
4
The action principle

The variational principle is central to covariant field theory. It displays
symmetries, field equations and continuity conditions on an equal footing. It
can be used as the starting point for every field theoretical analysis. In older
books, the method is referred to as Hamilton’s principle. In field theory it is
referred to more colloquially as the action principle. Put plainly, it is a method
of generating functionals; it compresses all of the kinematics and dynamics of a
physical theory into a single integral expression S called the action.

The advantage of the action principle is that it guarantees a well formulated
dynamical problem, assuming only the existence of a set of parameters on
which the dynamical variables depends. Any theory formulated as, and derived
from an action principle, automatically leads to a complete dynamical system
of equations with dynamical variables which play the roles of positions and
momenta, by analogy with Newtonian mechanics. To formulate a new model
in physics, all one does is formulate invariant physical properties in the form of
an action, and the principle elucidates the resulting kinematical and dynamical
structure in detail.

4.1 The action in Newtonian particle mechanics

Consider a system consisting of a particle with position q(t) and momentum
p(t). The kinetic energy of the particle is

T = 1

2
mq̇2, (4.1)

and the potential energy is simply denoted V (q). The ‘dot’ over the q denotes
the time derivative, or

q̇ = dq

dt
. (4.2)
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4.1 The action in Newtonian particle mechanics 51

Classical mechanics holds that the equation of motion for a classical particle is
Newton’s law:

F = mq̈ = −dV

dq
, (4.3)

but it is interesting to be able to derive this equation from a general principle.
If many equations of motion could be derived from a common principle, it
would represent a significant compression of information in physics. This is
accomplished by introducing a generating function L called the Lagrangian.
For a conservative system, the Lagrangian is defined by

L = T − V, (4.4)

which, in this case, becomes

L = 1

2
mq̇2 − V (q). (4.5)

This form, kinetic energy minus potential energy, is a coincidence. It does not
apply to all Lagrangians. In relativistic theories, for instance, it is not even clear
what one should refer to as the kinetic and potential energies. The Lagrangian
is a generating function; it has no unique physical interpretation.

The Lagrangian is formally a function of q and q̇ . The general rule for
obtaining the equations of motion is the well known Euler–Lagrange equations.
They are

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0. (4.6)

If the physical system is changed, one only has to change the Lagrangian: the
general rule will remain true. Evaluating, in this case,

∂L

∂q
= −dV

dq
∂L

∂ q̇
= mq̇, (4.7)

one obtains the field equations (4.3), as promised.
Is this approach better than a method in which one simply writes down the

field equations? Rather than changing the field equations for each case, one
instead changes the Lagrangian. Moreover, eqn. (4.6) was pulled out of a hat,
so really there are two unknowns now instead of one! To see why this approach
has more to offer, we introduce the action.
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52 4 The action principle

4.1.1 Variational principle

The fact that one can derive known equations of motion from an arbitrary
formula involving a constructed function L is not at all surprising – there are
hundreds of possibilities; indeed, the motivation for such an arbitrary procedure
is not clear. The fact that one can obtain them from a function involving
only the potential and kinetic energies of the system, for any conservative
system, is interesting. What is remarkable is the fact that one can derive the
Euler–Lagrange equations (i.e. the equations of motion), together with many
other important physical properties for any system, from one simple principle:
the action principle.

Consider the action S from the Lagrangian by

S12 =
∫ t2

t1

L(q, q̇)dt. (4.8)

The action has (naturally) dimensions of action or ‘energy × time’, and is
thought of as being a property of the path q(t) of our particle between the
fixed points q(t1) and q(t2). The action has no physical significance in itself.
Its significance lies instead in the fact that it is a generating functional for the
dynamical properties of a physical system.

When formulating physics using the action, it is not necessary to consider the
fact that q and q̇ are independent variables: that is taken care of automatically. In
fact, the beauty of the action principle is that all of the useful information about
a physical system falls out of the action principle more or less automatically.

To extract information from S, one varies it with respect to its dynamical
variables, i.e. one examines how the integral changes when the key variables in
the problem are changed. The details one can change are t1 and t2, the end-points
of integration, and q(t), the path or world-line of the particle between those two
points (see figure 4.1). Note however that Q(t) is the path the particle would
take from A to B, and that is not arbitrary: it is determined by, or determines,
physical law, depending on one’s view. So, in order to make the variational
principle a useful device, we have to be able to select the correct path by some
simple criterion.

Remarkably, the criterion is the same in every case: one chooses the path
which minimizes (or more correctly: makes stationary) the action; i.e. we look
for paths q(t) satisfying

δS

δq(t)
= 0. (4.9)

These are the stable or stationary solutions to the variational problem. This tells
us that most physical laws can be thought of as regions of stability in a space
of all solutions. The action behaves like a potential, or stability measure, in this
space.
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4.1 The action in Newtonian particle mechanics 53

It is an attractive human idea (Occam’s razor) that physical systems do the
‘least action’ possible; however, eqn. (4.9) is clearly no ordinary differentiation.
First of all, S is a scalar number – it is integrated over a dummy variable t ,
so t is certainly not a variable on which S depends. To distinguish this from
ordinary differentiation of a function with respect to a variable, it is referred to as
functional differentiation because it is differentiation with respect to a function.

The functional variation of S with respect to q(t) is defined by

δS = S[q + δq]− S[q], (4.10)

where δq(t) is an infinitesimal change in the form of the function q at time t .
Specifically, for the single-particle example,

δS =
∫

dt

{
1

2
m(q̇ + δq̇)2 − V (q + δq)

}
−

∫
dt

{
1

2
mq̇2 − V (q)

}
.(4.11)

Now, since δq is infinitesimal, we keep only the first-order contributions, so on
expanding the potential to first order as a Taylor series about q(t),

V (q + δq) = V (q)+ dV

dq
δq + · · · , (4.12)

one obtains the first-order variation of S,

δS =
∫

dt

{
mq̇(∂tδq)− dV

dq
δq

}
. (4.13)

A ‘dot’ has been exchanged for an explicit time derivative to emphasize the
time derivative of δq. Looking at this expression, one notices that, if the time
derivative did not act on δq, we would be able to take out an overall factor of
δq, and we would be almost ready to move δq to the left hand side to make
something like a derivative. Since we are now operating under the integral sign,
it is possible to integrate by parts, using the property:∫

dt A(∂t B) =
[

AB
]t2

t1
−

∫
dt (∂t A)B, (4.14)

so that the time derivative can be removed from δq, giving:

δS =
∫

dt

{
−mq̈(t)− dV

dq(t)

}
δq(t)+

[
mq̇ · δq(t)

]t2

t1
. (4.15)

The stationary action criterion tells us that δS = 0. Assuming that q(t) is not
always zero, one obtains a restriction on the allowed values of q(t). This result
must now be interpreted.
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t2

t
1

q(t)

A

B

Fig. 4.1. The variational formula selects the path from A to B with a stationary value
of the action. Stationary or minimum means that the solution is stable on the surface of
all field solutions. Unless one adds additional perturbations in the action, it will describe
the ‘steady state’ behaviour of the system.

4.1.2 δS: equation of motion

The first thing to notice about eqn. (4.15) is that it is composed of two logically
separate parts. The first term is an integral over all times which interpolate
between t1 and t2, and the second is a term which lives only at the end-points.
Now, suppose we ask the question: what path q(t) is picked out by the action
principle, if we consider all the possible variations of paths q(t)+ δq(t), given
that the two end-points are always fixed, i.e. δq(t1) = 0 and δq(t2) = 0?

The requirement of fixed end-points now makes the second term in eqn. (4.15)
vanish, so that δS = 0 implies that the contents of the remaining curly braces
must vanish. This gives precisely the equation of motion

mq̈ = −dV

dq
. (4.16)

The action principle delivers the required formula as promised. This arises from
an equation of constraint on the path q(t) – a constraint which forces the path to
take a value satisfying the equation of motion. This notion of constraint recurs
later, in more advanced uses of the action principle.

4.1.3 The Euler–Lagrange equations

The Euler–Lagrange equations of motion are trivially derived from the action
principle for an arbitrary Lagrangian which is a function of q and q̇. The action
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4.1 The action in Newtonian particle mechanics 55

one requires is simply

S =
∫

dt L(q(t), q̇(t)), (4.17)

and its variation can be written, using the functional chain-rule,

δS =
∫

dt

{
δL

δq
δq + δL

δ(∂tq)
δ(∂tq)

}
= 0. (4.18)

The variation of the path commutes with the time derivative (trivially), since

δ(∂tq) = ∂tq(τ + δτ)− ∂tq(τ ) = ∂t(δq). (4.19)

Thus, one may re-write eqn. (4.18) as

δS =
∫

dt

{
δL

δq
δq + δL

δ(∂tq)
∂t(δq)

}
= 0. (4.20)

Integrating the second term by parts, one obtains

δS =
∫

dt

{
δL

δq
δq − ∂t

(
δL

δ(∂tq)

)
(δq)

}
+

∫
dσ

[
δL

δ(∂tq)
δq

]
= 0.

(4.21)

The second term vanishes independently (since its variation is zero at the fixed
end-points), and thus one obtains the Euler–Lagrange equations (4.6).

4.1.4 δS: continuity

Before leaving this simple world of classical particles, there is one more thing to
remark about eqn. (4.21). Consider the second term; when one asks the question:
what is the condition on q(t) for the classical trajectories with stationary action
and fixed end-points? – this term drops out. It vanishes by assumption. It
contains useful information however. If we consider the example of a single
particle, the surface term has the form

mq̇ · δq = pδq. (4.22)

This term represents the momentum of the particle. For a general Lagrangian,
one can use this fact to define a ‘generalized momentum’. From eqn. (4.21)

p = δL

δ(∂tq)
≡ !. (4.23)

Traditionally, this quantity is called the canonical momentum, or conjugate
momentum, and is denoted generically as !.
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t
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t1
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_

ε

Fig. 4.2. The continuity of paths obeying the equations of motion, over an infinitesi-
mal interval is assured by the null variation of the action over that interval.

Suppose one asks a different question of the variation. Consider only an
infinitesimal time period t2 − t1 = ε, where ε → 0. What happens between
the two limits of integration in eqn. (4.21) is now less important. In fact, it
becomes decreasingly important as ε → 0, since

δS12 = [ pδq]t2
t1 + O(ε). (4.24)

What infinitesimal property of the action ensures that δS = 0 for all intermediate
points between the limits t1 and t2? To find out, we relax the condition that the
end-points of variation should vanish. Then, over any infinitesimal interval ε,
the change in δq(t) can itself only be infinitesimal, unless q(t) is singular, but
it need not vanish. However, as ε → 0, the change in this quantity must also
vanish as long as q(t) is a smooth field, so one must take �(δq) = 0.1 This
means that

�p ≡ p(t2)− p(t1) = 0; (4.25)

i.e. the change in momentum across any infinitesimal surface is zero, or
momentum is conserved at any point. This is a continuity condition on q(t).
To see this, ask what would happen if the potential V (q) contained a singular
term at the surface:

V (q, t) = δ(t − t)�V + V (q), (4.26)

1 Note that we are assuming that the field is a continuous function, but the momentum need
not be strictly continuous if there are impulsive forces (influences) on the field. This is fully
consistent with our new philosophy of treating the ‘field’ q as a fundamental variable, and p
as a derived quantity.
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4.1 The action in Newtonian particle mechanics 57

where 1
2(t1 + t2) is the mid-point of the infinitesimal interval. Here, the delta

function integrates out immediately, leaving an explicit surface contribution
from the potential, in addition to the term from the integration by parts:

δS12 = d�V

dq
δq + [ pδq]t2

t1 + O(ε) = 0, (4.27)

Provided �V is finite, using the same argument as before, one obtains,

�p = −d�V

dq
, (4.28)

i.e. the change in momentum across any surface is a direct consequence of the
impulsive force d�V/dq at that surface.

We thus have another facet of the action: it evaluates relationships between
dynamical variables which satisfy the constraints of stable behaviour. This
property of the action is very useful: it generates standard continuity and
boundary conditions in field theory, and is the backbone of the canonical
formulation of both classical and quantum mechanics. For instance, in the
case of the electromagnetic field, we can generate all of the ‘electromagnetic
boundary conditions’ at interfaces using this technique (see section 21.2.2). This
issue occurs more generally in connection with the energy–momentum tensor,
in chapter 11, where we shall re-visit and formalize this argument.

4.1.5 Relativistic point particles

The relativistically invariant form of the action for a single point particle is

S =
∫

dt
√−g00

{
−1

2
m

dxi (t)

dt
gi j

dx j (t)

dt
+ V

}
. (4.29)

The particle positions trace out world-lines q(τ ) = x(τ ). If we re-express this
in terms of the proper time τ of the particle, where

τ = tγ−1

γ = 1/
√
(1− β2)

β2 = v2

c2
= 1

c2

(
dx
dt

)2

, (4.30)

then the action may now be written in the frame of the particle,

dt → γ dτ√
g → γ

√
g, (4.31)
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giving

S =
∫

dτ
√

g00

{
−1

2
m

(
dx(τ )

dτ

)2

+ V γ−2

}
. (4.32)

The field equations are therefore

δS

δx
= m

d2x
dτ 2

+ ∂V ′

∂x
= 0, (4.33)

i.e.

F = ma, (4.34)

where

F = −∇V ′

a = d2x
dτ 2
. (4.35)

The conjugate momentum from the continuity condition is

p = m
dx
dτ
, (4.36)

which is simply the relativistic momentum vector p. See section 11.3.1 for the
energy of the classical particle system.

In the above derivation, we have treated the metric tensor as a constant, but in
curved spacetime gµν depends on the coordinates. In that case, the variation of
the action leads to the field equation

d

dτ

(
gµν

dxν

dτ

)
− 1

2
(∂µgρν)

dxν

dτ

dxρ

dτ
= 0. (4.37)

The equation of a free particle on a curved spacetime is called the geodesic
equation. After some manipulation, it may be written

d2xµ

dτ 2
+ �µνρ

dxν

dτ

dxρ

dτ
= 0. (4.38)

Interestingly, this equation can be obtained from the absurdly simple variational
principle:

δ

∫
ds = 0, (4.39)

where ds is the line element, described in section 3.2.5. See also section 25.4.
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4.2 Frictional forces and dissipation 59

4.2 Frictional forces and dissipation

In many branches of physics, phenomenological equations are used for the
dissipation of energy. Friction and ohmic resistance are two common examples.
Empirical frictional forces cannot be represented by a microscopic action
principle, since they arise physically only through time-dependent boundary
conditions on the system. No fundamental dynamical system is dissipative at
the microscopic level; however, fluctuations in dynamical variables, averaged
over time, can lead to a re-distribution of energy within a system, and this is
what leads to dissipation of energy from one part of a system to another. More
advanced statistical notions are required to discuss dissipation fully, but a few
simple observations can be made at the level of the action.

Consider the example of the frictional force represented by Langevin’s
equation:

m
d2x

dt
+ α ẋ = F(t). (4.40)

Initially it appears as though one could write the action in the following way:

S =
∫

dt

{
1

2
m

(
dx

dt

)2

+ 1

2
αx

dx

dt

}
. (4.41)

However, if one varies this action with respect to x , the term proportional to α
gives ∫

dt α

(
δx

d

dt
x + x

d

dt
δx

)
. (4.42)

But this term is a total derivative. Integrating by parts yields∫
dtb

a

d

dt
(x2) = x2

∣∣∣b
a
= 0, (4.43)

which may be ignored, since it exists only on the boundary. Because of the
reversibility of the action principle, one cannot introduce terms which pick out a
special direction in time. The only place where such terms can appear is through
boundary conditions. For the same reason, it is impossible to represent Ohm’s
law

J i = σ Ei (4.44)

in an action principle. An ohmic resistor has to dissipate heat as current passes
through it.

In some cases, the action principle can tricked into giving a non-zero con-
tribution from velocity-dependent terms by multiplying the whole Lagrangian
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with an ‘integrating factor’ exp(γ (t)), but the resulting field equations require
γ (t) to make the whole action decay exponentially, and often the results are
ambiguous and not physically motivated.

We shall return to the issue of dissipation in detail in chapter 6 and show the
beginnings of how physical boundary conditions and statistical averages can be
incorporated into the action principle, in a consistent manner, employing the
principle of causality. It is instructive to show that it is not possible to write
down a gauge-invariant action for the equation

J i = σ Ei . (4.45)

i.e. Ohm’s law, in terms of the vector potential Aµ. The equation is only an
effective representation of an averaged statistical effect, because it does provide
a reversible description of the underlying physics.

(1) By varying with respect to Aµ, one may show that the action

S =
∫
(dx)

{
J i Ai − σi j Ai E j

}
(4.46)

with Ei = −∂t Ai − ∂i A0, does not give eqn. (4.45). If one postulates
that Ei and J i may be replaced by their steady state (time-independent)
averages 〈Ei 〉 and 〈J i 〉, then we can show that this does give the correct
equation. This is an indication that some averaging procedure might be
the key to representing dissipative properties of bulk matter.

(2) Consider the action

S =
∫
(dx)

{
JµAµ − σi j Ai E j e−γ

µxµ
}
. (4.47)

This may be varied with respect to A0 and Ai to find the equations of
motion; gauge invariance requires the equations to be independent of the
vector potential Aµ. On taking σi j = σδi j , one can show that gauge
invariance requires that the vector potential decay exponentially. Readers
are encouraged to check whether the resulting equations of motion are a
satisfactory representation of Ohm’s law.

4.3 Functional differentiation

It is useful to define the concept of functional differentiation, which is to
ordinary differentiation what δq(t) is to dq. Functional differentiation differs
from normal differentiation in some important ways.

The ordinary derivative of a function with respect to its control variable is
defined by

d f (t)

dt
= lim
δt→0

f (t + δt)− f (t)

δt
. (4.48)

https://doi.org/10.1017/9781009289887.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.006
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It tells us about how a function changes with respect to the value of its control
variable at a given point. Functional differentiation, on the other hand, is
something one does to an integral expression; it is performed with respect to
a function of some variable of integration. The ‘point of differentiation’ is now
a function f (t) evaluated at a special value of its control variable t ′. It takes
some value from within the limits of the integral. So, whereas we start with a
quantity which is not a function of t or t ′, the result of the functional derivation
is a function which is evaluated at the point of differentiation. Consider, as an
example, the arbitrary functional

F[ f ] =
∫

dt
∑

n

an( f (t))n. (4.49)

This is clearly not a function of t due to the integral. The variation of such a
functional F[ f ] is given by

δF[ f ] = F[ f (t)+ δ f (t)]− F[ f (t)]. (4.50)

We define the functional derivative by

δF

δ f (t ′)
= lim
ε→0

F[ f (t)+ εδ(t − t ′)]− F[ f (t)]

ε
. (4.51)

This is a function, because an extra variable t ′ has been introduced. You can
check that this has the unusual side effect that

δq(t)

δq(t ′)
= δ(t − t ′), (4.52)

which is logical (since we expect the derivative to differ from zero only if the
function is evaluated at the same point), but unusual, since the right hand side is
not dimensionless – in spite of the fact that the left hand side seems to be. On
the other hand, if we define a functional

Q =
∫

dtq(t) (4.53)

then we have

δQ

δq(t ′)
=

∫
dt
δq(t)

δq(t ′)
=

∫
δ(t − t ′) = 1. (4.54)

Thus, the integral plays a key part in the definition of differentiation for
functionals.

4.4 The action in covariant field theory

The action principle can be extended to generally covariant field theories. This
generalization is trivial in practice. An important difference is that field theories
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are defined in terms of variables which depend not only on time but also on
space; φ(x, t) = φ(x). This means that the action, which must be a scalar,
without functional dependence, must also be integrated over space in addition
to time. Since the final action should have the dimensions of energy× time, this
means that the Lagrangian is to be replaced by a Lagrangian density L

S =
∫ σ ′

σ

(dx)L(φ(x, t), ∂µφ(x, t), x). (4.55)

The integral measure is (dx) = dVx/c, where dVx = cdtdnx
√

g = dx0dnx
√

g.
Although it would be nice to use dVx here (since this is the Minkowski space
volume element), this is not possible if L is an energy density and S is to have the
dimensions of action.2 The non-relativistic action principle has already chosen
this convention for us. The special role played by time forces is also manifest in
that the volume is taken between an earlier time t and a later time t ′ – or, more
correctly, from one spacelike hyper-surface, σ , to another, σ ′.

The classical interpretation of the action as the integral over T−V , the kinetic
energy minus the potential energy, does not apply in the general case. The
Lagrangian density has no direct physical interpretation, it is merely an artefact
which gives the correct equations of motion. What is important, however, is
how one defines a Hamiltonian, or energy functional, from the action. The
Hamiltonian is related to measurable quantities, namely the total energy of the
system at a given time, and it is responsible for the time development of the
system. One must be careful to use consistent definitions, e.g. by sticking to the
notation and conventions used in this book.

Another important difference between field theory and particle mechanics is
the role of position. Particle mechanics describes the trajectories of particles,
q(t), as a function of time. The position was a function with time as a parameter.
In field theory, however, space and time are independent parameters, on a par
with one another, and the ambient field is a function which depends on both
of them. In particle mechanics, the action principle determines the equation
for a constrained path q(t); the field theoretical action principle determines an
equation for a field which simultaneously exists at all spacetime points, i.e.
it does not single out any trajectory in spacetime, but rather a set of allowed
solutions for an omnipresent field space. In spite of this difference, the formal
properties of the action principle are identical, but for an extra integration:

2 One could absorb a factor of c into the definition of the field φ(x), since its dimensions are
not defined, but this would then mean that the Lagrangian and Hamiltonian would not have
the dimensions of energy. This blemish on the otherwise beautiful notation is eliminated when
one chooses natural units in which c = 1.
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4.4.1 Field equations and continuity

For illustrative purposes, consider the following action:

S =
∫
(dx)

{1

2
(∂µφ)(∂µφ)+ 1

2
m2φ2 − Jφ

}
, (4.56)

where dVx = cdt dx. Assuming that the variables φ(x) commute with one
another, the variation of this action is given by

δS =
∫
(dx)

{
(∂µδφ)(∂µφ)+ m2φδφ − Jδφ

}
. (4.57)

Integrating this by parts and using the commutativity of the field, one has

δS =
∫
(dx)

{
− φ + m2φ − J

}
+

∫
dσµ δφ(∂µφ). (4.58)

From the general arguments given earlier, one recognizes a piece which is purely
a surface integral and a piece which applies the field in a general volume of
spacetime. These terms vanish separately. This immediately results in the field
equations of the system,

(− + m2)φ(x) = J (x), (4.59)

and a continuity condition which we shall return to presently.
The procedure can be reproduced for a general Lagrangian density L and

gives the Euler–Lagrange equations for a field. Taking the general form of the
action in eqn. (4.55), one may write the first variation

δS =
∫
(dx)

{
∂L
∂φ
δφ + ∂L

∂(∂µφ)
δ(∂µφ)

}
. (4.60)

Now, the variation symbol and the derivative commute with one another since
they are defined in the same way:

∂µδφ = ∂µφ(x +�x)− ∂µφ(x)
= δ(∂µφ); (4.61)

thus, one may integrate by parts to obtain

δS =
∫
(dx)

{
∂L
∂φ

− ∂µ
(

∂L
∂(∂µφ)

)}
+ 1

c

∫
dσµ δφ

(
∂L

∂(∂µφ)

)
(4.62)

The first of these terms exists for every spacetime point in the volume of
integration, whereas the second is restricted only to the bounding hyper-surfaces
σ and σ ′. These two terms must therefore vanish independently in general.
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64 4 The action principle

The vanishing integrand of the first term gives the Euler–Lagrange equations of
motion for the field

∂L
∂φ

− ∂µ
(

∂L
∂(∂µφ)

)
= 0, (4.63)

and the vanishing of the second term leads to the boundary continuity condition,

�

(
δφ

∂L
∂(∂µφ)

)
= 0. (4.64)

If this result is compared with eqns. (4.22) and (4.23), an analogous ‘momen-
tum’, or conjugate variable to the field φ(x), can be defined. This conjugate
variable is unusually denoted !(x):

!(x) = δL

∂(∂0φ)
, (4.65)

and is derived by taking the canonical spacelike hyper-surface with σ = 0. Note
the position of indices such that the variable transforms like a covariant vector
p = ∂0q. The covariant generalization of this is

!σ(x) = δL

∂(∂σφ)
. (4.66)

4.4.2 Uniqueness of the action

In deriving everything from the action principle, one could gain the impression
that there is a unique prescription at work. This is not the case. The definition
of the action itself is not unique. There is always an infinity of actions
which generates the correct equations of motion. This infinity is obtained by
multiplying the action by an arbitrary complex number. In addition to this trivial
change, there may be several actions which give equivalent results depending on
(i) what we take the object of variation to be, and (ii) what we wish to deduce
from the action principle. For example, we might choose to re-parametrize the
action using new variables. The object of variation and its conjugate are then
re-defined.

It is clear from eqn. (4.21) that the field equations and boundary conditions
would be the same if one were to re-define the Lagrangian by multiplying by a
general complex number:

S → (a + ib)S. (4.67)

The complex factor would simply cancel out of the field equations and boundary
conditions. Moreover, the Lagrangian itself has no physical meaning, so there
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is no physical impediment to such a re-definition. In spite of this, it is normal
to choose the action to be real. The main reason for this is that this choice
makes for a clean relationship between the Lagrangian and a new object, the
Hamiltonian, which is related to the energy of the system and is therefore, by
assumption, a real quantity.

Except in the case of the gravitational field, one is also free to add a term on
to the action which is independent of the field variables, since this is always zero
with respect to variations in the fields:

S → S +
∫
(dx)  . (4.68)

Such a term is often called a cosmological constant, because it was introduced
by Einstein into the theory of relativity in order to create a static (non-expansive)
cosmology. Variations of the action with respect to the metric are not invariant
under the addition of this term, so the energy–momentum tensor in chapter 11
is not invariant under this change, in general. Since the Lagrangian density is an
energy density (up to a factor of c), the addition of this arbitrary term in a flat
(gravitation-free) spacetime simply reflects the freedom one has in choosing an
origin for the scale of energy density for the field.3

Another way in which the action can be re-defined is by the addition of a total
derivative,

S → S +
∫
(dx)∂µFµ[φ]

= S +
∫

dσµFµ[φ]. (4.69)

The additional term exists only on the boundaries σ of the volume integral.
By assumption, the surface term vanishes independently of the rest, thus, since
the field equations are defined entirely from the non-surface contributions, they
will never be affected by the addition of such a total derivative. However,
the boundary conditions or continuity will depend on this addition. This has
a physical interpretation: if the boundary of a physical system involves a
discontinuous change, it implies the action of an external agent at the boundary.
Such a jump is called a contact potential. It might signify the connection of a
system to an external potential source (a battery attached by leads, for instance).
The connection of a battery to a physical system clearly does not change the laws
of physics (equations of motion) in the system, but it does change the boundary
conditions.

In light of this observation, we must be cautious to write down a ‘neutral’,
or unbiased action for free systems. This places a requirement on the action,

3 Indeed, the action principle δS = 0 can be interpreted as saying that only potential differences
are physical. The action potential itself has no unique physical interpretation.
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66 4 The action principle

namely that the action must be Hermitian, time-reversal-invariant, or symmetri-
cal with respect to the placement of derivatives, so that, if we let t → −t , then
nothing is changed. For instance, one writes

(∂µφ)(∂µφ) instead of φ(− φ), (4.70)

for quadratic derivatives, and

1

2
(φ∗

↔
∂t φ) = 1

2
(φ∗(∂tφ)− (∂tφ

∗)φ) instead of φ∗∂tφ, (4.71)

in the case of linear derivatives. These alternatives differ only by an integration
by parts, but the symmetry is essential for the correct interpretation of the action
principle as presented. This point recurs in more detail in section 10.3.1.

4.4.3 Limitations of the action principle

In 1887, Helmholtz showed that an equation of motion can only be derived from
Lagrange’s equations of motion (4.6) if the generalized force can be written

Fi = −∂i V + d

dt

∂V

∂q̇i
, (4.72)

where V = V (q, q̇, t) is the potential L = T − V , and the following identities
are satisfied:

∂Fi

∂q̈ j
= ∂Fj

∂q̈i

∂Fi

∂q̇ j
+ ∂Fj

∂q̇i
= d

dt

(
∂Fi

∂q̈ j
+ ∂Fj

∂ q̈i

)

∂ j Fi − ∂i Fj = d

dt

(
∂Fi

∂q̇ j
− ∂Fj

∂ q̇i

)
(4.73)

For a review and discussion of these conditions, see ref. [67]. These relations lie
at the core of Feynman’s ‘proof’ of Maxwell’s equations [42, 74]. Although they
are couched in a form which derives from the historical approach of varying the
action with respect to the coordinate qi and its associated velocity, q̇i , separately,
their covariant generalization effectively summarizes the limits of generalized
force which can be derived from a local action principle, even using the approach
taken here. Is this a significant limitation of the action principle?

Ohm’s law is an example where a Lagrangian formulation does not work
convincingly. What characterizes Ohm’s law is that it is a substantive rela-
tionship between large-scale averages, derived from a deeper theory, whose
actual dynamics are hidden and approximated at several levels. The relation
summarizes a coarse average result of limited validity. Ohm’s law cannot be

https://doi.org/10.1017/9781009289887.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.006
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derived from symmetry principles, only from a theory with complex hidden
variables. The deeper theory from which it derives (classical electrodynamics
and linear response theory) does have an action principle formulation however.

Ohm’s law is an example of how irreversibility enters into physics. The
equations of fundamental physics are reversible because they deal only with
infinitesimal changes. An infinitesimal interval, by assumption, explores so
little of its surrounding phase space that changes are trivially reversed. This
is the main reason why a generating functional (action) formulation is so
successful at generating equations of motion: it is simply a mechanism for
exploring the differential structure of the action potential-surface in a local
region; the action is a definition of a conservation book-keeping parameter
(essentially energy), parametrized in terms of field variables. The reversible,
differential structure ensures conservation and generates all of the familiar
quantities such as momentum. Irreversibility arises only when infinitesimal
changes are compounded into significant changes; i.e. when one is able to
explore the larger part of the phase space and take account of long-term history
of a system. The methods of statistical field theory (closed time path [116]
and density matrices [49]) may be used to study long-term change, based on
sums of differential changes. Only in this way can one relate differential law to
macroscopic change.

Another way of expressing the above is that the action principle provides a
concise formulation of Markov processes, or processes whose behaviour now
is independent of what happened in their past. Non-Markov processes, or
processes whose behaviour now depends on what happened to them earlier,
require additional long-term information, which can only be described by the
combination of many infinitesimal changes.

Clearly, it is possible to write down equations which cannot be easily derived
from an action principle. The question is whether such equations are of
interest to physics. Some of them are (such as Ohm’s law), but these only fail
because, employing an action principle formulation of a high-level emergent
phenomenon ignores the actual energy accounting taking place in the system.
If one jumps in at the level of an effective field theory, one is not guaranteed
an effective energy parameter which obeys the reversible accounting rules of
the action principle. If an action principle formulation fails to make sense,
it is possible to go to a deeper, more microscopic theory and re-gain an
action formulation, thereby gaining a more fundamental (though perhaps more
involved) understanding of the problem.

So are there any fundamental, elementary processes which cannot be derived
from an action principle? The answer is probably not. Indeed, today all
formulations of elementary physics assume an action principle formulation at
the outset. What one can say in general is that any theory derived from an
action principle, based on local fields, will lead to a well defined problem,
within a natural, covariant formulation. This does not guarantee any prescription
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understanding physical phenomena, but it does faithfully generate differential
formulations which satisfy the symmetry principle.

4.4.4 Higher derivatives

Another possibility which is not considered in this book is that of higher
derivative terms. The actions used here are at most quadratic in the derivatives.
Particularly in speculative gravitational field theories, higher derivative terms do
occur in the literature (often through terms quadratic in the curvature, such as
Gauss–Bonnet terms or Weyl couplings); these are motivated by geometrical or
topological considerations, and are therefore ‘natural’ to consider. Postulating
higher order derivative terms is usually not useful in other contexts.

Higher derivative terms are often problematic, for several reasons. The
main reason is that they lead to acausal solutions and ‘ghost’ excitations,
or to field modes which appear to be solutions, but which actually do not
correspond to physical propagations. In the quantum field theory, they are
non-renormalizable. Although none of these problems is itself sufficient to
disregard higher derivatives entirely, it limits their physical significance and
usefulness. Some higher derivative theories can be factorized and expressed
as coupled local fields with no more than quadratic derivatives; thus, a difficult
action may be re-written as a simpler action, in a different formulation. This
occurs, for instance, if the theories arise from non-local self-energy terms.

4.5 Dynamical and non-dynamical variations

It is convenient to distinguish between two kinds of variations of tensor quanti-
ties. These occur in the derivation of field equations and symmetry generators,
such as energy and momentum, from the action.

4.5.1 Scalar fields

The first kind of variation is a dynamical variation; it has been used implicitly
up to now. A dynamical variation of an object q is defined by

δq = q ′(x)− q(x). (4.74)

This represents a change in the function q(x) at constant position x . It is like
the ‘rubber-banding’ of a function into a new function: a parabola into a cubic
curve, and so on.

The other kind of variation is a coordinate variation, or kinematical variation,
which we denote

δxq(x) = q(x ′)− q(x). (4.75)

https://doi.org/10.1017/9781009289887.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.006


4.5 Dynamical and non-dynamical variations 69

This is the apparent change in the height of the function when making a shift
in the coordinates x , or perhaps some other parameter which appears either
explicitly or implicitly in the action. More generally, the special symbol δξ is
used for a variation with respect to the parameter ξ . By changing the coordinates
in successive variations, δx , one could explore the entire function q(x) at
different points. This variation is clearly related to the partial (directional)
derivative of q. For instance, under a shift

xµ→ xµ + εµ, (4.76)

i.e. δxµ = εµ, we have

δxq(x) = (∂µq)εµ. (4.77)

One writes the total variation in the field q as

δT ≡ δ +
∑

i

δξ i . (4.78)

4.5.2 Gauge and vector fields

The coordinate variation of a vector field is simply

δx Vµ = Vµ(x
′)− Vµ(x)

= (∂λVµ)ε
λ. (4.79)

For a gauge field, the variation is more subtle. The field at position x ′ need only
be related to the Taylor expansion of the field at x up to a gauge transformation,
so

δx Aµ = Aµ(x
′)− Aµ(x)

= (∂λAµ)ε
λ + ∂λ(∂µs)ελ. (4.80)

The gauge transformation s is important because δx Aµ(x) is a potential differ-
ence, and we know that potential differences are observable as the electric and
magnetic fields, so this variation should be gauge-invariant. To make this so,
one identifies the arbitrary gauge function s by ∂λs = −Aλ, which is equally
arbitrary, owing to the gauge symmetry. Then one has

δx Aµ = (∂λAµ − ∂µAλ)ε
λ

= Fλµε
λ. (4.81)

Neglect of the gauge freedom has led to confusion over the definition of the
energy–momentum tensor for gauge fields; see section 11.5.
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The dynamical variation of a vector field follows from the general tensor
transformation

V ′(x ′) = ∂xρ

∂x ′µ
Vρ(x). (4.82)

From this we have

δVµ(x) = V ′
µ(x)− Vµ(x)

= V ′
µ(x

′)− (∂λVµ)ε
λ − Vµ(x)

= ∂xρ

∂x ′µ
Vρ(x)− (∂λVµ)ε

λ − Vµ(x)

= −(∂νεµ)V ν − (∂λVµ)ε
λ. (4.83)

For the gauge field, one should again be wary about the implicit coordinate
variation. The analogous derivation gives

δAµ(x) = A′µ(x)− Aµ(x)

= A′µ(x
′)− Fλµε

λ − Aµ(x)

= ∂xρ

∂x ′µ
Aρ(x)− Fλµε

λ − Aµ(x)

= −(∂νεµ)Aν − Fλµε
λ. (4.84)

4.5.3 The metric and second-rank tensors

The coordinate variation of the metric is obtained by Taylor-expanding the
metric about a point x ,

δx gµν = gµν(x
′)− gµν(x)

= (∂λgµν(x))ελ. (4.85)

To obtain the dynamical variation, we must use the tensor transformation rule

g′µν(x
′) = ∂xρ

∂x ′µ
∂xσ

∂x ′ν
gρσ (x), (4.86)

where

∂xρ

∂x ′µ
= δρµ − (∂µερ)+ · · · + O(ε2). (4.87)

Thus,

δgµν = g′µν(x)− gµν(x)

= ∂xρ

∂x ′µ
∂xσ

∂x ′ν
gρσ(x) − (∂ρg′µν)ε

ρ − gµν(x)
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= −(∂λgµν)ελ − (∂µελ)gλν − (∂νελ)gλµ
= −(∂λgµν)ελ −

{
∂µεν + ∂νεµ

}
, (4.88)

where one only keeps terms to first order in εµ.

4.6 The value of the action

There is a frequent temptation to assign a physical meaning to the action, beyond
its significance as a generating functional. The differential structure of the
action, and the variational principle, give rise to canonical systems obeying
conservation laws. This is the limit of the action’s physical significance. The
impulse to deify the action should be stifled.

Some field theorists have been known to use the value of the action as an
argument for the triviality of a theory. For example, if the action has value zero,
when evaluated on the constraint shell of the system, one might imagine that this
is problematic. In fact, it is not. It is not the numerical value of the action but its
differential structure which is relevant.

The vanishing of an action on the constraint shell is a trivial property of any
theory which is linear in the derivatives. For instance, the Dirac action and the
Chern–Simons [12] action have this property. For example:

S =
∫
(dx)ψ(iγ µ∂µ + m)ψ

δS

δψ
= (iγ µ∂µ + m)ψ = 0

S
∣∣∣
ψ
= 0. (4.89)

The scalar value of the action is irrelevant, even when evaluated on some speci-
fied constraint surface. Whether it is zero, or non-zero, it has no meaning. The
only exception to this is in the Wick-rotated theory, where a serendipitous link
to finite temperature physics relates the Wick-rotated action to the Hamiltonian
or energy operator of the non-rotated theory.
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