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On a cardinal equation in set theory

J.L. Hickman

We work in a Zermelo-Fraenkel set theory without the Axiom of

Choice. In the appendix to his paper "Sur les ensembles finis",

Tarski proposed a finiteness criterion that we have called

"C-finiteness": a nonempty set is called "C-finite" if it

cannot be partitioned into two blocks, each block being equivalent

to the whole set. Despite the fact that this criterion can be

shown to possess several features that are undesirable in a

finiteness criterion, it has a fair amount of intrinsic interest.

In Section 1 of this paper we look at a certain class of C-finite

sets; in Section 2 we derive a few consequences from the

negation of C-finiteness; and in Section 3 we show that not

every C-infinite set necessarily possesses a linear ordering.

Any unexplained notation is given in my paper, "Some definitions

of finiteness", Bull. Austral. Math. Soo. 5 (1971).

1.

Throughout this paper we assume a Zermelo-Fraenkel set theory without

the Axiom of Choice. We define C-finiteness as follows:

DEFINITION 1. FC(x) «-»• x = 0 v My {y € P(x) & y - x •+ ̂ {x-y = x)) .

Intuitively, a set x is C-finite if x is empty or if there is no

2-partition of x with each block being equivalent to x . Alternatively,

a cardinal t|i is C-finite if either i> = 0 or 2i/i > ty . It can be

shown that for nonzero cardinals i|) , we have 2^ = \\i if, and only if,

(oip = ip . An elegant proof of this fact can be found in [/]•

As usual, medial sets are those that are DO but not ^-finite (see
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[ 2 ] ) . The se ts t ha t we wish to study in th i s section are called 'V-sets" :

DEFINITION 2. W(x) +-> 3y[med(y) & x = <o u y) .

Before es tabl ishing any properties of (/-sets, we give two t r i v i a l

r e su l t s on FC-sets , using the al ternat ive characterization mentioned

above.

LEMMA 1.

(i) Vxfy (yFC(x) & ^FC(y) ->• *>FC{x u y)) .

(ii) VxVy(yFC(x) & 2 / ^ 0 + ^FC(x x y)) .

Proof. (i) a) x (x u y) - (w x x) u (ID x j/) = x u i/ .

Since y ̂  0 , we have x x ̂  ̂  0 and

<i>x(xxy)-(ui*x)xy~xxy. Of course it is also clear that

FDO •*• FC . We now turn to V-sets.

THEOREM 1. W •*• ̂ FDO & FC .

Proof. That W •* ̂ FDO is trivial. To prove W •*• FC , take x

medial, and put y = w u x ; then we know that y 4 ID . Assume

2/ = h-, u 2/o » with bijections f--y- y- , with t/ n y = 0 . From

med(x) we obtain FN(w n f.x) , £ = 1, 2 . But this implies

}xn/.x| - 0) , which is a contradiction.

COROLLARY. (FC + FDO) •* (FC •*• FN) .

Proof. It suffices to show, under the assumption FC •+ FDO , that

FDO •*• FN . Now if FDO •*• FN does not hold, then there exists a medial set

x . But then y = w u x is a W-set, and so by Theorem 1, is FC but not

FDO .

An alternative statement and proof of this corollary is given as

Theorem 2.3 in [/]. Theorem 1 allows us to deduce a consequence that in my

opinion is completely undesirable in any finiteness criterion, namely, it

is possible to have a C-finite set with a C-infinite subset. For, as we

have seen, any (/-set is FC , but each P/-set contains a countably

infinite subset, which is certainly not FC . We can in fact show that

countably infinite subsets of (/-sets are the only C-infinite subsets of

V-sets.
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THEOREM 2. Vxff/(x) •+ Vy {y € P(x) & ^FC(y) -* y - 10) .

Proof. Take x medial, and y $ P(ioux) . Then y = (wnz/) u (xny)

gives a 2-partition (since we may assume u> n x = 0 ) in which we have

FDO(xny) and either F/l/(airo/) or (i) n j/ = 0) . Thus if j/ is not

countable, then we must have y = 0) u z for some medial z . The result

now follows.

The class of (/-sets is closed under union, but not under products.

THEOREM 3. VxVj/((/(x) & W(y) -»• l/(xuzy)) .

Proof. Take x = (w x {o}) u w , t/ = (u> x {l} ) u u , with u, v

medial. Then u u v is medial, and since (u x {o}) u (u x {l}) = w , we

have x u y - w u (wuy) .

A lemma is required to show that the class of (/-sets is not closed

under products.

LEMMA 2. VxV#(med(x) & med(y) •* M |(oxx| < | cauy | )) .

Proof. Since we have 'VFC(ti) x a;) 5 this is a trivial consequence of

Theorem 2.

THEOREM 4. VxVz/(v(x) & V(y) * -W(z x y)) .

Proof. Since (touw) x (couy) = 10 x (wuyu{0}) u (u x y) , the result

follows from Lemma 2.

Just as we used the distinction between tf-finiteness and

DO-finiteness to define the class of medial sets, so we can use the

distinction between OO-finiteness and C-finiteness to define another

class of sets - we call these "LC-sets".

DEFINITION 3. LC(x) <-»- FC{x) & ^FDO(x) .

Clearly the class of LC-sets contains the class of (/-sets. Nothing

presented in this paper so far, however, could really lead us to believe

that the reverse inclusion does not hold. That it does not in fact hold

will emerge as a simple corollary to a result that will be presented in

Section 2 of this paper. The one result to be given in this section on

£C-sets is as follows.

THEOREM 5. Vx(LC(x) * ̂
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Proof. From LC(x) we obtain ^FDO(x) , whence x - x u {x} . But

from this i t follows that P(x) = {0, l} x p(x) .

We conclude this section by using some of the above results to give an

alternative proof of a "classical" theorem of cardinal arithmetic.

THEOREM 6. Let c be the cardinality of the continuum. Then the

equation u>o + \\i = c has a unique solution, namely \j> = c .

Proof. Clearly c i s a solution. Thus l e t \p be any solution;

then obviously we have 'VJW^) , whence we obtain either med(i|0 or

^FDO(vp) . Now i f med(iji) holds, then we have W{c) , and hence FC(c) .

Since, however, c = 2 ° , th i s contradicts Theorem 5- Thus we cannot have

med(ty) , and so are le f t with ^FDO(ty) , in which case we have

C = u)0 + \J> = ip .

2.

Let C denote the Axiom of Choice, and let D denote the statement

\fc(yFN{K) •*• 2 K = K ) . Then of course it is known that ZFC "- D , whilst

the converse ZFZJ t- C is still an open problem. I do not believe that

this converse implication holds, for whilst we can deduce (0o< = K from

2 K = K , the proof of this is achieved, essentially, by taking iterates of

certain bijections, and there seems to be no way past the u-th iterate:

hence to me it seems doubtful that we could even obtain any of the

equations to K = K for a > 0 , let alone the equation Kz = K required

On the other hand, the axiom D does permit a certain deduction that

bears a vague resemblance to a cardinal equivalent to C .

THEOREM 7. ZFO i- VKVt|)MFff(K)v*W(iJOvinc(K, ij;)) •* <+$ = max{K, i|i} .

Proof. inc(K, I(J) means that K and if) are incomparable. Thus

assume that < and \p are iV-inf inite, comparable cardinals, say K 5 tjj .

Thus we have some cardinal t, such that K + C, = \\i . But now by using

axiom D , we have K + ^ = K + K + C = 2 K + C = K; + C = <I'- Similarly, if

ty S K , we obtain < + ty = K .

Clearly the comparability condition is necessary; and of course it is

not known whether the multiplicative analogue of this theorem holds , for
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this latter is equivalent to C .

If a ZF-model fails D at all, then it fails D at arbitrarily high

levels. This is the content of the following theorem, in which the

variable a. ranges over ordinals, with to indicating alephs (initial

ordinals).

THEOREM 8. ZF t- V K P - F ^ K ) & 2 K > < •+ Vet(2 (to + K ) > to +K) I .

Proof. Let K be an ^-infinite cardinal with 2< > K , and let ooa

be any aleph. Clearly if to < K , then to + K = K , and so

2 (wa+ic) = 2< > < = a) + K . On the other hand, U) » K would imply

2K = < , contrary to hypothesis. Thus we may assume inc(toa, K ) . Clearly

we have 2 (ua+K) = a) + 2 K . Assume that (0 + 2 K = w + K , let A be a

set of power ioa , K, KQ, K be sets of power K , with A, K, K , X

pairwise disjoint, and let f : A u KQ u K * A u K be a bijection. Put

N = /"(X uK ) , B. = A n f"K. , and ti• = N - B. , for i < 2 . Now

S. € p(/l) , and so there are ordinals 3, Y such that 15.1 = coQ ,
t* U P

| B I = 0) . T h u s | B u S I = t o . , w h e r e 6 = m a x { 0 , y } . P u t

S = l ^ u ^ l ; s i n c e N u N € P ( X ) , w e h a v e ? 5 K . Now

tUg = | f l I S \K \ = K ; s i m i l a r l y CO S K ; h e n c e 0)^ S K . H o w e v e r ,

\ N \ = 2 K , a n d s o w e h a v e 2 K = 1 0 + 1 0 + ? = tO|5 + S < i o 6 + K = K , a

c o n t r a d i c t i o n . T h e r e f o r e w e m u s t h a v e 2(10 + K ) = 1 0 + 2 K > t o + K .

COROLLARY. ZF h- 3xLC{x) ->• 3x[LC(x) & *>W(x)) .

3.

The result contained in this section in my opinion casts doubt upon

the conjecture ZFD 1- C . We construct a model M of ZF in which there

is a cardinal K (strictly speaking, a set of power K ) such that

K * 0 , 2 K = K , but in which there is no linear ordering of K .

Now if it could be shown that M H Z ) , then of course we would have

the independence of C from ZFD ; in fact we would have the stronger
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result of the independence from ZFZ? of Mostowski' s axiom that every set

can be linearly ordered.

Unfortunately it does not seem possible to prove that M H D , and so

we cannot deduce the desired result. Nevertheless, it does seem to me that

the result obtained in this section makes the independence of C from ZFD

very plausible. For we know that K satisfies the equation 2 K = K ; and

if in fact D implies even Mostowski's axiom, then it seems that we should

be able to prove the existence of an ordering on K from the properties of

K alone. However, this of course is merely a heuristic argument.

The model M is constructed by the boolean technique; the standard

text for this is Rosser [4], and familiarity with this book will be assumed

throughout this section. The main notational variation from [4] is the use

of "p( )" instead of Rosser1 s "|| ||" . Other notational variants are

either obvious or will be explained at the appropriate time.

Our model M will be completely determined by the specification of a

complete boolean algebra A , a group 6 of A-automorphisms, and a

strongly normal filter F on the subgroup lattice of G .

As in all the cases in [4], our algebra A will be the algebra of

regular open sets of a certain Tychonoff space; in our case this space

will be 2 U u . We denote the usual subbasis elements of our space by

"Bi " •
m,n

Thus we have our algebra A ; we need now to perform the slightly

more complex task of defining the appropriate group G of

A-automorphisms. It seems to be a general rule in constructing boolean

ZF-models that the most difficult chore is choosing the right G for the

job you have in mind. First we need a couple of preliminary definitions.

DEFINITION 4. For each i < h , we put <i> = {n ; n = i (mod k)} ;

for i, j < h , we put < i, j > = < i > u <j > .

DEFINITION 5. We define the map p 0 : w -• < 0, 2 > by

p0M = hn + 2 , n 6 <0, 1> , and po(n) = hn , n € < 2, 3 > . We define

the map px : u •* < 1, 3 > by p\[n) = hn + 3 , n ( <0, 1) , and

pi(n) = hn + 1 , n € < 2 , 3 > . We can now define G as follows.
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DEFINITION 6. We let G be the set of permutations g on u> that

satisfy the following:

(1) for each i < k , g"<i> = <i> ;

(2) for 3 < 2 , g commutes with p. , that is, gp • = p -g .
0 3 0

For each g € G , let g be the A-automorphism induced by the subbasis

transformation B -*• B , \ , (i. m, «) f 2 x (1) x 10 . We now define G
m,n m,g\n)

to be that subgroup of the full A-automorphism group generated by the set

{g ; g € G} of A-automorphisms.

For each subset J of 0) , we define G to be that subgroup of G
d

consisting of precisely those g € G that leave B invariant whenever

n t J . Using this last piece of terminology, we can define our filter F

in the following manner.

DEFINITION 7. F = {H < G ; 3j[j € P(u) & FN(J) & G^ < H)} .

LEMMA 3. F -is strongly normal.

Proof. Sy definition, F is strongly normal if it is closed under

inner automorphisms, that is, if for every g d G and H 5 G , we have

gHg f F whenever U f F . But this is immediate from Definition 7\-

DEFINITION 8. M = M(A, G, F) is the boolean model of ZF

determined by A, G , and F .

We denote the set of finite subsets of u by "P (w)" , and commence

with a lemma.

LEMMA 4. VJVg(j I P (to) & g i G - 3h(h f G & g\j = h\j & g t h))

Proof. Take J ( P (to) and g i G . Since J is finite, there

exists n such that kn $ J . Suppose that the value g(hn) is

determined by the restriction g\j . Then we must have g [h ) = f(g(k))

for some k € J , where / is algebraic over pQ, p , pQ , p~ . By (2)

of Definition 6, we must have g[h ) = <?(/(&)) , whence, since g is
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injective, we have k = f(k) . By inspection, we see that this restricts

n to a limited number of possibilities. This proves the lemma.

Now as a brief examination of the construction of models given in [4]

shows, our model M is the union of an increasing sequence of sets, which

we denote by "W " , where the subscripts range over the ordinals of our

base model of ZF . Again as described in [4], W consists of the

elements of W , together with certain maps W -»• A .

DEFINITION 9. For each n , we define the (constant) map

a : W •* A by a (x) = inf<B° ; m € wV , x (. ill .
n to n [ m,n j m

THEOREM 9. Each a is an U-eet (that is, belongs to the model

M ), and for m # n we have M 1= am t a .

Proof. In order to show that a is an M-set, we need to show that
n

an i s extensional ((3-33) of [4]) , and that G € F ((3-36) of [4]) .
n

Since a i s a constant map, extensionality i s t r i v i a l l y sa t i s f ied; hence

we concentrate on the second property. By def ini t ion,

G = {g € G ; p(g(a ) = a ) = l} . Take any g € G ; we have
n

g[a ){x) = g[a {g {.x)}\ for x € V[a ) , by defini t ion. But

g a (g~ (x)) = inf-jgfB ; m € uV . Hence we have G, •. S G , and so

by Definition 7, G € F . Thus a i s an M-set.
n

In order to prove the second part of our theorem, we must show that

for m t- n we have p (a = a ) = 0 . Now if we use the fact that a^, a

are constant maps with the same domain, a straightforward but tedious

simplification of (3.29) of [4] t e l l s us that p(affl = a } = 0 if , and only

if , infifl. *=» B, ; k £ u>> = 0 . However, we now have the same
( k.,m K.,n )
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situation as given by (6.lU) of Theorem 6.U in [4], and may complete the

proof in precisely the same way as done there.

DEFINITION 10. We define a : W ̂ , + A by

a(x) = sup{p(x = a ) ; w € u>} , x f W .

THEOREM 10. a is an M-set, and M 1= Vx(x (. a -«-+ 3n(x = a j ) .

Proof. To show extensionality, we have to prove that for any

x, y (• V(a) we have a(x) A p(x = y) 2 a(j/) . This comes out easily by

using Definition 10 and the equality axioms. Now it is easy to show that

any g £ G simply acts as a permutation on the collection of a , and

from this observation it is a simple matter to deduce that 6 = G t F .

Thus a is an M-set.

We now turn to the second part of the theorem. In one direction this

is trivial, for if M |= x = a , that is, p (x = a ) = 1 , then

a(x) - p[x = a ) , and so a(x) = 1 , that is, M K= x € a . The converse

implication, however, because our definition of a was "standard", is a

special case of Theorem 3.10 of [4]. Thus Theorem 10 is proved.

We now have a certain M-set a ; we let K be the power of a in

M , that is, K = \a\ , and show that K satisfies our two requirements.

THEOREM 11. M h 2K = K .

Proof. Define bQ : W •+ A by

bQ(x) = sup{p(x = aj ; n € <0, 2» .bQ(x) = sup{p(x = aj

a n d bl : Uu*l * A

bx(x) = sup{p(x = aj ; n ? <1, 3» , x €

Since we are dealing with "standard" definitions, the extensionality of

the b . is assured, whilst from Definition 6 (l) we see that G, € F ;

thus the b. are M-sets, and it is routine to show, via Theorem 3-10 of
3

[4], that M h Vx(x i. bQ ++ 3n[n € <0, 2> & x = a^)) , and similarly for
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b1 . We now show that M H a - bQ , the proof for b being exactly

analogous. By the Cantor-Bernstein Theorem i t suffices to show the

existence of an M-injection f : a •*• bn . We define f : ttl -»• A as

follows.

/ ( x ) = s u p | p ( x = [an, a U n + 2 ) j ; n € < 0 , 1>J

p j p f x = ( a n , a ^ J J ; n € < 2 , 3 > | ,v supjplx = [an, ahn)\ ; n (. < 2 , 3 > j , x €

Since this definition is again of standard type, extensionality follows,

and it is routine to deduce from Definition 6 (2) that G.= G. The rest

is straightforward.

THEOREM 12. M h= (there is no linear ordering on a ).

Proof. Suppose that d € p[a ) is an M-linear ordering on a ;

clearly we may assume d irreflexive. Let J € P (oi) be such that

G. - G, : it follows from Lemma k that we can choose m, n , m / n , such
a a

that for some a € G T we have g{a< j = <2i and g[a< ) = a< . Since

this g leaves d invariant and d was assumed irreflexive, this is a

contradiction.
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