\)((;\X)\I))(;_l()(’)2
<AEX + NEg(\b)(X')?,
where the first inequality used Inz < z — 1; the second inequality follows from

the fact that the function ¢(z) is non-decreasing (left as an exercise) and A\ X' <
Ab. O

Lemma 2.20 gives an estimate of the logarithmic moment generating function,
which implies the following result from Theorem 2.5.

Theorem 2.21 (Bennett’s Inequality) If X; < u+ b, for some b > 0. Let
P(z) = (1+2)In(1 + z) — z, then Ve > 0:

Pr[X, > p+¢ <exp {—N\Z;Y(X)w (Vare(lixl)ﬂ 7

_ —ne?
PriX, > < :
1 Ht e Sexp {2Var(X1) + 261)/3]

Moreover, fort >0,

Pr|X, >pu+

n 3n

2Var(X))t bt] —

Proof Lemma 2.20 implies that
—Ix (p+e) < inf [—Xe+b7%(e* — Ab — 1) Var(X,)] .

We can set the derivative of the objective function on the right-hand side with
respect to A\ to zero at the minimum solution, and obtain the condition for the
optimal A as follows:

—e+ b e —1)Var(X,) = 0.

This gives the solution A = b~ In(1 + eb/Var(X;)). Plugging this solution into
the objective function, we obtain

Iy, (u+e€) < —Varngl)w (Varﬁ(l;ﬁ)) .

The first inequality of the theorem follows from an application of Theorem 2.5.
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Given A € (0,3/b), it is easy to verify the following inequality using the Taylor
expansion of the exponential function:

Ax,(A) < pA+b7% [e* — Ab — 1] Var(X,)

<+t Var(‘;m ;Oub/:a)m — m (2.13)

The second and the third desired bounds follow from direct applications of The-
orem 2.10 with o = Var(X;) and 5 =b/3. O

Bennett’s inequality can be expressed alternatively as follows. Given any § €
(0,1), with probability at least 1 — §, we have

%<t \/QVar(Xlrz In(1/9) bln§;/5).

If we apply this to the case that X; € [0,1], then using the variance estimation
Var(X;) < p(1 — u), and b < 1 — u, the bound implies

\/2u(1 —W(L/3) | (L= p)ln(1/0)
n 3n

This is slightly tighter than the corresponding multiplicative Chernoff bound in
Corollary 2.18.

Compared to the tail bound for Gaussian random variables, this form of Ben-
nett’s inequality has an extra term b1n(1/0)/(3n), which is of higher order O(1/n).
Compared to the additive Chernoff bound, Bennett’s inequality is superior when
Var(X) is small.

X, < p+

2.7 Bernstein’s Inequality

In Bernstein’s inequality, we obtain results similar to Bennett’s inequality, but
using a moment condition (Bernstein, 1924) instead of the boundedness condition.
There are several different forms of such inequalities, and we only consider one
form, which relies on the following moment assumption.

Lemma 2.22 If X satisfies the following moment condition with b,V > 0 for
mlegers m > 2:

E[X — ™ < m!(b/3)"2V/2,
where ¢ is arbitrary. Then when A € (0,3/b),
A2V

mEM < AEX 4+ — 2+
nEeT S AR ST T 3)

Proof We have the following estimation of logarithmic moment generating
function:
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InEe* < Ae+ EeXX ™) — 1 <AEX + 0.5VA? Y (b/3)" 2\
m=2

=AEX + 0.50%V (1 — \b/3)~ "
This implies the desired bound. O

In general, we may take ¢ = E[X]| and V = Var[X]. The following bound is a
direct consequence of Theorem 2.10.

Theorem 2.23 (Bernstein’s Inequality) Assume that X, satisfies the moment
condition in Lemma 2.22. Then for all € > 0,

_ —ne?
Pr(X, > <exp|——1C
rXn 2 pte < exp {2V+2eb/3}

and for all t > 0,

= 2Vt bt
Pr Xn2u+wl+— < et
n 3n
Proof We simply set & =V and § = b/3 in Theorem 2.10. O

Similar to Bennett’s inequality, Bernstein’s inequality can be alternatively ex-
pressed as follows. With probability at least 1 — 6,

- 2V In(1/6 bIn(1/0
e % s [ | bn(1/6)
n 3n
which implies with probability at least 1 — 4, the following inequality holds for
all v > 0:
- b(3+2v)In(1/6
< Xt (/B + 2 67,371“( /%) (2.14)

Example 2.24 If the random variable X is bounded with |X — p| < b, then
the moment condition of Lemma 2.22 holds with ¢ = g and V' = Var(X).

2.8 Nonidentically Distributed Random Variables

If Xy,..., X, are independent but not identically distributed random variables,
then a tail inequality similar to that of Theorem 2.5 holds. Let X,, =n~">7" | X;,
and u = EX,, then we have the following bound.

Theorem 2.25 We have for all € > 0,
v : _ AX;
Pr(X, >pu+e) < /1\2% An(p+ €) —i—;lnEe

For sub-Gaussian random variables, we have the following bound.
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Corollary 2.26 If {X,} are independent sub-Gaussian random variables with
InEe? < AEX; + 0.5\2b;, then for all € > 0,

2.2

Pr(X, > pu+e€) <exp {—2;:7:[)2} :

The following inequality is a useful application of the aforementioned sub-

Gaussian bound for Rademacher average. This bound, also referred to as the

Chernoff bound in the literature, is essential for the symmetrization argument of

Chapter 4.

Corollary 2.27 Let 0, = {£1} be independent Bernoulli random wvariables
(each takes value +1 with equal probability). Let a; be fized numbers (i=1,...,n).
Then for all € > 0,

n 2
1 ne
" ( S ) <ov | gyl

i=1
Proof Consider X; = 0;a; in Corollary 2.26. We can take p = 0 and b; = a7 to
obtain the desired bound. ]
One can also derive a Bennett-style tail probability bound.
Corollary 2.28 If X; —EX; <b for all i, then for all ¢ > 0,
n2e

250 Var(X;) + 2nbe/3 |

Pr(X, > pi+e€) <exp |~

2.9 Tail Inequality for x?

Let X; ~ N(0,1) be iid normal random variables (i = 1,...,n), then the random

variable
Z=>Y X?
i=1

is distributed according to the chi-square distribution with n degrees of freedom,
which is often denoted by 2.

This random variable plays an important role in the analysis of least squares
regression. More generally, we may consider the sum of independent sub-Gaussian
random variables, and obtain the following tail inequality from Theorem 2.5.

Theorem 2.29 Let {X;}" , be independent zero-mean sub-Gaussian random
variables that satisfy
A?b;

5

InEy, exp(AX;) <
then for A < 0.5b;, we have

1
InEy, exp(AX7?) < -3 In(1 — 2Xb;).
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Let Z =" | X?, then

Z>) bi+2,|tY b2+ 2t(maxbi)} <e
i=1 i=1 )
Pr [Z < Zbi — 2@ <e
=1 1=1

Proof Let & ~ N(0,1), which is independent of X;. Then for all A\b; < 0.5, we
have

Pr

and

Ax2(A) =InEx, exp(AX})
=InEx,E; exp(V2XX;)

=InE:Ey, exp(\/ﬁin)
<InE¢ exp(AE?D;)

where the inequality used the sub-Gaussian assumption. The second and the last
equalities can be obtained using Gaussian integration. This proves the first bound
of the theorem.

For A > 0, we obtain

Axz()) < —0.51n(1 — 2)b,)
> (2b,)*
=0.5 -

S+ (Ab)? Y (2D;)*

k>0
(Ab;)?
1—2Xb;
The first probability inequality of the theorem follows from Theorem 2.10 with
p=n"t3" b, a=(2/n)Y" b7, and § = 2max; b;.
If A <0, then

= \b; +

Ax>(X) < =0.5In(1 — 2Xb;) < Ab; + A0,
The second probability inequality of the theorem follows from the sub-Gaussian
tail inequality of Theorem 2.12 with p=n"'>"" b, and b= (2/n) >, b7. O
From Theorem 2.29, we can obtain the following expressions for x? tail bound
by taking b; = 1. With probability at least 1 — ¢,

Z <n+2y/nln(1/0) + 21n(1/6),
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and with probability at least 1 — ¢,

Z >n—24/nln(1/4).

One may also obtain a tail bound estimate for x2 distributions using direct inte-
gration. We leave it as an exercise.

2.10 Historical and Bibliographical Remarks

Chebyshev’s inequality is named after the Russian mathematician Pafnuty Cheby-
shev, and was known in the nineteenth century. The investigation of exponential
tail inequalities for sums of independent random variables occurred in the early
twentieth century. Bernstein’s inequality was one of the first such results. The
large deviation principle was established by Cramér, and was later rediscovered
by Chernoff (1952). In the following decade, several important inequalities were
obtained, such as Hoeffding’s inequality and Bennett’s inequality. The tail bounds
in Theorem 2.29 for x? random variables was first documented in Laurent and
Massart (2000), where they were used to analyze least squares regression prob-
lems with Gaussian noise. It was later extended to arbitrary quadratic forms of
independent sub-Gaussian random variables by Hsu et al. (2012D).

Exercises

2.1 Assume that X1, Xo,..., X, are real-valued iid random variables with density function

322
pla) = exp(—2”/2).

V2r
Let M= EXL and Xn = ’I"L_l Z?:l Xi~
e Estimate In Eexp(AX1)
e Estimate Pr(X, > u+¢)
e Estimate Pr(X, < pu—¢)
2.2 Prove Proposition 2.8.

2.3 Prove the inequality
(z = w)?
KL > - 7
(Gl > =,
which is needed in the proof of Corollary 2.18.
2.4 Prove that the function ¢(z) = (¢* — z — 1)/2? is non-decreasing in z.
2.5 Assume that the density function of a distribution D on Ris (1—p)U(—1, 1)+pU(—1/p,1/p)
for p € (0,0.5), where U(-) denotes the density of the uniform distribution. Let X1,..., Xn
be iid samples from D. For € > 0, estimate the probability

1 n
Pr (n Z X; > e>
i=1
using Bernstein’s inequality.
2.6  Write down the density of X2 distribution, and use integration to estimate the tail in-

equalities. Compare the results to those of Theorem 2.29.
2.7 Prove Corollary 2.26 and Corollary 2.28.
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