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Numerical analysis of dynamic acoustic
resonance with deformed liquid surfaces: the
acoustic fountain
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Applying a focused ultrasonic field on a free liquid surface results in its growth eventually
leading to the so-called acoustic fountain. In this work, a numerical approach is presented
to further increase the understanding of the acoustic fountain phenomenon. The developed
simulation method enables the prediction of the free surface motion and the dynamic
acoustic field in the moving liquid. The dynamic system is a balance between inertia,
surface tension and the acoustic radiation force, and its nonlinearity is demonstrated
by studying the relation between the ultrasonic excitation amplitude and corresponding
liquid deformation. We show that dynamic resonance is the main mechanism causing
the specific acoustic fountain shapes, and the analysis of the dynamic acoustic pressure
allows us to predict Faraday-instability atomisation. We show that strong resonance peaks
cause atomisation bursts and strong transient deformations corresponding to previously
reported experimental observations. The quantitative prediction of the dynamic acoustic
pressure enables us to assess the potential of cavitation generation in acoustic fountains.
The observed local high acoustic pressures above both the cavitation and the atomisation
threshold hint at the coexistence of these two phenomena in acoustic fountains.

Key words: aerosols/atomization

1. Introduction

Acoustic techniques based on high intensity fields are non-invasive approaches commonly
used to affect solids and fluids through heat and cavitation generation, for example,
the medical application of high-intensity focused ultrasound. High-intensity focused
ultrasound can be used for the treatment of soft tissue tumours, arterial diseases and
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uterine myoma, see e.g. Duc & Keserci (2019), Bachu et al. (2021) and Yao et al.
(2022). High intensity acoustic fields are also widely used for process intensification.
Ultrasound-assisted microreactors have proven to be relevant for various applications
in biological, pharmaceutical and chemical processes (Fernandez Rivas & Kuhn 2016;
Suryawanshi et al. 2018; Dong et al. 2021). High intensity acoustic fields enable
non-invasive manipulation of fluids and solids, which can for example be exploited to
enhance fluid mixing in microreactors, to generate nanoemulsions (Modarres-Gheisari
et al. 2019; Udepurkar, Clasen & Kuhn 2023) and to achieve controlled atomisation in
ultrasonic nebulisers to produce fine chemicals and pharmaceuticals (Naidu, Kahraman
& Feng 2022). Focused ultrasound can also be used to enhance drug delivery through
the fragmentation of drug carriers and the enhancement of nanoparticle penetration in the
region of interest, see e.g. Tharkar et al. (2019) and Sitta & Howard (2021).

The application of high intensity acoustic fields triggers complex phenomena, especially
in the presence of interfaces. In the typically used ultrasound frequency range from
100 kHz to 10 MHz, the wavelength can match the characteristic dimension of the
sonicated objects, giving rise to resonance effects. In the confined region, and in regions
with interfaces, multiple reflections as well as excitation of resonance modes can occur,
resulting in a high intensity acoustic field. A high intensity acoustic field can deform a
liquid surface, which is caused by the acoustic radiation pressure arising due to a gradient
or discontinuity in the acoustic properties between two media. A basic example of acoustic
deformation of a liquid consists of focusing an ultrasonic field on a free surface, which
results in its growth, the phenomenon known as the acoustic fountain. For a low acoustic
intensity, the acoustic radiation force pushes the surface to form a smooth bump. For a
high acoustic intensity, the liquid forms a growing even drop-chain or a complex unstable
elongated shape.

The acoustic fountain has been extensively studied using experiments (Barreras,
Amaveda & Lozano 2002; Simon et al. 2012, 2015; Tomita 2014; Kudo et al. 2017;
Wang, Mori & Tsuchiya 2022). Simon et al. (2012, 2015) carried out an experimental
investigation to characterise atomisation in acoustic fountains. The authors managed
to generate drop-chain acoustic fountains at different ultrasonic frequencies (155 kHz,
1.04 MHz and 2.165 MHz), and observed that the liquid properties, ambient temperature
and pressure, and excitation frequency play a significant role in the generation of
atomisation. The results showed that atomisation arises in an uncontrolled way with
sudden bursts of particular patterns, which can be summarised as three different forms:
primary breakup, atomisation bursts of microdroplets or elongated jets. Kudo et al. (2017)
focused their study on nanosized ultrasonic atomisation, generated at frequencies ranging
from 200 kHz to 2.4 MHz, using a similar experimental set-up. In these experiments,
atomisation was observed as clouds of droplets emanating from the acoustic fountain.
Wang et al. (2022) investigated the drop-chain behaviour at different frequencies (1 MHz,
2 MHz and 3 MHz) and observed that the diameter of the evenly generated drops
coincides with the acoustic wavelength in the liquid (approximately 1.5 mm, 0.74 mm and
0.5 mm, respectively). The authors also confirmed the observation of not only atomisation
bursts of microdroplets, but also single bursting droplets originating from a cavitation
bubble. Barreras et al. (2002) studied the ultrasonic atomisation of water at megahertz
frequencies and observed the coexistence of different high power ultrasonic phenomena:
liquid deformation due to the acoustic radiation force; Faraday-instability atomisation; and
cavitation. They studied how these complex interactions affect the atomisation pattern and
specifically the droplet distribution. The coexistence of acoustic interface deformation,
atomisation and cavitation bubbles was also observed by Mc Carogher et al. (2021) for a
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Dynamic acoustic resonance with deformed liquid surfaces

gas–liquid segmented flow in a microchannel. It has been shown that these phenomena,
including transient bubble deformation and oscillation, are activated by acoustic resonance
between bubbles (Cailly et al. 2023).

While aforementioned experimental studies provide an advanced description of the
acoustic fountain phenomenon, the analysis of the acoustic field in the presence of a
moving liquid surface is still lacking. For the acoustic fountain experiment, the acoustic
field can be measured near the free surface when the liquid is at rest (Canney et al.
2008; Sisombat et al. 2022). Typically, a Bessel-beam pattern with a maximum acoustic
pressure at the focal point is observed, which is then also the common approximation for
the acoustic field in the acoustic fountain configuration (Simon et al. 2015; Xu, Yasuda
& Liu 2016; Lim, Kim & Kim 2019; Kim et al. 2021). However, the observed large
deformation of the liquid surface implies that the static acoustic field approach, such
as the static Bessel-beam, is not appropriate to describe the phenomenon. This is also
highlighted by the shadowgraphy experiments of Tomita (2014) which qualitatively show
how the pattern of the standing acoustic wave changes with the deformation of the liquid
surface. In our previous work, we also addressed the relevance of a numerical approach
based on predicting and updating the driving acoustic field with respect to the moving
surface and its applicability to the complex acoustic deformation of a gas–liquid interface
(Cailly et al. 2023). The specific behaviour of these gas–liquid–acoustic systems is based
on the nonlinear nature of the involved mechanisms. The acoustic field moves the liquid
surface through the acoustic radiation force, and at the same time the acoustic field evolves
due to the moving boundary. Acoustic resonance conditions depend on the geometry of the
boundary, and a moving boundary leads to a dynamic acoustic field where local acoustic
resonances can be found, resulting in sudden deformation and instability.

In this work, we provide a quantitative understanding of the acoustic fountain
through a numerical study of the 1 MHz experimental configuration of Simon et al.
(2015). The approach is based on comparing the simulated acoustic fountain behaviour
with the experimentally observed liquid deformation to expose the associated dynamic
acoustic field. For this, a finite element method (FEM) with dynamic computational
domain was developed, and different excitation magnitudes were studied to analyse the
nonlinear behaviour of the system. Furthermore, the prediction of atomisation via the
Faraday-instability hypothesis is investigated.

2. Methods

2.1. Basic hypotheses and constitutive equations
The constitutive equations for the considered systems are derived from the perturbation
expansion method, commonly used for the prediction of acoustic streaming and the
acoustophoretic force on particles, see e.g. Friend & Yeo (2011), Settnes & Bruus (2012),
Muller & Bruus (2014), Lei, Glynne-Jones & Hill (2017), Baudoin & Thomas (2020)
and Pavlic & Dual (2021). The basic idea of the perturbation expansion method is to
divide the motion of the liquid into an oscillating component, associated with the acoustic
standing wave, and an average component, associated with the effect of the acoustic
radiation force. Let us consider a finite liquid domain Ω whose boundary is divided
into a free surface Γfree, rigid walls Γwalls and vibrating walls Γexc. An illustration of the
configuration for the acoustic fountain is given in figure 1. The expansions of pressure,
velocity and density can be written as follows: p = p0 + p1 + p2, v = v0 + v1 + v2,
ρ = ρ0 + ρ1 + ρ2, respectively, to obtain the first-order acoustic equations defined in Ω ,
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Figure 1. Representation of the axisymmetric FEM configuration for the acoustic fountain simulations.
(a) Summary of the FEM geometry and view of the initial acoustic pressure. The domain’s boundary is divided
into the symmetry axis Γaxi, the free surface Γfree, the rigid walls Γwalls and the transducer Γexc. The contour
plot depicts the normalised acoustic pressure for an excitation of 1 MHz at Γexc. The normalisation is done
with respect to the maximum absolute pressure of the field. (b) Overview of the computational mesh for an
initial flat surface and a deformed surface.

1
c2

0
∂tp1 + ρ0∇ · v1 = 0, (2.1)

ρ0∂tv1 = −∇p1, (2.2)

ρ1 = 1
c2

0
p1, (2.3)

where c0 is the speed of sound in the liquid, assumed to be homogeneous. The static values
for velocity and pressure were chosen to equal zero: v0 = 0, p0 = 0. A pure standing wave
is assumed, and thus the acoustic equations can be transposed in the frequency-domain,
leading to the Helmholtz equation for the acoustic pressure p1,

1
ρ0

∇2p1 + ω2

ρ0c2
0

p1 = 0 in Ω, (2.4)

for a given driving pulsation ω (in rad s−1). One can define the acoustic wavenumber
k0 = ω/c0 and the acoustic wavelength λ = (2π)/k0. The acoustic pressure is assumed to
be zero at Γfree, i.e. the free surface can vibrate freely. As a consequence of this, only pure
acoustic standing waves are considered and capillary standing waves are neglected (in this
configuration, the vibration amplitude of a linear capillary wave is negligible). To represent
the excitation of the transducer a normal vibration amplitude u1,exc is defined at Γexc,
and at the rigid walls Γwalls the normal vibration amplitude is set to zero. The boundary
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conditions for the standing acoustic wave computation are summarised as follows:

p1 = 0 at Γfree, (2.5)

∇p1 · n = −ρ0ω
2u1,exc at Γexc, (2.6)

∇p1 · n = 0 at Γwalls. (2.7)

The acoustic radiation force to compute the induced motion of the liquid is derived
from the Helmholtz equation solution, and the second-order flow is assumed to be
potential-irrotational,

v2 = ∇φ2 in Ω, (2.8)

for a scalar potential φ2. The balance between surface tension and acoustic radiation
pressure can be directly expressed at the free surface, applying the perturbation expansion
method, as a boundary condition,

ρ0∂tφ2 = γ κ − 1
2ρ0〈(∇φ1)

2〉 at Γfree, (2.9)

where γ is the surface tension and κ is the curvature of the surface. The acoustic velocity
potential φ1 is directly derived from the acoustic pressure: ρ0∂tφ1 = −p1. The 〈·〉 notation
denotes time averaging. As a pure standing wave is considered, the acoustic field is
assumed to have the form p1(x, t) = p1(x) sin(ωt) for the considered time period (usually
several acoustic periods), so that the terms in 〈sin2(ωt)〉 and 〈cos2(ωt)〉 introduce a factor
of 1/2 when evaluating the time average, see e.g. Pavlic & Dual (2021). This formulation
follows the common derivation from the Bernoulli equation (inviscid case) applied to the
free surface of the liquid, see Galtier (2021). Thus, in the configuration for which the liquid
can be described as inviscid, the liquid motion caused by acoustic streaming is negligible
compared with the motion of the free surface caused by the acoustic radiation force. The
second term on the right-hand side of (2.9) can be called the average acoustic kinetic
energy, from which the acoustic radiation force at the free surface is derived. Considering
an inviscid and incompressible liquid, this leads to the following system of equations to
calculate the average second-order motion:

∇2p2 = 0 in Ω, (2.10)

ρ0∂tv2 = −∇p2 in Ω, (2.11)

p2 = γ κ − 1
2ρ0〈(∇φ1)

2〉 atΓfree, (2.12)

∇p2 · n = 0 at Γwalls andΓexc. (2.13)

One can demonstrate that this formulation is equivalent to the general volume acoustic
radiation force formulation involving the volume source term F = −ρ0∇ · 〈v1 ⊗ v1〉 (see
Baudoin & Thomas 2020, p. 210) applied to the case of a free surface. The two systems
for the first- and second-order motions were solved numerically using MATLAB R2021a.
The numerical computation uses the following procedure:

(i) the standing acoustic field is computed from (2.4)–(2.7), with a FEM solver;
(ii) the interface curvature and acoustic radiation pressure are computed and set as

Dirichlet boundary conditions at the free surface following (2.12);
(iii) p2 is computed using a FEM solver for (2.10)–(2.13);
(iv) ∇p2 is computed using FEM gradient computation;
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(v) the Lagrangian motion of the free surface is computed by integrating equation (2.11)
at the free surface using the forward Euler scheme;

(vi) the domain is remeshed according to the new boundary geometry defined by the free
surface motion;

(vii) the velocity of the free surface is linearly interpolated on the new mesh;
(viii) the algorithm returns to the standing acoustic field computation to update the

acoustic field for the new geometry.

The numerical Lagrangian motion of the free surface is similar to a ‘surface evolver’
approach, see Brakke (1992) and Carter (1996), which consists of computing the motion
of the nodes in the surface normal direction, remeshing of the surface to avoid distorted
meshes, explicit integration of the surface tension and volume conservation constraints.
The main benefit of our developed approach is that the acoustic radiation force and the
surface tension is implemented in a consistent manner with the tracked and meshed
surface. Contrary to Eulerian phase-field methods, there is no need for a surface
reconstruction algorithm. On the other hand, the drawbacks are the time consumption in
the remeshing procedure and the possible aberration when interpolating velocity from
one mesh to another. Due to the relatively short duration of the phenomena and the
relatively low absorption of the medium, heating up effects due to viscous dissipation
were neglected, i.e. the temperature was assumed to be constant in the entire simulation
domain.

2.2. Acoustic resonance
The FEM discretisation of the Helmholtz equation (2.4) leads to the following linear
algebra formulation:

− ω2Mp1 + Kp1 = f , (2.14)

where M is the mass matrix, K is the stiffness matrix, p1 is the unknown acoustic
pressure vector and f is the excitation vector. The unknown acoustic pressure vector is
then obtained by direct matrix inversion,

p1 = [−ω2M + K ]−1f . (2.15)

The solution becomes singular for the following condition for any vector q:

[−ω2M + K ]q = 0. (2.16)

This equation represents the eigenproblem associated with the matrix M−1K . In
other words, the solution becomes singular if the excitation frequency matches an
eigenfrequency of the current configuration. Modal decomposition, see e.g. Ewins (2009,
pp. 47–57), leads to the following formulation highlighting resonance in the solution:

p1 =
[ N∑

k=1

Ak

(ω2 − ω2
k)

]
f , (2.17)

where N depends on the dimension of the discretised problem, Ak are the modal
matrices associated with eigenmodes of indexes k. The acoustic pressure is proportional
to the excitation, and becomes large when the excitation frequency ω approaches an
eigenfrequency ωk. The resonance also induces a phase shift, a change in sign, when
resonance is matched. The excitation of a particular mode is dependent on the relation
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Symbol Value Unit

Water
Density ρ0 1000 kg m−3

Speed of sound c0 1480 m s−1

Shear viscosity μ 0.001 Pa s
Bulk viscosity μb 0.0025 Pa s

Air–Water
Surface tension γ 0.072 N m−1

Table 1. Fluid properties implemented in the numerical model.

of the distribution of the excitation in space and the mode pattern, through the product
Ak f , corresponding to a modal projection. The absorption due to the liquid viscosity
was defined as its theoretical value for water at the selected frequency. The characteristic
relaxation time τ of a fluid is

τ = μb + 4
3μ

ρ0c2
0

, (2.18)

where μb is the bulk viscosity, and μ is the shear viscosity of the fluid. Using the
viscosity values in table 1, the relaxation time τ for water at 20 ◦C is 1.689 × 10−12 s.
The equivalent loss factor damping model was implemented, which adds an imaginary
part to the real stiffness matrix K ′,

K = K ′ + iηK ′, (2.19)

where η = τω is the loss factor, which equals 1.06 × 10−5 at 1 MHz. Taking the imaginary
part of the wavenumber k′

0 = ω/(c0
√

1 − iωτ), one can show that this model gives an
equivalent absorption coefficient of 0.0225 Np m−1, or equivalently 0.002 dB cm−1,
which is consistent with commonly observed ultrasound absorption values in water at
1 MHz. Due to this relatively low absorption value the dampening term iηK ′ has limited
impact on the acoustic field for the case of water.

2.3. Acoustic fountain configuration
For the numerical acoustic fountain study we reproduced the experimental set-up of Simon
et al. (2015) at an excitation frequency of 1 MHz and for different transducer excitation
amplitudes. The associated acoustic wavelength λ is 1.48 mm. The tank was 80 mm in
diameter and its height was set to 55 mm. The transducer was a spherical bowl shape
transducer with an aperture of 45 mm, and it was placed at a distance of 45 mm from
the free surface so that its location coincided with the geometric focus of the transducer.
The fluid properties implemented in the numerical model are listed in table 1. The fluid is
assumed to be at a constant temperature of 20 ◦C and at atmospheric pressure, and all fluid
properties were evaluated for this temperature and static pressure. Absorbing boundaries
were set in the vicinity of the rigid walls to avoid possible spurious reflection of acoustic
waves. The focused acoustic pressure field for the initial state is depicted in figure 1(a). An
axisymmetric version of the model was used, with the following boundary condition at the
axis: ∇p1 · n = 0, ∇p2 · n = 0 at Γaxis. The computational mesh is depicted in figure 1(b).
Linear triangle elements with three integration points were used, and the average cell size
in the domain was set to 2 × 10−4 m. At the free surface, the mesh was refined to a cell
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Figure 2. Illustration of the acoustic field pattern upon surface deformation in an acoustic fountain experiment
with a 1 MHz transducer focused at 80 mm from the surface. (a–c) Shadowgraphs taken at (a) 60 μs and
(b) 4.5 ms. Standing waves may be seen in the water layer in both (a) and (b), and an ejecting jet may be
seen in (b). The acoustic intensity was 220 W cm−2 and the exposure time 1000 ms. Here WS denotes the
water surface. The scale bars represent 5 mm. (c) The onset time, Tex,e, of the water surface elevation plotted
as a function of the acoustic intensity, I. Reprinted from Y. Tomita, ‘Jet atomization and cavitation induced
by interactions between focused ultrasound and a water surface’, Physics of Fluids 26, 097105 (2014), with the
permission of AIP Publishing. (d,e) Qualitative comparison with obtained numerical results. (d) Initial acoustic
field. (e) Predicted acoustic field after 10.2 ms.

size of 4 × 10−5 m. To reduce the remeshing time only a deformable region was remeshed,
which was defined as a layer of 5 mm depth with respect to the initial free surface height.
The solver follows the steps described in § 2.1 with an integration time step of 3 × 10−6 s,
which is equal to three acoustic periods. The computation of the axisymmetric curvature
κ is given explicitly by

κ = χ1 + χ2, (2.20)

χ1 = r′z′′ − z′r′′

(r′2 + z′2)3/2 , (2.21)

χ1 = z′

r(r′2 + z′2)1/2 , (2.22)

where (r(s), z(s)) are the parametric coordinates of the axisymmetric surface. The
FEM inversion of the axisymmetric Laplacian in (2.10), as well as the FEM gradient
computation in (2.11), introduces a singular behaviour near the axis that may cause
a numerical aberration in this region, such as a non-physical velocity or breakup of
the mesh due to too strong deformation. To smoothen the solution near the symmetry
axis the radial coordinate was offset when constructing the numerical axisymmetric
Laplacian: rreg = r + ε. This regularisation offset was set empirically to ε = 3 × 10−4 m.
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The validation of the axisymmetric solver, especially the validation of the surface tension
implementation, was performed with the free oscillating droplet benchmark. A relative
error for the frequency of the fundamental droplet vibration mode of 1.17 % was obtained.
The detailed result of the benchmark is given in the Appendix A.

An illustration of the change in the acoustic field pattern upon surface deformation
is provided in figures 2(a) and 2(b), which depicts shadowgraph results reported in
Tomita (2014). The initial field in figures 2(a) and 2(d) consists of a focused beam. It
is possible to show that the initial field at the free surface has a Bessel-beam pattern
(see the Appendix B). As shown in figures 2(b) and 2(e), the initial beam is altered by
the deformation of the free surface. The altered pattern shows interference lobes, due
to the new reflecting geometry. The localised deformation forms a geometric focus for
the acoustic waves. The shadowgraph technique is unable to detect the pattern inside the
deformed growing region, but it is expected that the acoustic field is focused in this region
as in figure 2(e).

3. Results

3.1. Solution types and transient bump analysis
The parameters of the different acoustic fountain simulations for an excitation frequency of
1 MHz are summarised in table 2. The main parameter is the excitation magnitude which
can be either expressed in terms of that transducer normal vibration amplitude (boundary
condition) or in terms of the initial pressure. The initial acoustic pressure is taken at
the focus near the surface when the surface is at rest. It should be mentioned that these
acoustic pressure values cannot be compared in an absolute way to the values reported in
Simon et al. (2015), which were measured inside the water tank and not near the surface
where reflection occurs. A movie corresponding to each excitation magnitude is also
provided in the Supplementary movies, which are available at https://doi.org/10.1017/jfm.
2023.968 associated with this article. From the simulation results three different solution
types can be identified. (i) At low excitation magnitudes (Magnitude 1 to 8) the acoustic
radiation force is not sufficient to support the continuous growth of the liquid surface.
Instead, uneven surface oscillations are observed resulting from the balance between the
dynamic acoustic force and surface tension. (ii) At large excitation magnitudes (Magnitude
11 to 13) the acoustic radiation force almost immediately produces the acoustic fountain,
which is triggered within a time period shorter than 10 ms. (iii) The intermediate solution
type is the delayed fountain, triggered for times greater than 10 ms (Magnitudes 9 and 10).
The initial behaviour for all solutions is similar as the formation of a transient bump is
observed, as indicated in figure 3 which depicts the height of the deformed liquid surface
in the centre (r = 0) for each simulation for a period of 10 ms. In the case of the surface
oscillation solutions (Magnitude 1 to 8) the liquid height decreases again due to surface
tension and inertia. For the immediate fountain solutions (Magnitude 11 to 13) the transient
bump is followed by a further rapid increase of the liquid height. The predicted values for
the surface height and the maximum velocity of the transient bump are provided in table 2.

Figure 4 shows how the relative acoustic pressure, defined as the ratio of the maximum
and the initial acoustic pressure, varies with liquid height near the free surface. It is evident
from this figure that the dynamic acoustic pressure decreases in the transient phase as the
bump grows. This trend is observed for all excitation magnitudes in the transient bump
region. For the acoustic fountain solutions, the acoustic pressure starts to increase towards
the next resonance peak when the liquid height reaches λ/4. This observed nonlinear
behaviour can be captured by the following ordinary differential equation with initial
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Simulation
reference

Transducer
amplitude

(nm)
Initial acoustic
pressure (MPa)

Solution
type

Transient
height (mm)

Transient
velocity
(m s−1)

Magnitude 1 1.7 0.21 Surface oscillations 0.017 0.0072
Magnitude 2 4.4 0.52 Surface oscillations 0.072 0.0348
Magnitude 3 8.8 1.05 Surface oscillations 0.183 0.0983
Magnitude 4 10.6 1.26 Surface oscillations 0.197 0.1279
Magnitude 5 15.9 1.89 Surface oscillations 0.370 0.2200
Magnitude 6 17.7 2.10 Surface oscillations 0.392 0.2410
Magnitude 7 21.2 2.52 Surface oscillations 0.453 0.3140
Magnitude 8 24.8 2.94 Surface oscillations 0.593 0.3803
Magnitude 9 28.3 3.36 Delayed fountain (40 ms) 0.720 0.4490
Magnitude 10 30.1 3.57 Delayed fountain (12 ms) 0.736 0.4840
Magnitude 11 31.8 3.78 Immediate fountain 1.136 0.5205
Magnitude 12 33.6 3.99 Immediate fountain 0.952 0.5612
Magnitude 13 35.4 4.20 Immediate fountain 1.218 0.5700

Table 2. Summary of the different acoustic fountain simulations for an excitation frequency of 1 MHz. The
values 12 and 40 ms indicate the start of the acoustic fountain.
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Figure 3. Height of the deformed liquid surface in the centre (r = 0) for the different excitation magnitudes.
The marker for each curve corresponds to the transient bump height. The three immediate acoustic fountain
solutions are indicated by a dashed line, the two delayed acoustic fountain solution are indicated by a
dashed–dotted line.

values for the liquid height h,

ρ0
d2h
dt2

− B
1
8

k3
0γ h + A

1
4ρc2

0
p2

ak0 f 2(h)H2(t) = 0, (3.1)

h(t = 0) = 0, (3.2)

dh
dt

(t = 0) = 0, (3.3)

where pa denotes the initial acoustic pressure, and k0 the acoustic wavenumber (k0 =
2π/λ). The first term represents inertia, the second surface tension and the third term
the acoustic radiation force. The function H(t) is the time envelope of the acoustic signal,
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Figure 4. Relative acoustic pressure (ratio of the maximum and the initial acoustic pressure) subject to the
liquid height (evaluated in the centre r = 0) for all simulations. Each solid curve is associated with the
corresponding simulation.

in this study we selected a Heaviside step function. The non-dimensional parameters A
and B are fitting parameters, and the dimensionless nonlinear parameter f (h) represents
the relative change of acoustic pressure with the liquid height. Here f (h) can either be
evaluated directly from the pattern in the transient bump region of figure 4 or by fitting the
pattern with an empirical function. We noticed that the following expression:

f (h) = (1 − b)e−ah + b, (3.4)

with a = 1.1 × 104 m−1 and b = 0.4, fits the pattern well (see the dashed line in figure 4).
This enables us to integrate (3.1) for a given initial acoustic pressure and to fit the
parameters A and B to the observed transient bump heights. The obtained fitting parameters
were A = 1.186 and B = 0.245, and theresults of the fit are provided as dashed lines
in figure 5 and compared with the numerically determined bump height, bump velocity
and bump time subject to the transducer amplitude and the initial acoustic pressure.
The results of the static acoustic field approximation, taking f (h) = 1, with the same
values of A and B are also plotted as dotted lines in figure 5. It is clear that the static
approximation and its corresponding quadratic equations (hmax = 0.2986 × 10−15p2

a and
ḣmax = 1.3224 × 10−13p2

a for the maximum height and velocity, respectively) is not able
to capture the dynamics of the phenomenon.

3.2. Analysis of the drop-chain fountain solution
Figure 6 highlights the dynamic acoustic field obtained for the Magnitude 11 case,
for which the growing drop-chain is observed. The magnitude of the acoustic field is
quantified via the absolute maximum values of the two fields: acoustic pressure p1 (in Pa)
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Figure 5. Analysis of the liquid deformation in the transient bump regime. (a) Liquid surface height in the
centre (r = 0) when reaching the bump. (b) Maximum transient velocity in the centre (r = 0). (c) Time to
reach the maximum bump height.

and acoustic particular oscillation amplitude u1 (in m, ∂tu1 = v1). The latter is obtained
from a gradient computation of the acoustic pressure field according to (2.2). The first
resonance peak occurs when the transient bump reaches a height of λ/4, and acts as the
drop-chain starter. The second resonance peak is observed at around 9.5 ms, when the
height of the liquid is close to λ/2. The apparent sudden drop in amplitude in the resonance
peak corresponds to the typical π phase-shift, which is observed in the change of sign in
the contour plots of the acoustic pressure field. For t > 10 ms further resonance peaks
are observed, which coincide with the drop-chain height reaching multiple values of λ/4.
The typical peak amplitude is in the range of 5 MPa to 10 MPa (acoustic pressure) and
0.25 μm to 0.60 μm (acoustic vibration amplitude). Figure 7 depicts the instantaneous
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Figure 6. Dynamic acoustic field, given in terms of maximum absolute acoustic pressure and particular
oscillation amplitude, for the Magnitude 11 simulation. Contour plots in normalised scale of the acoustic
pressure are provided for different resonance peaks together with the associated vertical velocity. (a) Time
period from 0 ms to 13 ms and (b) time period from 13 ms to 22 ms.

liquid velocity in the centre for the three immediate fountain solutions (Magnitude 11–13).
These values can be put into perspective with the experimental observations of Simon et al.
(2015) (figure 7b) where an instantaneous growing speed in the range of 0.2 to 1.4 m s−1

was observed. It can be seen in figure 7(a) that the Magnitude 12 case exhibits a strong
instability with a growing velocity above 4 m s−1, resulting in numerical divergence.

3.3. Analysis of drop diameters
As shown in the previous section, the acoustic field forming the growing drop-chain
solution consists of a sequence of resonance peaks coinciding with a drop-chain height
reaching multiple values of λ/4. Consequently, a sequence of growing drops of even
diameter is formed, which is a characteristic of this system. The drop diameters were
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Figure 7. Comparison of the predicted drop-chain growing velocity with the experiments of Simon et al.
(2015). (a) Centre point velocity for the Magnitude 11–13 cases. (b) Drop-chain velocity extracted from the
movie provided in Simon et al. (2015) for an excitation frequency of 1 MHz.
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Figure 8. Evolution of the drop diameter over time for the Magnitude 11 case. The drop diameter is
normalised with respect to the acoustic wavelength λ.

extracted by automatic peak detection from the wavy shape over time, and figure 8 depicts
the single drop diameter for the Magnitude 11 case. The first formed drop exhibits a
diameter of approximately 1.4 mm which corresponds to ≈ 0.95λ. Between 10 to 22 ms a
drop chain of even diameters of around λ is formed. The acoustic shock at around 23.6 ms
produces a sudden deformation that breaks the regular distribution of the drop diameter,
resulting in a complex deformation pattern.
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3.4. Atomisation at the surface of the acoustic fountain
The acoustic field intensity can be analysed with respect to the atomisation threshold
for the given liquid and driving frequency (1 MHz) to predict when and where the
acoustic fountain atomises. Considering pure Faraday-instability atomisation, there are
two different thresholds: (i) the Faraday threshold, at which a standing Faraday wave is
formed at the surface of the liquid; and (ii) the atomisation threshold, at which the crests
of the Faraday wave start to break to form droplets. The Faraday threshold was computed
according to the Kumar & Tuckerman (1994) theory, the obtained critical Faraday
wavelength is λFaraday = 12.12 μm and the critical vibration amplitude is |u|Faraday =
0.266 μm. The average diameter of the ejected droplets is expected to be a fraction of
λFaraday, generally around 0.35λFaraday (Lang 1962), corresponding to a diameter of around
4.2 μm. However, the droplet size distribution can be broad due to the formation of child
droplets from ligaments, the mist effect and coalescence, see e.g. Barreras et al. (2002),
Kudo et al. (2017), Kooij et al. (2019), Zhang, Yuan & Wang (2021) and Zhang, Yuan &
Gao (2023). To estimate the atomisation threshold we performed volume of fluid (VOF)
simulations as described in our previous work (Cailly et al. 2023), and additional details
are provided in the Appendix C. Atomisation is defined at the point where breakup is
observed for a free surface vibrating at a given driving amplitude and frequency, and
the obtained atomisation threshold is |u|atomisation,VOF = 1.1 μm. As discussed above, a
sudden large amplitude resonance peak occurs at 23.5 μs for the Magnitude 11 case, see
also figure 9(a). The oscillation amplitude of this peak is larger than the Faraday threshold,
i.e. Faraday waves are excited on the liquid surface. The fraction of the peak above the
VOF-predicted atomisation threshold corresponds to an atomisation burst consisting of a
jet of ejected droplets. For this particular atomisation event the duration of the burst is
around 35 μs. Figure 9(b) depicts the vibration pattern at t = 23.62 ms corresponding
to the largest acoustic intensity. It is observed that the acoustic vibration pattern is not
homogeneous along the drop-chain. The arrows in figure 9(b) correspond to the acoustic
vibration vector, given in norm representation since the instability is independent of the
sign of the vibration, allowing us to identify the loci of atomisation events. Figures 10(c)
and 10(d) represent atomisation burst patterns as recorded by Simon et al. (2015). In
these experimental images an axisymmetric ‘ring shape’ atomisation pattern is observed,
with atomisation events at specific vertical positions and at the top of the drop-chain
(figure 10d).

Another consequence of a sudden large amplitude resonance peak is the relatively
large deformation of the drop-chain fountain that follows the peak. This phenomenon
is illustrated in figure 10(a), which depicts the acoustic force pattern at t = 23.6 ms,
associated with the previously discussed resonance peak. During the resonance peak
period the acoustic force dominates surface tension, leading to strong interface
deformation by alternately pushing the liquid outwards and pulling the liquid towards
the centre, corresponding to the acoustic field pattern. As a consequence, spherical drops
are deformed into flattened drops. This is exemplified in figure 10(b) which shows the
deformed liquid after 1 ms and where flattened drops are observed in the locations of
largest acoustic force. These predictions agree with the experimental observations by
Simon et al. (2015). The images in figures 10(c) and 10(d) depict the evolution of an
atomisation burst pattern over a time period of 1.4 ms. The acoustic force results in a strong
localised deformation flattening the second droplet from the bottom. The deformation is
so strong that breakup of the drop-chain is observed. The top droplet in figure 10(c) was
subjected to the same phenomenon (see complete result in Simon et al. (2015)).

977 A44-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

96
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.968


W. Cailly, J. Yin and S. Kuhn

–6 –4 –2 0 2 4 6

r (mm)

2.5

1.0

1.5

0.5

(×10–6)

N
o
rm

 o
f 

ac
o
u
st

ic
 o

sc
il

la
ti

o
n
 v

ec
to

r 
(m

)

23.50 23.55 23.60 23.65 23.70

1 mm 1 mm

23.75 23.80

t (ms)

0

0.5

1.0

1.5

2.0

2.5

M
ax

im
u
m

 a
b
so

lu
te

 o
sc

il
la

ti
o
n
 

am
p
li

tu
d
e 

(m
)

(×10–6)

0

5

10

15

20

25

30

35

40

45

M
ax

im
u

m
 a

co
u

st
ic

 p
re

ss
u

re
 (

M
P

a)

|u|atomisation, VOF

|u|Faraday

Atomisation

Predicted

atomisation

|u|Goodridge

t = 23.62 ms

2

–2

4

6

8

10

12

0

z (
m

m
)

Below
|u|atomisation, VOF
Above
|u|atomisation, VOF

2.0

(a)
(b)

(c) (d)

Figure 9. An atomisation burst produced by an acoustic-resonance shock. The numerical results are taken
from the Magnitude 11 case, and the images are extracted from the movie provided in Simon et al. (2015) for
an excitation frequency of 1 MHz. (a) Absolute acoustic pressure and particular oscillation amplitude compared
with the Faraday (|u|Faraday) and estimated (|u|atomisation,VOF) atomisation threshold. (b) Predicted atomisation
burst pattern. (c) Image showing a typical atomisation burst pattern. (d) Image showing a typical atomisation
burst pattern – obtained at a different time than (c).

4. Discussion

The aim of this work is to contribute to an improved understanding and description of
the acoustic deformation of a liquid irradiated by ultrasound. The developed numerical
approach is able to capture the mechanism of the acoustic fountain, and a good qualitative
agreement with experiments is observed. Depending on the excitation magnitude, different
regimes are found, which highlights the sensitivity of the acoustic fountain behaviour to
the input magnitude. This observation is also in line with experiments as this sensitivity
is found by comparing the shapes for different excitations in Tomita (2014, p. 097105-4).
Furthermore, the growing drop-chain solution is also numerically well reproduced, and for
example, the Magnitude 11 case exhibited an even drop-chain behaviour. The shape of the
base cone of the fountain (see e.g. figure 6b) is consistent with the typical shape observed
in experiments. The analysis of the dynamic acoustic field allowed us to highlight the
sequence of resonance peaks coinciding with drop formation. As reported by Wang et al.
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Figure 10. The flattened drop shape due to an acoustic resonance shock. The numerical results are taken
from the Magnitude 11 case, and the images are extracted from the movie provided in Simon et al. (2015) for
an excitation frequency of 1 MHz. (a) Acoustic pressure field at t = 23.6 ms, the arrows represent the acoustic
radiation force at the free surface. (b) Deformed shape after 1 ms. (c) Image of a growing drop-chain. (d) Image
of a transient deformation pattern of the same drop-chain (c) after 1.4 ms. The highlighted liquid border was
added to the original images.

(2022) the expected drop diameter equals the acoustic wavelength in the liquid λ, which is
also predicted by our simulations for even drop-chain solutions.

Furthermore, a consistent order of magnitude of the growing velocity is predicted. In
Simon et al. (2015) an acceleration from 0.4 to 1.4 m s−1 is observed. Similar acceleration
patterns are observed in the simulations, for example, the resonance peak at t = 23 ms
in the Magnitude 11 simulation produces an acceleration from 0.25 to 1.78 m s−1 (see
figure 7a). Then, after the resonance peak, the growing velocity decreases to a value
of approximately 1.2 m s−1, leading to a pattern similar to the observation in Simon
et al. (2015). Wang et al. (2022, p. 5) measured the growing velocities in the range
from 0.102 to 0.183 m s−1, and Tomita (2014, p. 097105-8) obtained an average growing
velocity of 2.1 m s−1. The presented numerical approach demonstrates how the growing
velocity fluctuates due to the complexity of the dynamic acoustic field and to surface

977 A44-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

96
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.968


W. Cailly, J. Yin and S. Kuhn

tension counteracting the growth. For the acoustic fountain solutions, the predicted values
are in the range from 0.1 m s−1 to 2.0 m s−1, which is consistent with the associated
acoustic pressures. A strong resonance peak can also produce a sudden acceleration
of the fountain. The complex deformation regime consisting of constrictions and large
droplets, as observed by Wang et al. (2022, p. 5) at a power density of 7 W m−2 and a
frequency of 3.0 MHz, is a consequence of a briefly acting strong acoustic force. For a
relatively high acoustic intensity, the liquid velocity can exceed 4 m s−1, and a complex
unstable behaviour is observed. For these high intensities the developed model reaches its
limitation, for example for the Magnitude 12 case too large deformations, resulting from
numerical aberration, with a radial expansion above 4 mm are observed. For these cases
the breakup of the liquid is expected, which is, however, not implemented in the developed
numerical method. This type of primary breakup has been reported by Simon et al. (2012,
p. 8069) and Tomita (2014, p. 097105-4). It has to be noted that a relatively smooth wavy
shape is observed instead of a clear drop-chain with thin constrictions, which is due to the
radial regularisation necessary to prevent aberration and early breakup near the axis (see
§ 2.3).

The quantitative analysis of the transient bump regime demonstrated the effect of
the nonlinearity associated with the liquid deformation. The quadratic relation between
transducer excitation amplitude and the liquid deformation, derived from the static
acoustic field approximation, leads to a significant deviation. We showed that a simple
model taking into account the loss of the acoustic field amplitude due to a resonance
peak transition, provides a good description of the liquid deformation. The introduced
nonlinearity factor will depend on the configuration. This result, summarised in figure 5,
shows how the observation of liquid deformation can be used to characterise the
ultrasonic excitation. There is a one-to-one deterministic relation between the ultrasonic
excitation and the liquid deformation amplitude and velocity. However, as demonstrated in
figure 5(c), there is no one-to-one relation between the time delay to reach the deformation
and the excitation amplitude. Thus, it makes it difficult to characterise the ultrasonic
excitation using this delay. We noticed that the nonlinear trend observed in figure 5(c) is
similar to the one measured by Tomita (2014, p. 097105-3), depicted in figure 2(c), where
a delay of 2 ms is found compared with the 2.5 ms predicted in our numerical study. The
delay measured by Tomita (2014) was defined as the onset of the continuously growing
acoustic fountain, corresponding roughly to our the definition of the transient bump phase.

The computation of the dynamic acoustic field in the acoustic fountain also allowed
us to predict atomisation. As observed in the Magnitude 11 case, atomisation can be
directly linked due to an acoustic resonance peak. As the Faraday instability arises, strong
acoustic oscillations occur on specific locations of the growing surface, giving rise to
specific atomisation burst patterns. A microdroplet generation time of approximately 30 μs
corresponds to the time span of the resonance peak above the atomisation threshold. It
is observed that most of the resonance peaks are below the atomisation threshold, and
that peaks above the atomisation threshold arise for a very specific deformation of the
resonating liquid, implying that atomisation bursts only arise sporadically. A consequence
of the sudden high amplitude acoustic shock is that local atomisation is associated with a
strong local deformation of the liquid. The link between atomisation bursts and acoustic
deformation was also observed experimentally by Simon et al. (2015) and Wang et al.
(2022). Furthermore, Cailly et al. (2023) found that in sonicated gas–liquid segmented
flow atomisation coincides with a strong concave deformation of a bubble. Therefore,
we conclude that dynamic acoustic resonance is the main mechanism driving both the
drop-chain growth of the liquid and atomisation.
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A distinction has to be made between Faraday-instability atomisation and
cavitation-driven atomisation. The effect of cavitation bubbles is not directly predicted
by the presented model as the acoustic field is computed neglecting any cavitation
activity in the liquid. Cavitation is also expected to be less dominant at the selected
high ultrasound driving frequency compared with the low frequency range, for which
attenuation and nonlinear effects arise, see e.g. Louisnard & Garcia-Vargas (2022).
Nevertheless, considering the computed acoustic pressure magnitude at the resonance
peaks, which can reach tens of megapascals at 1 MHz, cavitation can still be expected. For
these high pressure resonance peaks large cavitation bubbles (super-resonant cavitation
bubbles) could be generated. Large cavitation bubbles inside the acoustic fountain together
with Faraday atomisation were observed by Simon et al. (2012, pp. 8068–8069), Simon
et al. (2015, p. 136) and by Tomita (2014, p. 097105-8). The predicted acoustic pressure
in the acoustic fountain can be related to experimental cavitation thresholds, obtained
in almost similar conditions, to describe these observations. Herbert, Balibar & Caupin
(2006) measured the cavitation threshold at 1 MHz in distilled degassed water at different
temperatures. At 20 ◦C the cavitation pressure is in the range from 16 MPa to 30 MPa
(Herbert et al. 2006, p. 041603–4), and it is found to decrease monotonically with
temperature: from 26 MPa at 0.1 ◦C to 17 MPa at 80 ◦C. Furthermore, the authors highlight
the importance of water purity, as the cavitation threshold varies largely depending
on impurities and gas content. A similar experimental study using a 1 MHz focused
transducer was carried out by Vlaisavljevich et al. (2016), in which the decrease of
cavitation pressure with temperature was confirmed: from 29.8 MPa at 10 ◦C to 14.9 MPa
at 90 ◦C. Figure 11 summarises the different acoustic pressure thresholds for water at
1 MHz as a function of temperature, allowing us to distinguish the different phenomena.
The atomisation VOF and Faraday instability curves were computed using the Kumar &
Tuckerman (1994) method and the modified Goodridge formula using a value of 0.9 for
the constant (see the Appendix C), respectively. For this, the temperature dependence
of surface tension, density, speed of sound and shear viscosity was implemented using
the values reported in Vlaisavljevich et al. (2016, p. 1066). The Faraday instability and
atomisation thresholds were converted into an acoustic pressure using the relation between
the particular oscillation u (in m) and the acoustic pressure (in Pa) from (2.2). Based
on the works of Herbert et al. (2006) and Vlaisavljevich et al. (2016) the cavitation
threshold of water at 1 MHz is in the range of 24–28 MPa at 20 ◦C. As a consequence,
cavitation bubbles should appear during a resonance peak. The strong peak obtained for
the Magnitude 11 simulation (see figure 9a), has an acoustic pressure above 25 MPa.
The short time period of approximately 50 μs is sufficient for a cavitation bubble to
expand. According to Vlaisavljevich et al. (2016) the bubble growth time is estimated
to be 10 μs to 30 μs, for diameters from 300 μm to 500 μm. This was confirmed by
optical images where large cavitation bubbles of approximately 300 μm in diameter were
observed. Tomita (2014) observed a bubble growing time of approximately 20 μs and a
sustain time during which the bubble is visible of 40 to 50 μs. The maximum diameter
of the visible bubble was approximately 200 μm. Simon et al. (2012) observed bubble
diameters from 120 μm up to 600 μm. One can speculate that for sufficiently large acoustic
pressures (above 30 MPa at 20 ◦C) cavitation and Faraday atomisation coexist. It is known
that large cavitation bubbles are moved to pressure nodes by the acoustic radiation force
(Mc Carogher et al. 2021), and in the case of the acoustic fountain the free surface acts
as a pressure node. The phenomenon of a large cavitation bubble penetrating the interface
was observed experimentally. Simon et al. (2015) observed a complex cavitation-driven
atomisation due to the generation of a set of large bubbles. From a pure deterministic point
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Figure 11. Cavitation and atomisation thresholds for water at 1 MHz as a function of temperature. For
cavitation, the acoustic pressure value corresponds to a negative peak. The values of acoustic pressure at 20 ◦C
are given.

of view, unlike the atomisation burst due to a strong Faraday instability at a resonance peak,
jets generated by cavitation bubbles appear to be more isolated and unpredictable.

5. Conclusion

A numerical approach based on the perturbation expansion method and an adaptive
Lagrangian solver allowed us to accurately reproduce the acoustic fountain effect. The
role of the dynamic acoustic field in this nonlinear system is demonstrated, and the
analysis of the predicted acoustic field provides a novel understanding of this phenomena.
As the liquid surface grows, the acoustic field is characterised by high intensity peaks,
corresponding to the acoustic resonance effect. These resonance peaks also lead to
the formation of droplets with a diameter equalling the acoustic wavelength. The large
transient deformations of the liquid surface and atomisation bursts are also the direct
consequence of these strong acoustic resonance peaks. Furthermore, the predicted acoustic
pressure during these strong peaks can exceed the cavitation threshold. Despite the fact
that cavitation appears to be more isolated and unpredictable in such systems, the results
allow the prediction of the generation of super-resonant cavitation bubbles, consistent with
previous experimental observations. The presented results also indicate the coexistence of
cavitation and atomisation in acoustic fountains involving large acoustic pressures. The
limits of the modelling approach were identified for strong and chaotic deformations which
include breakup and combined atomisation and cavitation.

977 A44-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

96
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.968


Dynamic acoustic resonance with deformed liquid surfaces

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.968.
Supplementary movies are made available with this article, where MovieN.mp4 corresponds to the
Magnitude N simulation. One frame corresponds to eight integration steps. The upper part shows the shape
of the moving liquid surface. The vertical velocity in the centre of the fountain is displayed and the colour scale
characterises the acoustic vibration with respect to the following thresholds: light blue, below the Faraday
threshold; red, above the Faraday threshold and below the atomisation threshold; orange, above the atomisation
threshold. The lower part shows the evolution of the maximum absolute pressure over time.
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Appendix A. Validation of the axisymmetric solver for the free oscillation of a droplet

The assessment of the axisymmetric solver, described in § 2.1, was carried out considering
the case of the free oscillation of a droplet. This dynamic system is characterised as a
balance between inertia and surface tension. Consequently, this case enables us to validate
the correct implementation of surface tension. The benchmark consisted of simulating
the fundamental mode for which the shape and frequency are known analytically. The
axisymmetric-mode frequencies of a droplet of radius R can be obtained from Lamb’s
formula (see e.g. Strani & Sabetta 1984)

ω2
n = n(n − 1)(n + 1)(n + 2)γ

(n + 1)ρR3 , (A1)

for n = 2, 3, 4, . . . . A water droplet (ρ = 1000 kg m−3, γ = 0.072 Nm−1) with a radius
of 2 mm was considered. Initially, the droplet was given an elliptic shape with a radii
ratio of 0.9. A constant volume constraint was applied in the calculation to ensure volume
conservation for each time step (the integration time step was 1 × 10−4 s). The mesh size
was 1.3 × 10−4 m, and the droplet’s free surface was refined with a mesh size of 3.6 ×
10−5 m. Figure 12(a) depicts the mesh in the initial state, and figures 12(b) and 12(c) show
the result of the benchmark. The predicted oscillation frequency is 42.2 Hz. which results
in a relative error of 1.17 % compared with the theoretical frequency of 42.7 Hz (see (A1)).
As shown in figure 12(b), the ratio between the pole and the equator displacement was also
well reproduced, due to the applied volume conservation the displacement is larger at the
pole.

Appendix B. Initial acoustic beam pattern at the free surface

The acoustic field at the free surface is depicted in figure 13. It is known that focused
spherical transducers produce Bessel-beams. The obtained numerical field was compared
with the ideal Bessel-beam in the radial direction, by fitting the result to the equation for
the normalised acoustic velocity vz,a,

vz,a(r) = J1(krr)
krr

, (B1)

where J1 is the Bessel function of the first kind of order 1, and kr is the characteristic radial
constant of the beam (in m−1). The fit resulted in a value of kr = 2.05 × 103m−1 and a
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Figure 12. Results of the free oscillation of a droplet benchmark. (a) View of the initial mesh. (b) Droplet
oscillation shape. (c) Displacement of the pole and equator points over time. The displacement is taken
relatively to the equilibrium spherical shape. The dashed curves correspond to the theoretical linear solution.

corresponding F-number of 1.035 (F = π/(λkr)). For an F-number close to 1 the focal
distance coincides with the source diameter (Simon et al. 2015). The acoustic force at the
free surface is calculated from the vertical acoustic velocity, see figure 13(b). Taking the
force beam diameter at approximately half of the main lobe amplitude, it follows that the
diameter of the pushed liquid corresponds to approximately the wavelength in the liquid λ.
This is consistent with the general observation that the diameter of the liquid deformation
is of the order of λ.
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Figure 13. Comparison of the computed acoustic field at the free surface (Γfree) produced by a 1 MHz focused
transducer in the initial state (flat surface) with the Bessel-beam approximation. (a) Normalised acoustic
velocity vz/vz,r=0. (b) Normalised acoustic force fz/fz,ref . The normalisation of the acoustic force was done with
respect to fz,ref = (ω/c0)14ρ0v

2
z,max. The vertical line r = λ/2 allows us to compare the force lobe diameter

with respect to the current wavelength.

Appendix C. The VOF simulations for estimating the atomisation threshold at
1 MHz

In this article, we defined the atomisation threshold as the free surface vibration amplitude
at which breakup at the Faraday wave crests is observed. In our previous study on
atomising liquid slugs in segmented flow, we showed that this threshold can be predicted
by VOF simulations (Cailly et al. 2023). A standard two-dimensional OpenFOAM
solver interFoam modified according to Yin & Kuhn (2022) was used, and the detailed
methodology is provided in Cailly et al. (2023). The method is consistent with the Kumar
& Tuckerman (1994) theory for predicting the Faraday instability threshold at the selected
frequency. The simulations were performed at a driving frequency of 1 MHz, and the
domain consisted of a 300 × 300 μm square. A vibration wall boundary condition was
defined at the bottom and the Faraday wave generated at the free surface was predicted
for different driving oscillation amplitudes. The results are illustrated in figure 14. For a
vibration amplitude of 1.0 μm no breakup is observed, contrary to a vibration amplitude
of 1.1 μm which showed breakup (observable at around 15 μs). Thus, we assumed that
below this value no atomisation is generated.

We found that this method may be more relevant rather than directly applying the
following Goodridge’s formula (Goodridge et al. 1997; Goodridge, Hentschel & Lathrop
1999):

ad ≈ 0.26
(

γ

ρ0

)1/3

ω4/3, (C1)

where ad is the critical driving acceleration of the onset of drop ejection, vibration
amplitude is computed with the relation ud = ad/ω

2, which we noticed it overestimates
the atomisation at ultrasonic frequencies. Indeed, applying (C1) gives ud = 0.5 μm. As
in Cailly et al. (2023), dealing with 500 kHz atomisation, we noticed that the VOF
atomisation threshold is consistent with Goodridge’s formula taking a constant of 0.9
instead of 0.26 in (C1).
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Figure 14. Estimation of the atomisation threshold at 1 MHz using OpenFOAM simulations. (a,b) Phase
fraction at 15.7 μs and 22.7 μs for a 1.0 μm driving oscillation amplitude. (c,d) Phase fraction at 15.7 μs
and 22.7 μs for a 1.1 μm driving oscillation amplitude.
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