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1. Introduction. Given a commutative ring A with identity, let W™'(A) denote the
Witt group of skew-symmetric bilinear forms over A (cf. [1] or [7] for the definition of
w=(A)).

For a regular affine 2-dimensional algebra A over the field R of real numbers, the
group W™'(A) has been computed in a quite explicit way in [1] under the assumption that
the set X(R) of R-rational points of X =SpecA is compact in the strong topology
(induced by the Euclidean topology on R). In fact the calculation of W~'(A) has been
reduced to the calculation of the subgroup H;,(X(R),Z/2) of the cohomology group
H'(X(R),Z/2) generated by the cohomology classes of algebraic cycles on X of
codimension 1 (cf. Section 2 for the definition of H,(X(R), Z/2)). This result of [1] does
not seem directly to extend to the case with X(R) not necessarily compact. Here, without
any restrictions on X(R), we show that the group W™'(A)/2W~!(A) is canonically
isomorphic to the quotient group of H*(X(R), Z/2) modulo the subgroup

{v’=vUv e H(X(R), Z/2) | v € H)(X(R), Z/2)}.

In particular, if X(R) has no compact connected component then H*(X(R), Z/2) =0 and
hence W~'(A)/2W~'(A)=0.
For more information about H},(X(R), Z/2), we refer to [2] and [8].

2. Results. First we need some preparation. Let X be a smooth quasi-projective
variety over R. The set X(R) of R-rational points of X, equipped with the strong
topology, has the natural structure of a C* manifold, X(R) = or dim X(R) = dim X.
Given a closed d-dimensional subvariety Y of X, let |Y| denote the fundamental class of
Y(R) in HIM(Y(R),Z/2) (cf. [3, 5.12]; if dim Y(R)<d, we set |Y|=0), where
HEM(-, Z/2) stands for the Borel-Moore homology with coefficients in Z/2. Let

iy: HSM(Y(R), Z/2)— HEM(X(R), Z/2)
be the homomorphism induced by the inclusion Y(R) < X(R) and let
A:HIY(X(R), Z/2)— H*(X(R), Z/2)

be the Poincaré duality isomorphism, where H*(-, Z/2) is the cohomology with
coefficients in the constant sheaf Z/2 (which in the case considered here is the same as the
singular cohomology). There is a unique homomorphism of graded rings

cly: A(X)— H*(X(R), Z/2)
such that cly([Y]) = A(iy(|Y])) for all closed subvarieties Y of X, where A(X) is the Chow
ring of X and [Y] is the cycle represented by Y (cf. [3, 5.13]). We set
He(X(R), Z/2) = k?o H%(X(R), Z/2) = cly(A(X)).
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Note that
G(X(R)) = {v> e H(X(R), Z/2) | v € H;,(X(R), Z/2)}
is a subgroup of H*(X(R), Z/2).

THEOREM 1. Let A be a regular affine R-algebra of dimension 2 and let X = Spec A.
Then the groups W™ (A)/2W~}(A) and H*(X(R), Z/2)/G(X(R)) are canonically isomor-
phic. Moreover, W~'(A) =0 if X(R) is empty.

In particular, we immediately obtain the following.

CoROLLARY 2. Let A be a regular affine R-algebra of dimension 2 and let X = Spec A.
If X(R) is nonempty and the C” surface X(R) has no compact connected nonorientable
component, then W~'(A)/2W~'(A) is isomorphic to (Z/2), where s is the number of
compact connected components of X(R).

3. Proof of Theorem 1. Let A be a commutative ring with identity. Denote by
Ko(A) the Grothendieck group of finitely generated projective A-modules and by Pic(A4)
the Picard group of A, and let SK((A) be the kernel of the determinant homomorphism
det: K,(A)— Pic(A4). One easily sees that the subgroup tr K,(A) of Ko(A) generated by
the classes of all elements of the form P @ P*, where P is a finitely generated projective
A-module and P* is the dual module, is contained in SKy(A). We shall be using the main
result of [7].

THeOREM 3 [7]. Let A be a 2-dimensional affine algebra over a real closed field R.
Then the groups W~'(A)/2W~'(A) and SK(A)/tr K((A) are canonically isomorphic.
Moreover, if the set of R-rational points of Spec A is contained in a closed subscheme of
dimension not exceeding 1, then the groups W™'(A) and SKy(A)/tr Ko(A) are canonically
isomorphic.

Proof of Theorem 1. Without loss of generality, we may assume that X is irreducible.
We shall identify finitely generated projective A-modules with vector bundles on X.
Given a vector bundle E on X, let ¢;(E) denote its ith Chern class with value in the Chow
group A’(X) of X. We also consider ¢; as a mapping from K(A) to A/(X) and denote by
[E] the class in K(A) represented by E.

The group homomorphism

@:SKo(A)— H(X(R), Z/2),

induced by the mapping which associates to every vector bundle E on X the element
clx(cy(E)), satisfies @(tr Ko(A)) = G(X(R)) and hence gives rise to the group
homomorphism

¥:SKo(A)/tr Ro(A)— H(X(R), Z/2)/G(X(R)).

We claim that 9 is a bijection.
Observe that H(X(R), Z/2) = H3,(X(R), Z/2) since dim X = 2. Thus surjectivity of
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y follows immediately from the fact that ¢,:SKo(A4)— A*(X) is an isomorphism (cf. [5,
Example 15.3.6]).
It remains to show that ¥ is injective. First let us observe that

I'={a e A%(X)|cly(a) =0}

is a divisible subgroup of A*(X). Indeed, by Hironaka’s theorem [6], we may assume that
X is an open subvariety of a projective nonsingular algebraic surface Y over R. Consider
the following commutative diagram

A (Ye) 2 a%Y) 2 HAY(R), 2/2)

Eooob ¥

AY(Xe) 25> 4%(X) X HY(X(R), 2/2)

where Ye=Y XgC, Xc=XXxC, the homomorphisms x,, p, are induced by the
canonical projections 7:Ye—Y, p=m| X¢c: Xc— X, the vertical arrows are the hom-
omorphisms induced by the inclusions X¢ccYe, X <Y, X(R)c Y(R), and the hom-
omorphisms cl}, cly are the restrictions of cly, cly. By [4], the top row of the diagram is
exact. We shall demonstrate that the bottom row is exact too. Obviously, cl%° p, =0. Let
cl3(u) = 0 for some u in A*(X) and let u = B(v) for some v in A*(Y). Since y(cl3(v)) =0,

one can find an element w in A%(Y), represented by a Z-linear combination of points of
Y(R)\X(R), such that cl3(v — w) =0. By construction, (v — w) =0 and hence exactness
of the top row implies exactness of the bottom row of the diagram.

Let A*(Y() be the subgroup of A%(Yc) of O-cycles (here dim Y¢ =2) of degree zero.
Thus A*(Yc) is a divisible group (cf. [S, Example 1.6.6]). Since X¢ is an open affine
subvariety of X, it follows that a(A*(Yc)) = A*(Xc), and hence A*(X() is a divisible
group. Therefore, im(p,) = ker(cl¥) =T is a divisible group.

Now we return to the proof of injectivity of . Let £ be an element of SK(A)
satisfying cly(c,(£)) = v? for some v in H},(X(R), Z/2). Pick a line bundle L such that
clx(ci(L)) =v. Then, for n=§ + [L & L*], we obtain, c,(n) =0 and c,(n) = a, where a is
in . Choose an element b in I satisfying 2b = —a. By [5, Example 15.3.6], there exists a
vector bundle F on X such that ¢,(F)=0 and c,(F)=b. Clearly, ¢,(F*)=0 and
c(F*)=b and hence setting {=n+[F@® F*], we obtain ¢,({)=0 and c,({)=0.
Applying (S, Example 15.3.6] once again, we conclude that { =0 and hence & belongs to
tr Ko(A). This shows that v is injective.

In view of Theorem 3, the proof of Theorem 1 is complete.
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