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COMPUTING THE TOPOLOGICAL DEGREE OF POLYNOMIAL MAPS

TAKIS SAKKALIS AND ZENON LIGATSIKAS

Let C be a cube in R"+1 and let F = (/i, • • •, fn+\) be a polynomial vector field. In
this note we propose a recursive algorithm for the computation of the degree of F on
C. The main idea of the algorithm is that the degree of F is equal to the algebraic
sum of the degrees of the map lf\, fc, • • •, fi~i,fi, fi+i, •••, fn+ij over all sides of C,
thereby reducing an (n 4- l)-dimensional problem to an n-dimensional one.

1. INTRODUCTION

Let (i\,X2, • • •, Xk) be a point in R*, k ^ 1. In the sequel we shall denote such a

point by x. Let

F(x) := (fi(x)J2(x), • • •, fn+l(x)) : R n + 1 -»• R"+1

be a differentiable mapping. A zero of F is a point x0 € Rn + 1 such that F(x0) = 0 =
(0,0, • • • ,0). Let a € R"+1 be a zero of F and suppose that the sphere S(a,e) centred
at a of radius e isolates a and it is such that no zero of F lies on S(a,e). We then can
consider the (Gauss) map

(1) Go:S(a,<r)->S», Ga(x) = j
where Sn is the unit sphere in Rn + 1. Then the degree, degGa, of Ga is an integer
which, roughly speaking, tells us the (algebraic) number of times Ga wraps S(a, s) around
Sn with respect to specified orientations on S(a,e) and Sn. We give Sn the following
orientation, which we shall call the positive orientation. We think of 5" as the boundary of
the unit ball B(0,1) = {x e R n + 1 | ||x|| ^ 1} centred at 0 of radius 1. Let ei,e2, • • •, en+1

be the standard basis of Rn + 1 . At each point of the open unit ball Int(B(0,1)) the
orientation is given by that basis. Therefore, its boundary inherits an orientation by the
following rule. Let y be a point on Sn and let vn+i be the unit normal vector to Sn that
points towards the origin 0. Let v\, v%, • • •, vn be a basis for the tangent space of Sn at
y. We call this basis positive if and only if det{v\, 112, • • •, vn, vn+i) = 1. By applying this
rule to every point y on the sphere we get the positive orientation of Sn. We also give
S(a, s) the same orientation.
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DEFINITION 1.1: We call degGa the local degree of F at a, and denote degGa =

l.d.F(a).

It is well known that the local degree of F at a is independent of the chosen sphere
S(a.e) as long as the sphere we choose isolates the zero o of F.

We define a cube C (or a box) in R n + 1 as the boundary of the set:

C - [ai,bi] x ••• x [ a n + u b n + l ] , a t < bl} i = l , - - - , n + l .

We define the "upper", C,+ ("lower", C~) z'-th side of C as follows:

,2) G+ = [a1;6i] x ••• x [bi] x ••• x [an + 1 ,6n +i]
C~ = [ax,6i] x ••• x [at] x ••• x [a n + 1 ,6 n + i ] .

Since C is homeomorphic to Sn we orient each side of C the same way we oriented the
sphere Sn, namely, at each side C* and Cf the normal vector points inside the cube C.

Let now F = (/i , • • •, / n+i) be a polynomial vector field in R" + 1 and consider a cube
C so that no zero of F lies on C. In that case we can again define the Gauss map, which
we call G,

Suppose now that all zeros of F that lie in the interior Int(C) are isolated. Then the
following holds:

PROPOSITION 1 . 1 . For C, F, G as above, we have

(3) degG = J£l.d.F(a)
a

where the above sum is taken over all a such that F(d) = 0 and a € Int(C).

DEFINITION 1.2: We call degG the degree of F on C, and denote degG = degF c .

Our aim is to compute deg.Fc given the cube C and the polynomial map F. Vari-
ous methods of computing this degree have been proposed. O'Neal and Thomas [4] use
quadrature methods to evaluate the Kronecker integral formula for the degree. Stenger
[6] has a method, derived from the Kronecker integral formula as well. Kearfortt describes
two methods, one that is related to Stenger's method [1], and one that is recursive, re-
peatedly reducing by one the functions to be considered [2]. Our method is also recursive
and uses the idea of Grobner basis.

In the next section we describe the method and prove the main result. The last
section gives an implementation of the algorithm, as well as examples, in dimension 3.

2. A PROCEDURE FOR COMPUTING d e g F c

We begin by defining some "special" points on 5" that we shall need later:

(4) N{ = eu Si — -ei, i = 1, 2, • • •, n + 1.
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We shall call the JVj, 5; the i - th "north" and "south" poles of 5" , respectively. It is easy

to see that a local orienting basis at TV, (5,), is the following:

(eue2, • • •, ej_i, e,, ei+u • • •, ( - l ) " ~ J e n + i , - e , )

[eue2, • • - , e , _ i , e , , e ! + 1 , • • •, ( - l ) n ~ 1 + 1 e n + i , )

respectively, where^denotes omission.

Let now f/i = {(xu • • • ,xn+i) | 0 < xt < 1}, and L, = {(xu • • •, xn+i) | - 1 ̂  xt < 0}
be the upper, lower i-th. hemisphere of 5" + 1 , respectively. We can then define the natural
charts from these sets to the unit open ball 5(0,1) := {x | ||a;|| < 1} C R", as follows:

~ . TJ. \ Ttn O ( T} = (x T XT- • • • T )

h, : Li ->• R n , hi(x) = (xu • • •, Xj-i, x{, xi+l, • • • ,xn+1).

These are diffeomorphisms Ui « 5(0,1), and L, w 5(0,1). Let dgl(y),dhl(y) be the
corresponding linear maps that are defined between the tangent planes at a point y of
Ui,Li and Rn, respectively, and let \dgi(y)\, \dh{(y)\ denote the determinants of these
linear maps. It is then easy to see that

(6) sign\dgl(Nl)\ = {-l)n~' while sign \dhi(Si)\ = ( - l ) n ~ m

where sign signifies the signature of a real number. Thus, since gi and hi are diffeomor-
phisms, and if y is any point in Ui or Liy we get that

sign \dgi(y)\ = ( —1)"~\ for all points y £ Ui
sign \dhi(y)\ = (—l)"~l+1. for all points y € Li.

For a point b G R and x G Rn we define

Let now Ki be the image of the natural projection of the interior of either C+ or C~ on
Rn. We then may define the lifting maps

(9) P« • > -> n I I , p,(x) - x( ,)

Since the orientation of Ct
+ (C~) is the same as the orientation at Ni (Si) of the sphere

Sn, respectively, we can see from (7) that at each point y G Ki we have

(10) S J 5 n | ^ ( 2 / ) | = ( - l ) " - i , while sign\dqi(y)\ = (-l)n-1+1.

Recall that we are given a cube C so that no zero of F lies on C. For each Nj, Sj
define
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Now using the notation of (8) we define

F+(x) = (f2(xl(bl)), •

F-(x) = (f2(xi(ai)),-
•, fn+1(Xi{bi))) : R" -> R"
,fn+i(xi(ai))) : Rn -> Rn.

Moreover, we call the cube C good for F relative to / i if the sets G-1(./Vi) and G~l(S\)

are both finite, each point of that inverse image of Ni, S\ lies in the interior of some side
of C, and the Jacobian determinants j(Ft

+j and j(F~j have isolated zeros at every
point of G-^/Vi), G-^Si).

We are now ready to state the main theorem of this note.

THEOREM 2 . 1 . Let F, C, G be as above, and suppose that C is good relative to

/ , . Then

degFc =
n + l

i=\

n+l

n + l

i=\

where y+ e X(iV1)I
+, j ,r e XfJV,):, 2+ £ X(Sx)t and z~ £

Before we proceed with the proof of the theorem, note that a similar result can be
obtained if the north N\ or south pole Si is replaced with another north ot south pole
Nk or Sfc. In that case, however, the cube C must be good relative to fk-

PROOF OF THEOREM 2.1: For the sake of clarity we prove this theorem in the
case where the north pole Ni is a regular value of G. That is, the points y,+ and yf are
noncritical points of G. So, let us take a point yf — (j/i, • • •, j/i-i, 6,, yl+i, • • •, yn+i) a n d
see what is its contribution to the degree degF c . We define the series of maps

(11) Kt -^ Int(C+) *-> C - ^ Ui ^ Sn -^ R71

where •-*• denotes the inclusion map. From (11) we get the composite map

A := gi o G o Pi : K, C Rn -> Rn.

Let dgi,dG,dpi be the corresponding linear maps. Let

2/o = (l/i i • • - , 2 / 1 - 1 , ^ , ^ + 1 , • • - , 2 / n + i j .

Then at yo the Jacobian determinant of A is nonzero, since j / , + is a noncritical point of
G. Moreover, we have

and thus
dG(y+)

- (-l)n-1(-l)B- i i .d. J4(j/0) , from (6), (10)
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But, an easy computation shows tha t l.d.A(yo) = l.d.Ffyyf). A similar argument shows

that the contribution to the degree of F at a y~ is {-\)ll.d.F~(y~\ Thus, when we

repeat the above process over all preimages of Nx under G we get the desired expression

for deg Fc • D

We close this section with the final step of the recursion, that is, the computation

of the degree in dimension 2, (see also [5]). For this, let F — (f(x,y),g(x,y)) be a

polynomial vector field in R 2 and let C = d[a,\,bi) x [02,62] be a cube (rectangle) good

for F relative to g. C has the counterclockwise (positive) orientation tha t it inherits as

the boundary of the (open) rectangle. Let z be a zero of G that lies on a side of C. Then

when we move on C according to the orientation, we observe the sign of / • g passing

through z. If the signf • g changes from -\—• — the contribution to the degree is 1, while

if it changes from > + the contribution is — 1. By summing up all this contributions

over all sides of C and dividing by 2 we get the desired degree.

3 . T H E A L G O R I T H M IN T H E C A S E S n = 2 AND 3

The algorithms of this section are implemented in the Axiom symbolic algebra sys-

tem, but any type or object oriented language could be used to describe the process. For

the computations with the real algebraic numbers we use the method of interval coding,

see [3]. In this section R denotes the real closure of an ordered field K. The algorithm

is generic.

3 .1 . C A S E n = 2: Let F(x,y) := {fi(x,y), f2{x,y)) : R2 —> R2 be a polynomial

mapping. Let C = [a\, 61] x [02, 62] D e a rectangle in R2. The algorithm degree2 computes

the degree of F in C. The boundary dC, of box C, has the positive orientation. The

algorithm proceeds as follows:

ALGORITHM 1 . degree2

input: Tiie polynomials fi{x, y), f2{x, y), and the rectangle C as above.

output: An integer equal to deg-fc.

DESCRIPTION:

The basic steps are:

1. Call hx{x) := fi(x,a2), h2(x) := f2(x,a2) , gi(y) := /i(&i,y) and g2{y) :=

hib^y)).

2. Compute the real roots of h\{x) {g\{y)) in the intervals [ai,&i] ([0,2, b2}), respec-

tively. Let {ri)1<i<k be these real roots. If hi(ax) = 0 or 51(02) = 0, or h\(bi) = 0 or

<?i(M = 0, or there exists an i such that /i2(?"i) = 0, or 52(̂ 1) = 0, then redefine the

rectangle C. Else, go to step 3.

3. Compute the sign of h1(x)h2(x), and of gi(y)g2(y), on the left and on the right

of each real root rt, respectively.
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4. If sign(hi(x)h,2(x)) changes from + —• — the contribution to the degree is 1,
while if it changes from > + the contribution is —1.

5. Start by the left contribution of the real root r\. Sum up all the contributions
over the sides y = 62 and x = b\\ denote this sum by l\.

6. Call hi(x) := fi(x,b2), h2{x) := f2{x,b2) , gi(y) := fi(ax,y) and g2{y) :=
f2(auy).

7. Compute the real roots of hi(x) {gi(y)) in the intervals [ai,bi] ([a2,b2]), respec-
tively. Let (SJ)1< < m be these real roots. If /ii(ai) = 0 or g\{a2) — 0, or hi(bi) = 0 or
gi(b2) = 0, or there exists j such that h2(sj) = 0 or g2{sj) = 0, then redefine the rectangle
C. Else, go to step 8.

8. Compute the sign of h\(x)h2(x) and of gi(y)g2{y), on the left and on the right of
each real root Sj.

9. Start by the right contribution of the real root rm. If sign(hi(x)h2(x)) changes
from H >• — the contribution is 1, while if it changes from > + the contribution is
- 1 .

10. Sum up all the contributions over the sides y = b2 and x — bjand denote this
sum by l2.

h + h
11. The degree is equal to .

3.2. CASE n - 3: Let F(xux2,x3) := (fi(xux2,x3), f2(xux2,x3), f3(xux2,x3)) be a
3

polynomial map of R3 —> R3, and C := ]^[[at,frj] be a box in R3. We use the standard

implementation of the Grobner basis of the Axiom symbolic system.

ALGORITHM 2 . degree3

input: The polynomials

fi{xi,x2,x3), f2(xi,x2,x3), f3(x1,x2,x3), and the box C, as above.

output : An integer equal to

D E S C R I P T I O N :

N o t a t i o n : If x £ R3, d € R a n d i = 1 . . . 3 , t h e n we define x'(d) - (., d , . ) ,
i—position

and xl = [., xt ,. ] £ R2, where ~ denotes omission, as in Section 2. If j = 1 . . . 3,

i—position

we denote by a^ the i-element of the j-interval, for example, a3<2 is 63, and a2^\ is a2.

By [ajil,aJi2]J we denote the rectancle in R2: . . . x [0^1,0^2] x .. . , where ~ denotes
j —position

omission, as above.

1. For j = 1 . . . 3 repeat Stepj.

2. Step^: For i — 1 . . . 2, repeat

https://doi.org/10.1017/S0004972700030768 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030768


[7] Topological degree of polynomial maps 93

(a) Call h2{xi) := ^ ( ^ ( a ^ ) ) , h^x^) := f3(x
](aJtl)). Compute the Grobner

basis of h2(x
:'), /i3(xJ). Let G be this base. The polynomials of G form

a triangular system where the last polynomial is univariate. We find and
isolate the real solutions of this system.

(b) S t e p 1: Find the sign of f\{x\, £2,2:3) in the real root of the system of step
2(a). Compute the degree (see Algorithm 1), of h2(x

l) and h3(x
l) in the

corresponding isolating rectangle using degree2.

(c) Step 2: i:=i + l.

3. Compute the degree of F(xi, x2, x3) using the formulae of Theorem 2.1.

The binary time complexity of our algorithm is unknown. The complexity is obvi-
ously dependent on the amount of the algebraic numbers generated by the real solutions
and the Grobner basis algorithm.

EXAMPLE 1: Consider the system:

{Pi(z,3/,.z) := x3 + y2-z}

p 2 ( x , y , z ) := y3 + z 2 + x \

p 3 ( x , y , z ) : = z 3 + x 2 - y )

This system has the following five real solutions (aproximately):

1. [z = 0.9635, y = 0.60002, x = -1.1289]
2. [z = -8.715, y = -0.04635:r = -1.261]

3. [Z = - 1 , J / = 0 , I = - 1 ]

4. [z = 0,y = l,a: = - l ]
5. [z = 0,y = 0,x = 0]

We compute the degree on the boxes [-3/2, -1/2] x [-1/2,1/2] x [-9,0] and [-2,2]3.
Consider the first box. For y = 1/2, the algorithm groebner(p2(x, 1/2,z) ,
p3(x,l/2,z)) of Axiom gives:

64 , 56 2 16 5
Sl(z,X) := z - - x - - x + - x - -

4 3 5 2 3 129

If E, is the first real root of g?(x), and Q the real root of gi(z,£), then the sign of
Pi(£, 1/2, C) is negative. The degree of F(z, z) := (p2(^, 1/2, 2)^3(2;, V 2 , 2)) on the
rectangle [-3/2,-1/2] x [-9,0] is 1. The point (£, 1/2, C) € ^ ( 5 ) ^ . Thus from Theo-
rem 2.1, the contribution to degFc is ( — I)3 * 1 = —1. The second real root of g2{x),
d [ -3/2,-1/2] . For 2;= - 1 / 2 , the algorithm groebner(p2(-l /2, y, z ) , p 3 ( - l / 2 , y, z))
of Axiom gives:

. . 64 „ 16 7 68 15
q, [z, y) := z y y + . .. y H
<m ,</; 31</ 31</ T 3 1 ^ 3 1

.92(1/) := 2/ - 2^ +^V +V 2V~ 16
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Let £ be the second real root of the univariate polynomial gi(y), and C the real root
of gi(z,£) = 0. In this case, the sign of P\{ —1/2,£,£) is positive, and the degree of
D(y,z) := (p2(—1/2, y,z),p3(—1/2, y, z)) is also 1. Since our point is in X(N)~, it
similarly follows that the contribution to the degFc is ( — I)1 * 1 = —1, as in the case
where y = 1/2.
All the other cases are discarded. Thus deg FQ = — 1

Consider now the box 9[—2, 2]3. Let x = - 2 ; if (£, () is the solution of the system of
the Grobner basis, of the polynomials^ (—2, y, z) andp3(—2, y, z), the sign of P\(—2,£,C)
is negative, and the corresponding degree in R2 is -1. The point (-2,f, C) G X(S)~[. It
follows that the contribution to deg-Fc is (—1) + * ( —1) = — 1. For x = 2, the sign of pi
in the corresponding point of R3 is positive, and the degree in R2 is -1. Thus, the degree
deg FQ in this case is still — 1.
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