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Abstract

In this paper we prove that if V is a vector space over a field of positive characteristic p ^ 5 then any
regular subgroup A of exponent 5 of GL(V) is cyclic. As a consequence a conjecture of Gupta and
Mazurov is proved to be true.

2000 Mathematics subject classification: primary 20E25, 20F50.

1. Introduction

A group G is called periodic if any element of G has finite order and of finite exponent e
if, for any g e G, we have ge = 1. Obviously any group of finite exponent is periodic,
but the contrary is not true in general. We also recall that a group G is called locally
finite if each finite subset of G is contained in a finite subgroup of G.

A well-known conjecture of Burnside says that a finitely generated group of finite
exponent e is necessarily finite (or, equivalently, that any group of finite exponent is
locally finite).

This conjecture has been proved only for e = 2 (in this case the group is abelian),
for e = 3 (Levi and van der Waerden [4], see also [8, 14.2.2]), for e = 4 (Sanov [9],
see also [8, 14.2.3]) and for e = 6 (Hall [3]), while nothing is known for the case
e = 5. In some classes of groups Burnside's conjecture is true; for example, Burnside
proved that if F is a field of characteristic 0, then any subgroup of finite exponent of
GL{n, F) is finite. However Burnside's conjecture is not true in general, as Novikov
and Adjan proved in a series of papers of great length. Successively Adjan constructed
infinite groups of exponent e with a finite numbers of generators for any odd exponent
e > 665 (see [1]).
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It is therefore quite natural to ask if, given a natural number e and a vector space
V over a field F of characteristic finite and coprime with e, there exists an infinite
subgroup A of GL( V) of exponent e that is regular (that is, with the property that
a(v) ^ v for any v ^ 0 and any a e A, a j^ I). If e is a prime number, it can
be conjectured that A is necessarily cyclic. This conjecture is certainly true if the
dimension of V over F is finite (this fact was proved by Burnside; see [8, 10.5.6]).

In this paper, we consider the case e = 5 and prove

THEOREM 1.1. If V is a vector space over afield of positive characteristic p ^ 5
then any regular subgroup A of exponent 5 ofGL(V) is cyclic.

We observe that the action of A is regular over V if and only if any non-identity
element of A has minimal polynomial that divide x4 + x3 + x2 + x + 1. In group-
theoretic terms, this means that in the semidirect product of V by A there are not
elements of order 5p.

2. Notation and preliminary results

We fix two distinct primes p and q. Let F be a field of characteristic p, V a vector
space over F and A a subgroup of the automorphism group of V of exponent q and
such that for any a e A, or ^ 1 we have Fix v (or) = {0}. It is easy to verify that for
any a e A \ {1} and any v € V we have

(1)

In the ring Endf( V) identity (1) can be written as follows

(2) 1 + a + a2 + • • • + a"'1 = 0

for any a € A \ {1}.

REMARK. For any pair of elements a, fi e A \ {1} with (a) n (>S) = {1} we have
[a, 0] * 1.

If a, 0 6 A \ {1} with (a) n (£) = {1} commute, then ap (i = 0, 1 , . . . , q - 1)
are all non identity elements of A. If we write the fundamental relation (2) for these
elements, we get 1 + aft + • • • + (a/31)9"1 = 0 for i = 0, 1 , . . . , q - 1. Summing
term by term and using the fact [a, fi] = 1 we get

q + a ( l + 0 + --- + F>-x) + • • • + a « - ' ( l + £ + ••• + £ < 7 ~ 1 ) = 0

but, by (2), 1 + 0 + ••• + pi~l = 0, and therefore q = 0 while p £ q. This
contradiction proves the statement.
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The preceding remark shows that any finite subgroup of A must have order q. We
observe that infinite groups in which any proper (non trivial) subgroup has order q have
been constructed by Ol'sanskil ([7]). Groups of this type are called Tarski monsters.

Before proving Theorem 1.1, we want to expose the ideas behind the proof. We
suppose for a moment that q = 3 (and not knowing the theorem of Levi and van der
Warden [4]); then we can write (2) as

(3) 1 + a + or1 = 0 for all a e A \{1}.

If A is not cyclic, there exist a, P e A \ {1} with (a) n (P) = {1} and from (3) we
get

+ «"' = 0 ,

rla~l =0,
- pet'' = 0,

summing each member we obtain

3 + a(l + P + P~x) + (1 + P + P~x)a'x = 0

but, from (3), 1 + ^ + $"' = 0 . From this we get the contradiction 3 = 0 while

3. Proof of Theorem 1.1 (p = 2)

We suppose q — 5; to prove Theorem 1.1 we suppose that there exists a counterex-
ample, that is, a vector space V over a field F of characteristic p ^ 5 and a non cyclic
group A of exponent 5 acting regularly on V.

We fix the following notation: the indices in the sums will always be from 0 to 4
and considered mod 5. We shall often use the fundamental relation (2) in the form

(4) 1 + a + a2 + a3 + a'1 = 0

or in the form

(5) l + a + a 2 + cr2 + c r ' = 0.

We shall always denote by a and P two non identity elements of A with (a) D (P) = {1}.
The proof is in various steps.

STEP 1. We have £ . , Pi+Ja Pi+2JaPi+i = 0.
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PROOF. If we put i +j = r we obtain

j2pi+J«p'+2J<*pi+J = E W01?

and we conclude because ]T]. ft = 0. D

We put a = £ , ftaft and a = £,. fta~lft.

STEP 2. a + a = 0.

PROOF. If J = 0, 1 , . . . 4, by (4) we get

1 + «0' + aftaft + ap'ap'ap1 + p-'a'1 = 0

summing the five preceding equalities and recalling that

V = 0 and
\ i /

we get

(6) a

and

E \—^ i oi i — 1

i i

The sum W = ^ . /6'ay3' is invariant with respect to the substitutions or ~~> ft a ft with
7 = 0, 1, . . . , 4. If we make these substitutions in (7) and we take a sum, we get

r+Jaft+Vap
i+i = - 5

By Step 1 we have J2ij ft+i aft+v aft+i = 0 and since char F = p ^ 5 we obtain
the relation we wanted. •

STEP 3. aa + qa~x = —5.

PROOF. We observe that, since A has exponent 5, the relation (6) can be written as

«(E, P'<*P1) + (E, r ;a-'r'K1 = -5- •
STEP 4. W2 + a2 = -25.
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PROOF. We have observed before that <f and g_ are invariant with respect to the
substitutions a ~~+ ft aft with j = 0, 1 , . . . , 4. So we make these substitutions in
aff + qa~x = —5, we sum the five equalities and we get the desired result. •

STEP 5. Theorem 1.1 is true if p = 2.

PROOF. Let p = 2. By Step 2 we have W — g_ and, recalling Step 4 we obtain the
following contradiction 0 = 2cf2 = Jf2 + a2 = —25. •

4. Proof of Theorem 1.1 (p = 3)

From now on, we suppose that p — 3 and therefore the relations obtained in
Steps 2-4 have the form:

a + g_ = 0,

oia + q_a~x = 1,

In particular, a1 = q_2 = 1.

STEP 6. We have

(a) oio = 1 + CT0T1;
(b) OT'CT = Wa — 1.

PROOF. From W = —g_ and from aW + act'* = 1 we get (a).
Multiplying aW + qa~{ = 1 on the left by a"1 and on the right by or we obtain

or'cr + en* = 1 that gives (b). •

STEP 7. If we put p = a + a~l and <p = aa we get

(a) p 6 GL( V) has order 8 and p2 = 1 - p;
(b) <p e GL( V) has order 8 and <p2 = 1 + <p;
(c) [p,?] = l.

PROOF. From the relations obtained in Step 6, we get

pW = (a + a~l)(r = 1 + era'1 + Wet — 1 = W(a + a"1) = ~ap

and therefore [p, CT] = 1; since [p, a] = 1 we also have [p, <p] = 1. Then

p2 = (a + a"1)2 = a2 + a~2 + 2 = - 1 - a - a'1 + 2 = 1 - p and

p4 = (1 - pf = 1 - 2p + p2 = 1 - 2p + 1 - p = - 1 .

https://doi.org/10.1017/S1446788700014440 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014440


302 Enrico Jabara [6]

In particular, p e GL(V) and p8 = 1. Moreover,

(p2 = oiooio = a ( l + aT'cr)<7 = 1 + aW = 1 + q> and

</ = (1 + <p)2 = 1 + 2<p + <p2 = 1 + 2<p + 1 + (p = - 1 .

In particular, <p e GL( V) and ̂ >8 = 1. D

STEP 8. The group B = (p2, <p2) < GL(V) is abelian and \B\ < 4.

PROOF. By Step 7, 5 is certainly abelian, moreover p2 and <p2 have order 4 and
therefore, since p 4 = — 1 = <p*, \B\ < 8. We prove that 5 has order (at most) 4
showing that p2(p~2, which has order 2, acts fixed points freely over V and it is
therefore equal to —1.

If we put Vo = Fixv(pV~2) we have that Vo is a (p, ̂ -invariant subspace of V
(because (p, <p) is abelian).

If, by contradiction, Vo 5̂  {0} and using the same symbols for the restrictions of
the automorphisms to Vo, from Step 7 we get 1 — p = p2 = <p2 = 1 + q>, that is,
aW = <p — —p = —a — a"1. Using Step 6 (a) we get 1 + era"1 = —a — a"1 and
a = - l - a - a 2 a n d l = a 2 = l + a + a 2 + a 4 + 2 a + 2ar2+2a3 = l + 2 a + 2 a 3 + a 4 ,
that is, a4 = a + a3 and a2 = a + a"1 = p which gives the required contradiction:
1 = p8 = (a2)8 = a. D

STEP 9. Theorem 1.1 is true if p = 3 .

PROOF. By Step 8 we have | B \ < 4 and since p4 = — 1 = <p4, this is possible only
in two ways:

(I) p2 = cp2 but this gives a contradiction, because in the proof of Step 8 we have
seen that p2<p~2 acts fixed points freely on V.

(II) p2 = — <p2 then, by Step 7, 1 — p = — 1 — <p and <p = 1 + p. Then, recalling
Step 6, 1 + era'1 = aW = <p = 1 + p and W — pa = I + a2; this implies
1 = CT2 = (1 + a2)2 = 1 + 2a2 + a* and a2 = 1: a contradiction. D

5. Sketch of the proof of Theorem 1.1 for p > 7

We remark that if char F = p > 7, we can obtain the same result in a way similar
to the one used for p = 3 , but using arguments ad hoc for any prime number p .

We can always find commuting elements p and cp (as defined in Step 7), satisfying
p2 + p — 1 = 0 and <p2 + 5<p + 2~x • 25 = 0. The orders of these automorphisms are
divisors of p 2 — 1 and depends on the prime p , as Table 1 shows, but we haven't been
able to find a method of proof valid for any p .

It seems hard to prove the same conjecture for A in the case in which q = 7 (or
greater), with the methods used in this paper.
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p
\p\
\<p\

3
8
8

7
16
24

11
10
40

13
28
12

17
36
4

19
18
72

6. An application

If G is a periodic group, we denote by co(G) the set of the orders of the elements of
G. In [2] Gupta and Mazurov proved that if a>(G) is a proper subset of {1, 2, 3, 4, 5},
then either G is locally finite or there exists a normal nilpotent 5'-subgroup N of G
such that G/N is a group of exponent 5. The same authors have conjectured that if
N ^ {1} then G is locally finite. This conjecture is equivalent to

CONJECTURE ([2]). Let A be an automorphism group of an elementary abelian
{2, 3}-group G such that every non-trivial element of A fixes in G only the trivial
element. If A is of exponent 5 then A is cyclic.

The conjecture is true by Theorem 1.1; hence we have proved:

THEOREM 6.1. Ifco(G) C {1, 2, 3, 4, 5} and co(G)
locally finite.

{1, 5} then the group G is

To establish Theorem 6.1, we need (in addition to the results of [2]) the following
facts:

• The groups of exponent 4 are locally finite ([9]).
• If <u(G) = {1, 2, 3, 4, 5} then G is locally finite ([5]).
• If <u(G) = {1, 2, 3, 5} then G ~ A5 ([10]).

We recall that if co(G) = {1, 2} then G is elementary abelian, if a>(G) = {1,3} then
G is nilpotent of class at most 3 ([4]), and that the groups G with co(G) = {1,2, 3}
are described in [6].
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