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Abstract
In the context of climate change and increasing occurrences of extreme events, it is essential
to understand farmers’ responses to weather shocks and adaptations. This paper uses a panel
dataset of 311 selected Indian districts ranging from 1966 to 2009 to investigate how applica-
tion of chemical fertilizers varies in response to rainfall shocks. Two rainfall shock measures
are constructed based on deviation in rainfall from the normal, a categoricalmeasure of rain-
fall shock; and another, a continuous index of negative rainfall deviation. Based on a panel
fixed effect regression, the study finds no apparent reduction in the level of fertilizer use in
negative rainfall shock years. However, with a one-year lagged rainfall shock, a reduction in
fertilizer application rate is observed for the continuous drought index. Further, exposure to
higher intensity droughts in the previous year leads to an increase in the amount of fertilizer
application in the current year.
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1. Introduction
Globally, Agriculture is facing increased challenges due to climate change. Vulnerability
to climate change in the formof climate extremes is likely to increase in the future (World
Bank, 2013). Crop cultivation has become more vulnerable under changing global cli-
mate (Kumar and Parikh, 2001), especially in developing countries that face frequent
exposure to climate extremes. The economic impact of climate change varies around the
world, and the ability to adapt differs across various regions (Taraz, 2018). Compared to
other extreme events, droughts account for the majority of agricultural production risk
in India (Cole et al., 2013; Birthal et al., 2019). Prolonged and frequent droughts signif-
icantly impact crop productivity in the country (Pandey et al., 2007; Auffhammer et al.,
2012; Birthal et al., 2015; Fontes et al., 2020).

A sizable yield gap exists in several crops across the world (Lobell et al., 2009). Global
yield variability is mainly a result of nutrient management, water management, and
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climatic factors (Mueller et al., 2012). The impact of the first two factors on agricultural
productivity is magnified in the presence of climatic shocks because it can influence the
adoption of soil and water management practices (Birthal and Hazrana, 2019). Numer-
ous studies on nutrient management have provided evidence that fertilizer is one of the
critical inputs to increase crop yield across the world (McArthur and McCord, 2017).
Further, fertilizer use can play an essential role in adapting to changing climate and
weather variability (Kumar and Parikh, 2001).

Thus, the application of chemical fertilizer can affect agricultural production in two
ways: first, through the pathway of nutrient management to bridge the yield gap; and
second, it can act as a coping or production optimisation mechanism to counter risks
posed by climatic extremes. Concerning changes in rainfall patterns, existing studies
have shown both positive and negative associations of fertilizer adoption under rainfall
variability (Alem et al., 2010; Dercon and Christiaensen, 2011; Heisse and Morimoto,
2019).

Linkages between climatic shocks and chemical fertilizer use in India is not well stud-
ied. To the best of our knowledge, only studies by Selvaraj and Ramasamy (2006) and
Pandey et al. (2007) have investigated this aspect and compared the effect of chemi-
cal fertilizer on crop yields in normal and drought years. Selvaraj and Ramasamy (2006)
observed that fertilizer inputs did not significantly impact crop yield in drought-affected
years in the Indian State of Tamil Nadu. However, in a normal year, application levels of
chemical fertilizer positively impacted crop productivity. Very few prior empirical stud-
ies investigate how fertilizer use is affected by climatic shocks (notable exceptions are
Kusunose et al. (2020) and Jagnani et al. (2021)).

Against this backdrop, our paper attempts to assess the relationship between fertil-
izer use and water availability (measured through rainfall and irrigation) in the context
of existing research gap. The study empirically analyses the impact of rainfall shocks on
fertilizer use in India. An econometric investigation is carried out to provide estimates of
changes in the levels of fertilizer use due to rainfall shocks. The first and primary objec-
tive of this paper is to analyse how intensity of fertilizer use varies with climate-related
shocks. The second objective is to understand the impact of drought intensity (adverse
shocks) on the amount of fertilizer application. This work adds to the knowledge pool
that deals with formulating strategies to insulate agricultural productivity and income
from climate variability and extremes. We contribute to the emerging climate-economy
literature by evaluating how climatic extremes can affect productive farm investments
such as fertilizer using long-term district-level panel data.

The paper presents three key findings. First, a greater area under irrigation and good
annual rainfall positively contribute to the levels of fertilizer use. Secondly, fertilizer
application rates are not significantly different for contemporaneous positive or neg-
ative rainfall shocks in India. Lastly, exposure to drought in the previous year is likely to
result in lower usage of fertilizers in the current year. However, more intense droughts
during the previous year can increase the amount of fertilizer consumption at the district
level in the current year.

The remainder of this paper is organized as follows. Section 2 provides background
about chemical fertilizer application in India. This section also reviews the literature
focusing on the role of weather and climatic extremes in determining fertilizer con-
sumption. Data and empirical approaches are outlined in section 3. Section 4 presents
the results and robustness checks. Section 5 summarises and discusses the results, and
section 6 provides concluding remarks.
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2. Background and analytical framework
2.1 Chemical fertilizer use in Indian agriculture
In 2015–16, India consumed 25,576 thousand tonnes of chemical fertilizers, averag-
ing 128 kg per hectare of crop area (Government of India, 2017). The consumption of
fertilizer has increased substantially, from 69 thousand tonnes during 1950–51. Fertil-
izer consumption increased rapidly after the start of green revolution in the late 1960s
(Chand and Pandey, 2009; Sharma and Thaker, 2011). However, it became sluggish
during the mid-1970s due to the crude oil crisis. Nevertheless, the growth in fertilizer
consumption recovered and increased till 1990–91 (Sharma and Thaker, 2011). After
1991, a progressive slowdown in the growth of fertilizer consumption occurred, but signs
of renewed consumptionwere observed from2003–04 (Chand and Pandey, 2009; Chand
and Parappurathu, 2012).

Higher consumption rates of fertilizer are skewed towards some regions within India
characterised by improved irrigation and intensive cultivation practices (Chand and
Pandey, 2009; Sharma and Thaker, 2011; Ghosh and Dey, 2014). These regions include
several districts of Punjab, Haryana, Western Uttar Pradesh, and Andhra Pradesh
(Raghavan, 2008). On the contrary, total chemical fertilizer consumption is relatively low
in several parts of eastern India, namely the States of Assam, West Bengal and Odisha
(Venugopal, 2004; Birner et al., 2011). Figure A1 in the online appendix illustrates the
difference in fertilizer consumption per hectare across various regions of India.We have
observed a gradual increase in consumption rates of chemical fertilizer across all the
areas since 1966. Still, region-wise heterogeneity continued to remain over the years.

In terms of the cost of cultivation, fertilizer cost is an important component of total
input cost. Srivastava et al. (2017) show that the share of fertilizer cost in total paid-out
cost hovered around 11–12 per cent from 1990–91 to 2014–15. Although the cost-share
remains constant, fertilizer cost per hectare has risen since 1970–71 (Raghavan, 2008).
Fertilizer prices are connected to the price policy of particular chemical fertilizers. Dif-
ferent subsidies can lead to changes in relative prices of different types of fertilizers.
For example, the divergence between nitrogenous fertilizers and other macro-nutrients
(phosphorus and potassium) has widened after the decontrol of fertilizer prices in India
in 1992 (Venugopal, 2004; Chand and Pandey, 2009). India introduced a nutrient-based
subsidy scheme in 2010. Although it aims to promote balanced use of nutrients, the price
disparity between nitrogenous fertilizer and other macro-nutrients widened sharply
after its implementation (Gulati and Banerjee, 2015).

Higher yields and profitability due tomineral fertilizer application have been demon-
strated in past studies (FAO, 2005). However, fertilizer consumption in India is highly
varied across regions. India has witnessed an overall increase in fertilizer consump-
tion over the last six decades. Hence, it would be worthwhile to analyse how fertilizer
application varies in response to weather anomalies that impact crop productivity.

2.2 Weather, climate extremes and fertilizer use
The literature on the impact of droughts on crop productivity is still emerging. These
studies highlight the adverse effects of droughts on crop productivity in India (for exam-
ple, Auffhammer et al., 2012; Kumar et al., 2014; Birthal et al., 2015; Fontes et al., 2020).
Some recent studies checked the effectiveness of adaptation pathways against climatic
shocks. Birthal et al. (2015) and Zaveri and Lobell (2019) have demonstrated gainful
impacts of irrigation against droughts and heat stress in India, respectively. Similarly,
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Birthal and Hazrana (2019) find long-run benefits of crop diversification as an adapta-
tion strategy for climatic shocks. Several empirical studies have explored the relationship
between crop yield and inputs, such as rainfall (Gupta et al., 2014; Pattanayak and
Kumar, 2014; Powell and Reinhard, 2016; Murari et al., 2018), irrigation (Birthal et al.,
2015), fertilizer (McArthur and McCord, 2017), and labour and wages (Mahajan, 2017;
Emerick, 2018).

The sensitivity of the crop yields to climate rely on one or more inputs limiting phys-
ical production under climatic stress. Agronomic and soil science literature provide a
firm scientific insight on the subject. Among bio-physical inputs, water and nutrient
availability are crucial for crop growth. A synergetic relationship is involved between
soil-nutrient uptake and water availability. Water-use efficiency can be enhanced by the
availability ofmacronutrients such as nitrogen and phosphorus through crop root devel-
opment. Similarly, nutrient-use efficiency is dependent on soil moisture availability.1
Under drought conditions, these intricate relationships become more complicated, and
crop systems can simultaneously turn deficient in water and soil nutrients (Karim and
Rahman, 2015; Plett et al., 2020).

These broad agronomic relationships hold in several socio-economic studies done
around the world. Conventionally, rainfall is used as an indicator of moisture availabil-
ity. Precipitation favours a higher quantity of fertilizer application (Kaliba et al., 2000;
Alem et al., 2010; Haider et al., 2018). The decision to use fertilizer is positively associ-
ated with a higher amount of precipitation received in the previous years (Heisse and
Morimoto, 2019). In contrast, Nyssen et al. (2017) find a negative correlation of average
annual rainfall with the quantity of fertilizer purchased in northern Ethiopia. In Nige-
ria, low rainfall has encouraged the adoption of fertilizer and application in higher doses
(Takeshima and Nkonya, 2014). Past studies on India show lower fertilizer application
in deficient rainfall years (Nagaraj, 1983; Mohanam, 2002).

Risk-coping literature provides an analytical understanding of fertilizer use responses
to climate extremes. Pandey et al. (2007) have given a detailed summary of drought-
coping mechanisms by farmers. They have classified coping strategies into two broader
groups: (i) ex-ante (income smoothing) and (ii) ex-post (consumption smoothing).

Ex-antemechanisms target risk reduction through portfolio diversification and pro-
duction decision-making changes. Altering fertilizer doses might be regarded as such
change under flexible decision making. Risk and uncertainty related to weather are
among the reasons for the high-intensity application of inorganic fertilizer (Babcock,
1992; Lamb, 2003; Paulson and Babcock, 2010; Sheahan and Barrett, 2014). Past stud-
ies opine that nitrogen is perceived as risk-reducing input, even by risk-neutral farmers
(SriRamaratnam et al., 1987; Babcock, 1992). A few studies have evaluated rainfall risks
and uncertainties from farm/household datasets and measured the risk by variability in
rainfall received. Rainfall variability can negatively impact the decision to use fertilizers
and lower fertilizer use in Ethiopia (Alem et al., 2010). However, Heisse and Morimoto
(2019) find a positive association between the adoption of chemical fertilizer and rainfall
variability among Tanzanian maize farmers.

Crop insurance is an effective risk-reducing mechanism. The adoption of crop insur-
ance in India is substantially low (Aditya et al., 2018). In the absence of formal channels of
crop insurance, higher application rates can serve as a partial risk insuring mechanism.

1A detailed summary of the scientific understanding of water and fertilizer relationships for crop growth
is available in Drechsel et al. (2015).
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Below and Brandau (2001) document the application of higher doses of fertilizer as a
cheap form of insurance. Crop insurance literature also provides insights into how farm-
ers can change input use when crop insurance is available. Yu and Hendricks (2020)
reviewed the existing studies and suggested that crop insurance can positively and neg-
atively affect input use. Babcock and Hennessy (1996) and Mishra et al. (2005) find
evidence of reducing fertilizer use if farmers adopt revenue insurance. A recent study by
Yu and Hendricks (2020) links input use decisions with information on growing condi-
tions or forecasts. They show that farmers apply more inputs when the forecast predicts
a good crop harvest but reduce the input application if the weather forecast is bad.

Several perception-based studies also highlight the increase in fertilizer rate as one
of the coping strategies in response to climate change as reported by farmers (Wood
et al., 2014; Khanal et al., 2018). Chen and Gong (2021) show that extreme heat reduces
the quantity of fertilizer use in both the short and long run. Disease incidence due to
unfavourable climate may accentuate plant protection costs. Jagnani et al. (2021) find
evidence of lowering fertilizer investment because of the increased plant protection cost.
However, it is tough to single out coping strategies as they are adopted in bundles.

Ex-post strategies deal with the losses due to shocks after the event. Reduction in pro-
duction and income due to droughts can lead to lower investment in agriculture in the
following years. Lowering the quantity of fertilizer in the subsequent years after a drought
can be an ex-post response.Dercon andChristiaensen (2011) explain that low rainfall can
be perceived as a consumption risk in the absence of insurance, resulting in lower fer-
tilizer adoption decisions in Ethiopia. Given the high cost of chemical fertilizer, farmers
can amend fertilizer consumption due to shocks. Nevertheless, the expected direction
of change in fertilizer use is not clear from the literature. A reduction in fertilizer con-
sumption due to negative climatic shock seems more plausible under existing economic
explanations.

In addition, several other factors can be associated with fertilizer adoption and
application rates. Irrigation can safeguard yield in a moisture shortage period. As
yield response is a function of the interaction between fertilizer and water availabil-
ity, irrigation complements nutrient management (Nagaraj, 1983; Kurosaki and Wada,
2015). Similarly, other biophysical and technological factors such as soil type, cropping
intensity and high-yielding varieties can influence fertilizer application (Parikh, 1978;
Nagaraj, 1983). The ratio of output price of crop to the price of fertilizer required to
produce one unit is an essential economic factor in determining per unit consump-
tion (Sharma and Thaker, 2011). Institutional factors such as tenancy (Bharadwaj, 1974;
Vaidyanathan, 2010), credit availability (Nagaraj, 1983; Croppenstedt et al., 2003), and
extension services (McArthur andMcCord, 2017) are other associated factors driving the
level of fertilizer use. Nonetheless, the list of factors is not exhaustive, and there might
be several other factors.2 Moreover, there can be several interactions among the factors,
which are not mutually exclusive.

This study focuses on technological and physical factors that determine fertilizer
application in India, with a particular focus on rainfall shocks. We confine this study
to evaluating changes in fertilizer application under water stress conditions. Following
the standard climate impact on agriculture literature (Auffhammer et al., 2012; Birthal
et al., 2015; Fontes et al., 2020), we assess the changes in the quantity of fertilizer when
exposed to different intensities of rainfall shocks with varying levels of irrigation.

2Wakeyo and Gardebroek (2013) provide a detailed account of factors affecting fertilizer use.
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3. Data andmethodology
3.1 Data source
The study uses district-level panel data on the agricultural and climatic (rainfall) vari-
ables from 1966 to 2009. The dataset, compiled by the International Crops Research
Institute on Semi-Arid Tropics (ICRISAT) and Tata-Cornell Institute (TCI), is known
as the District Level Database for India (DLD-India) (ICRISAT-TCI, 2015). As sev-
eral districts are bifurcated into smaller districts during the period of the study, district
boundaries are apportioned to the original 1966 district boundaries. The States whose
data are used for analysis are Andhra Pradesh, Assam, Bihar, Chhattisgarh, Gujarat,
Haryana, Himachal Pradesh, Jharkhand, Karnataka, Kerala, Madhya Pradesh, Maha-
rashtra, Orissa, Punjab, Rajasthan, Tamil Nadu, Telangana, Uttar Pradesh, Uttarakhand
and West Bengal.3 The data are available for these 20 States of India from 1966 to 2015.
However, our analysis is restricted to 311 districts over 44 years.4 Our study period ends
in 2009 because India introduced a nutrient-based subsidy scheme in 2010.

The first part of the investigation uses DLD-India data on fertilizer consumption
(measured in tonnes of nitrogenous, phosphorous and potassic fertilizer) and infor-
mation on other variables such as gross cropped area (in hectares), gross irrigated area
(in hectares), the area under high-yielding varieties (HYV) (in hectares), and cropping
intensity (in per cent). We use weather variables such as annual rainfall (in millimetres)
and monsoon rainfall (in millimetres) in the study. Data on all the agricultural and cli-
matic variables are recorded for all crops at the district level. Lack of crop-disaggregated
data, especially for fertilizer consumption, is an essential limitation of the study.

3.2 Variable construction
Using agricultural variables, we construct two variables related to the total consumption
of fertilizer and irrigation intensity for the district. First, we compute the total con-
sumption of chemical fertilizer (in kg per hectare) by aggregating the consumption of
nitrogenous (N), phosphorous (P), and potassic (K) fertilizers and then dividing it by
the gross cultivated area (GCA). Secondly, the extent of irrigation is measured as a share
of gross irrigated area in the GCA, and we express it in percentage. Table 1 provides
summary statistics of key variables of interest.

Rainfall shocks are captured in two ways. First, we create a categorical variable for
rainfall shocks by following Yu and Babcock (2010). Our study does not include the tem-
perature component as in the original article.We denote the discrete measure as Rainfall
Shock 1 (RS1) and construct it using equation (1). We compute the standardized devia-
tion of total rainfall from its long-term normal and express it as total rainfall deviation
(TRD)5:

RS1 = TRDit = (TRit − TRnormal
i )

sd(TR)i
, (1)

where subscripts i and t denote district and time, respectively. TR is the total rainfall,
and sd(TR) is the standard deviation of annual rainfall. To categorise RS1 as a neg-
ative and positive shock, we use the following criterion: (i) positive rainfall shock if

3The ICRISAT-TCI (2015) DLD-India is not available for North-Eastern States (except Assam), Jammu
and Kashmir and other Union Territories.

4The district of Chennai, Tamil Nadu is omitted because of lack of data availability from 1966.
5Long-term normal is calculated as average of annual rainfall over 44 years (1966–2009) for each district.
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Table 1. Summary statistics and definition of variables, 1966–2009

Variables Definition
No. of

observations Mean
Standard
deviation Minimum Maximum

NPK
fertilizer
(kg/ha)

Sum of nitrogen (N),
phosphorus (P) and
potassium (K)
fertilizers divided by
GCA

13,136 58.77 61.34 0 614.49

Irrigated
area (%)

Share of gross area
irrigated over gross
cropped area

12,349 33.65 25.88 0 100

Drought
index

Defined in eq. (2) 12,507 0.39 0.53 0 3.77

Notes: Unit of analysis is district. Full set of descriptive statistics is available in table A1 (online appendix).
Source: Author’s calculations.

TRD> 0; and (ii) negative rainfall shock if TRD< 0. Secondly, we construct a continu-
ous precipitation-basedmeasure for negative shocks, also denoted as drought index (DI).
This variable can quantify the intensity of drought. We create it by separating negative
shock years from TRD, as outlined in equation (2):

DI = Droughtit = {−min(0, TRDit)}. (2)

A similar precipitation-based drought measure was used by earlier studies such as
Auffhammer et al. (2012) and Amare et al. (2018). Our DI ranges from 0 to 3.77
(table 1). The main limitation in quantifying drought by this category of indices is the
non-inclusion of temperature because the results of any analysis can be sensitive to the
definition of drought (Fontes et al., 2020). However, the advantage of this measure lies
in the simplicity of construction and its representativeness of meteorological drought.
Since water availability is a key factor for nutrient uptake from the soil, the research is
confined to examining water and fertilizer response.

4. Effect of rainfall shocks on fertilizer
4.1 Effect of rainfall shocks
Before investigating the impact of rainfall shocks on fertilizer use, we examine the
relationship between water availability and fertilizer use. The amount of available soil
moisture is not directly obtained; irrigation and annual rainfall are used as proxies. As
per prior studies, a positive relationship between water availability and fertilizer use is
expected. We reconfirm a similar association, irrigation and annual rainfall emerge as
positive contributors to fertilizer use (table A2, online appendix). Given the sensitivity of
fertilizer consumption tomoisture availability, we anticipate a similar change in fertilizer
consumption in response to rainfall shocks.

The analysis to evaluate the effect of rainfall shock on fertilizer consumption is carried
out in two ways. First, we compare the average amount of fertilizer consumed in each
rainfall shock category of RS1 measure. Table 2 highlights the occurrence of different
types of rainfall shocks and relative fertilizer consumption. Nearly 47 per cent of obser-
vations are excess rainfall years, and 53 per cent are negative shock years. Table 2 shows
that in comparison to positive shock years, fertilizer consumption is 3 kg per hectare
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Table 2. Distribution of different levels of rainfall shocks and average fertilizer use, 1966–2009

Rainfall status No. of observations Proportion in total (%) Mean NPK consumption (kg/ha)

Positive deviation 5,615 47 57.22

Negative deviation 6,417 53 60.30

All 12,032 100 58.86

Note: Rainfall shock status corresponds to RS1 measure.
Source: Author’s calculations.

more during rainfall deficit years. However, we could not visually find any glaring differ-
ences in the distribution between the categories from the density plot (figure A2, online
appendix).

Secondly, we empirically investigate how rainfall shock affects the quantum of chem-
ical fertilizer application. Equation (3) specifies the model to investigate the heteroge-
neous effect of rainfall status on fertilizer consumption:

ln(NPKit) = β0 + β1IRRit + β2RS1it + β3RS1it−1 + β4(RS1it × IRRit)

+ β5(RS1it−1 × IRRit) + β6HYVit + β7CIit + βsTrend + di+t + εit ,
(3)

where NPKit is fertilizer consumption (NPK) in kg/ha; IRRit is irrigation intensity
defined as the proportion of gross irrigated area over the gross cropped area; i denotes
districts; t denotes time; and d and δ are the district and time fixed effects, respectively.
Trend variable is the linear state-specific trend, where s denotes States. We also use two
additional controls for HYV area (HYV) and cropping intensity (CI).

In a rainfall-deficient year, farmers are more likely to get a bad harvest, resulting in a
low ability to reinvest in successive seasons. So, a one-year lag of rainfall shock is included
in this model. Dercon and Christiaensen (2011) and Heisse and Morimoto (2019) also
used a similar specification for Ethiopia and Tanzania, respectively. As the unit root is
not a problem in this panel for any of the concerned variables, we proceed with mod-
elling the effects (table A3, online appendix). We use a Fisher-type unit root test because
the panel is unbalanced. Since our fixed effect regression estimates suffer from the prob-
lem of heteroskedasticity and serial correlation, we compute two-way clustered standard
errors for all the estimations. First, to allow for heteroskedasticity and serial correlation,
clustering is done within districts across years. Second, within a State (region) by year
clustering is followed to account for spatial auto-correlation. Fishman (2016) followed a
similar strategy of two-way clustering.

Table 3 shows the coefficients and standard errors of the model as specified in
equation (3) for the log-level specification. Presence of irrigation positively and sig-
nificantly influences fertilizer consumption. We do not find any significant change in
fertilizer consumption due to a change in the current year rainfall shock from excess to
negative. However, change in the previous year rainfall status from positive to negative
shock significantly changes the level of fertilizer consumption. A deficient previous year
rainfall reduces fertilizer consumption by 4.1 per cent6 compared to a positive previous

6Since the dependent variable is log-transformed, we use Halvorsen and Palmquist’s (1980) formula to
calculate the change given as 100×[expβ -1]. However, Kennedy (1981) shows that it can be a biased esti-
mator. Even if we use Kennedy’s bias-corrected formula, we get approximately the same result for column
3 (−4.12%).
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Table 3. Estimated regression coefficients for effects of irrigation and different levels of rainfall shock
(RS1) on the rate of fertilizer consumption, 1966–2009

Dependent variable= ln (NPK consumption)

Explanatory variable (1) (2) (3) (4) (5)

Current year rainfall

Excess (Positive deviation) Base Base Base Base

Deficit (Negative deviation) −0.020 −0.022 −0.026 −0.027
(−0.0190) (−0.0198) (−0.0210) (−0.0212)

Previous year rainfall status

Excess (Positive deviation) Base Base Base Base

Deficit (Negative deviation) −0.041** −0.042** −0.043** −0.042**
(−0.0201) (−0.0202) (−0.0213) (−0.0213)

Irrigation share 0.010*** 0.009*** 0.010*** 0.012*** 0.013***
(−0.0018) (−0.0018) (−0.0019) (−0.0023) (−0.0023)

HYV Area (%) −0.0020* −0.0021*
(−0.0011) (−0.0011)

Cropping intensity (%) −0.0014
(−0.0015)

District and time fixed effects Yes Yes Yes Yes Yes

State specific trend Yes Yes Yes Yes Yes

Observations 11,098 10,852 10,488 8,526 8,526

Adjusted R2 0.934 0.935 0.935 0.936 0.936

Marginal effects at mean

Negative shock −0.034*** −0.033*** −0.029** −0.030**
(−0.011) (−0.011) (−0.013) (−0.013)

Negative shock (Lag= 1) −0.042*** −0.042*** −0.041*** −0.041***
(−0.010) (−0.010) (−0.011) (−0.011)

Irrigation share 0.010*** 0.009*** 0.009*** 0.012*** 0.013***
(−0.002) (−0.002) (−0.002) (−0.002) (−0.002)

Notes: ***, **, and * indicate levels of significance at 1, 5 and 10%, respectively. Two-way clustered standard errors (district
and state× year) are reported in the parenthesis. Full results are available in table A4 (online appendix).
Source: Author’s calculations.

year rainfall shock (column 3). Themagnitude of the effect persists at a similar level even
after the inclusion of two control variables, HYV area (column 4) and cropping inten-
sity (column 5).7 The sign of the coefficient of the interaction term with irrigation and
current rainfall status is non-significant (table A4, online appendix). In terms of aver-
age marginal effects, negative shocks in the present and the preceding year can lower
fertilizer consumption by 3 and 4 per cent, respectively (column 5).

It could be erroneous to assume all deviations from the long-term normal are shocks
and classify them as weather anomalies. We redefine rainfall anomalies under a three-
way classification by adding a normal category to test for sensitivity. We outline two

7A sizable change in the number of observations in models 4 and 5 from the rest is because of the
unavailability of information about area under HYV seeds, particularly in the initial years of study.
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methods to classify normal rainfall years along with rainfall shock years. First, we define
a new rainfall shock variable RS2 under the following classification: (i) positive rainfall
shock if TRD≥ + 1; (ii) normal if TRD is between −1 and+ 1; and (iii) negative rainfall
shock if TRD ≤−1.8 Secondly, we use the definition provided by the Indian Meteoro-
logical Department (IMD) for rainfall anomalies to construct our rainfall shock ‘RS3’
variable. According to the IMD, annual rainfall deviation (ARD) is expressed as:

RS3 = ARDit =
{

(TRit − TRnormal
i )

TRnormal
i

}
× 100. (4)

Similar to equation (1), TR is the annual rainfall, and TR (normal) is the long-term
rainfall in the district. Anomalies are characterised based on the following cut-off: (i)
normal year if ARD is between −20% to +20%; (ii) positive rainfall shock if ARD
≥+ 20%; and (iii) negative rainfall shock if ARD ≤−20%. Pandey et al. (2007) used a
similar definition of drought in their analysis.

Table A5 (online appendix) presents the results of the new classifications. Columns 1
and 2 correspond to the results of RS2, and we reconfirm the adverse effects of the previ-
ous year rainfall shock. The IMD-based rainfall shock (RS3) definition also yields similar
results (columns 3 and 4). The reduction effect is found to be more extensive compared
to the previous two definitions. The use of the same cut-off across all the districts to
define negative shock could be the reason for the higher effect.

The results from the above analysis do not provide sufficient evidence to predict the
direction of the relationship between the level of fertilizer use and the current year rain-
fall status. No change in concurrent fertilizer use signifies that fertilizer is less likely to
be used for ex-ante production risk management in our sample. Nonetheless, we find a
robust negative effect of rainfall shock in the previous year on fertilizer application per
hectare. The importance of irrigation as a determinant is certain. However, we do not
find any significant effect of an increase in irrigated area impacting the level of fertil-
izer use when a district is exposed to rainfall shocks. A further analysis is required to
investigate the differential impact of the intensity of droughts (negative deviation) on
investment in fertilizer.

4.2 Effect of droughts
Equation (5) provides a basic specification to model the effect of drought on fertilizer
use:

ln(NPKit) = β0 + β1DIit + β2DI2it + β3IRRit + β4(DIit × IRRit)

+ β5(DIit−1 × IRRit) + β6HYVit + β7CIit + βsTrend + di+t + εit . (5)

here, the DI is a continuous variable defined in equation (2). A continuous variable
gives more flexibility than the earlier categorical variable of rainfall shock. The coeffi-
cient of the squared term can be interpreted as the impact of high-intensity droughts.
We compute a panel fixed effects model for linear and log-linear specifications. Our
specifications continue to include HYV area and cropping intensity as controls.

8A ± 1 TRD cut-off has been followed in earlier studies (Zaveri et al., 2020) and it is consistent with the
standardized precipitation index (SPI) cut-off.
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Table 4. Estimated regression coefficients for effects of irrigation and drought intensity (DI) on the rate
of fertilizer consumption, 1966–2009

Linear Log-Linear

Explanatory variable (1) (2) (3) (4)

Drought −1.532 −1.649 −0.066* −0.070**
(−1.2628) (−1.2943) (−0.0342) (−0.0352)

Drought2 1.108* 1.177* 0.016 0.015
(−0.6641) (−0.6939) (−0.0176) (−0.0184)

Drought (lag= 1) −3.172*** −0.099***
(−1.1202) (−0.0326)

Drought2 (lag= 1) 1.788*** 0.026*
(−0.601) (−0.0151)

Irrigation share 0.764*** 0.759*** 0.013*** 0.012***
(−0.1345) (−0.1367) (−0.0023) (−0.0023)

State-specific trend Yes Yes Yes Yes

District and time fixed effects Yes Yes Yes Yes

Observations 8,954 8,563 8,915 8,526

Within R2 0.057 0.055 0.034 0.037

Marginal effects (at mean DI= 0.73, DI (lag= 1)= 0.72, Irrigation share= 33.64)

Drought −1.319** −1.233** −0.032** −0.036***
(−2.358) (−2.242) (−2.520) (−2.956)

Drought (lag= 1) −1.090** −0.041***
(−2.130) (−3.828)

Irrigation share 0.733*** 0.720*** 0.013*** 0.013***
(−5.630) (−5.465) (−5.805) (−5.539)

Notes: ***, ** and * indicate levels of significance at 1, 5 and 10%, respectively. Two-way clustered standard errors (district
and state× year) are reported in the parentheses. Full results are available in table A6 (online appendix).
Source: Author’s calculations.

The following are highlights of the results shown in table 4. First, the reduction in
the quantity of fertilizer applied is not conclusive for contemporaneous drought shock;
coefficients are only significant for log-linear specification in column 4.9 Secondly, pre-
vious year drought shocks significantly lower fertilizer consumption. A one unit increase
in past drought intensity can reduce per hectare NPK consumption by 10 per cent (col-
umn 4). Thirdly, this relationship turns positive at a higher level of drought exposure.
Finally, themagnitude of reduction in fertilizer is higher in response to the previous year
than the current-year drought.

The average marginal effects show that the negative effect of past drought shock
on fertilizer application is 1.3 percentage points more than the current (see estimates
of log-linear specification of marginal effects in table 4). We obtain similar results
even after changing state-specific trend variables by district-specific linear time trend
(table A7, online appendix). As irrigation is perceived as the best-adapting strategy
against droughts, we use the interaction of irrigation with drought to study the effect

9Changes in the number of observations in the linear and log-linear model are because districts with zero
fertilizer use are dropped in the log-linear specification.
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Figure 1. Predicted level of NPK fertilizer consumption by changing levels of drought (current and previous year)
Source: Author’s calculations.

in different levels of irrigation. Similar to section 4.1, we find a significant effect of the
area under irrigation for NPK consumption (online appendix table A6).We fail to ascer-
tain any positive effect of irrigation in lowering the impact of droughts on fertilizer
consumption.

We find a significant negative relationship between previous droughts at the district
level on the current year fertilizer application rates. Figure 1 represents the predicted
relationship between NPK consumption and drought levels (current and previous year)
at a 95 per cent confidence interval (based on column 2 of table 4). On both occa-
sions, the curve is convex. The curves are negative sloping at the beginning until DI= 1,
then a reversal of the relationship occurs. Following the SPI classification, we can cate-
gorise DI less than one as low-intensity droughts. Our results exhibit a negative response
to low-intensity past droughts. However, moderate and severe droughts in the past
induce higher application of fertilizer. In total, we find that incremental addition of NPK
becomes higher with the severity of droughts.

4.3 Robustness checks
We check the robustness of ourmain results to alternative specifications and definitional
change of drought variable. We test the robustness of our categorical rainfall shock vari-
able to a few definitional changes in the latter part of section 4.1. Here, we focus on
checking the robustness of fertilizer response to drought intensity results.

We begin by checking to see that changes in fertilizer use are not driven by changes
in district gross cropped area. Iizumi and Ramankutty (2015) point out that weather
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Table 5. Estimated regression coefficients for effects of gross cropped area and drought intensity on rate
of fertilizer consumption, 1966–2009

Dependent variable

Gross cropped
area (‘000 ha)

Ln (Gross
cropped area
in ‘000 ha)

NPK
consumption
(‘000 tons)

Ln (NPK
consumption
in ‘000 tons)

Explanatory variable (1) (2) (3) (4)

Gross cropped area (1,000 ha) 0.071*** 0.001***
(−0.0171) (−0.0002)

Drought −27.332*** −0.045*** 0.227 −0.081**
(−5.6629) (−0.0086) (−1.0240) (−0.0345)

Drought2 1.208 0.003 0.798 0.011
(−3.8045) (−0.0062) (−0.5594) (−0.0173)

Drought (lag= 1) −3.726 −0.007 −1.988** −0.101***
(−4.2356) (−0.0072) (−0.8705) (−0.0328)

Drought2 (lag= 1) 1.484 0.003 0.984** 0.029*
(−2.2973) (−0.0038) (−0.3819) (−0.0151)

Observations 11,592 11,592 8,563 8,526

Within R2 0.034 0.033 0.109 0.056

Notes: ***, ** and * indicate levels of significance at 1, 5 and 10%, respectively. Two-way clustered standard errors (district
and state× year) are reported in the parentheses. Full results are available in table A8 (online appendix).
Source: Author’s calculations.

and climatic factors can influence all spheres of crop production, including crop area.
Zaveri et al. (2020) find 9 per cent of cropland expansion on account of dry anomalies
around the globe. Since our dependent variable is fertilizer consumption per hectare of
gross cropped area, drought-induced cropland adjustment might be causing the change
in our dependent variable. We find a reduction in the cultivated area if a district expe-
riences drought in any given year (columns 1 and 2 in table 5). However, our estimates
do not show any changes in the cultivated area on account of previous year exposure
to droughts. We believe that climatic shocks can alter the extent of the planting area in
a district. However, changes to fertilizer consumption cannot be entirely attributed to
such changes.

We change our dependent variable to NPK consumption (tonnes) and include the
gross cropped area as a covariate in the specification of equation (5). For the concurrent
year drought effect, the reduction in total consumption of fertilizer is valid only for the
log-linear specification. The negative effect of previous year drought shock is still per-
sistent (table 5). Reversal of the relationship at higher levels of past drought is equally
significant. The magnitude of reduction remains at a similar level of about 10 per cent
(column 4, table 5).

The second set of evidence of the robustness of our results is related to consumption
of nitrogenous fertilizer. In terms of cost, the price of nitrogenous fertilizer (e.g., urea)
is the lowest among the three macronutrients as a result of subsidies. Because of the
subsidised price of nitrogenous fertilizers, only a small increase in their prices occurred
in the study period. We do not expect changes in price because of any climatic adver-
saries. Since nitrogen is consumed in higher quantities, we expect a possible change in
the amount of N-fertilizer application to reduce the overall cost of cultivation. Columns
1 and 2 of table A9 (online appendix) present the estimated coefficients of previous year
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drought shocks on nitrogen consumption. Our earlier assessment about the reduction in
NPK fertilizer application remains valid for nitrogenous fertilizer as the dependent vari-
able. The negative effect is slightly less for nitrogenous fertilizer (about 8 per cent) than
the overall results from the baseline specification. A higher application of nitrogenous
fertilizer is also observed for high-intensity droughts but it is non-significant in the log-
linear specification. An increase in irrigation share contributes to about a 1.2 per cent
increase in nitrogenous fertilizer (similar to earlier estimates in the main specification).

Thirdly, we change our assumption that any shortfall in annual rainfall is driving the
relationship. The productivity of several crops is dependent on the sufficiency of mon-
soon rainfall, so we modify the DI to be based onmonsoon rainfall. We define monsoon
rainfall as the total of rainfall in June, July, August, and September. Table A9 (columns 3
and 4) presents regression results based on our new monsoon DI. A similar response to
a one-year lag monsoon drought shock is observed on fertilizer application (about 10.6
per cent reduction). The relationship continues to be convex. In comparison to annual
drought, we find a slightly higher effect of monsoon drought in reducing the fertilizer
application. The current year monsoon drought shock produces inconsistent findings
for linear and log-linear specification, and we fail to assert any effect conclusively.

4.4 Estimates based on agro-ecological regions
Previous assessments of climatic impacts on agricultural productivity show differen-
tial magnitude of adverse effects by agro-climatic regions (Mall et al., 2006; Barnwal
and Kotani, 2013; Murari et al., 2018). Aggarwal and Mall (2002) demonstrate that
yield sensitivity to climate change varies over agro-environments for irrigated rice in
India. Based on the crop simulation model, the study highlights that climate sensitiv-
ity would be higher for the southern and eastern regions of India. However, the same
research finds that the magnitude of sensitivity varies with nitrogen management levels.
Keeping heterogeneity of climate in mind, we further disaggregate our analysis by agro-
ecological regions (AERs). This exercise aids us in delineating our national-level results
by agro-climatic regions.

DLD-India database classifies Indian districts into four AERs based on length of
growing period (LGP) and temperature.10 We can evaluate the differences in mean
drought exposure and its ranges from table A10 (online appendix). Although the mean
DI over the years looks very similar, the range of drought intensity differs considerably
across the regions. The average fertilizer application is distinctively dissimilar by region,
andwe expect a differential response to drought exposure within each region. The highly
input-intensive part of northern India falls into the semi-arid temperate region classifi-
cation. From the climate sensitivity point of view, semi-arid tropics and arid areas are
very important as these regions experience long-lasting exposure to drought conditions.

Our split-sample analysis for different agro-climatic regions produces mixed results.
For consistency, we focus only on the effect of past droughts on fertilizer consumption.
Previous year drought exposure in the districts of semi-arid temperate and semi-arid
tropics negatively affect current year fertilizer consumption (table A11 and figure 2).
The effect is highest in the semi-arid temperate region compared to other areas. We find
a reduction of about 8 kg per hectare for a unit increase in drought exposure. At the

10These categories are: (i) Humid (LGP>180 days); (ii) Semi-Arid Temperate (LGP= 75–179 days, Tem-
perature ≤18C); (iii) Semi-Arid Tropic (LGP= 75–179 days, Temp ≥18C); and (iv) Arid (LGP= 0–74
days).
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Figure 2. Predicted level of NPK fertilizer consumption, by levels of drought (current and previous year), by AER
Source: Author’s calculations.

mean level of DI (excluding DI= 0), our estimate shows a 4.7 and 3.4 per cent reduc-
tion for a 1 per cent increase in current and previous year DI, respectively (see marginal
elasticity rows of column 2 of table A11). It is worth noting that the reduction is highest
in the region where the intensity of chemical fertilizer application is highest. A much
smaller but significant decrease of 2.7 kg per hectare is observed for semi-arid tropics.
Figure 2 shows the predicted values of NPK consumption for different AERs. The arid
region shows an exceptional pattern in contrast to all other regions. This region main-
tains a negative relationship throughout the range of drought intensity. The marginal
elasticity (at mean) for lag DI is about −5.5 per cent. The difference in behaviour may
be because frequent exposure to droughts reduces the capacity of farmers to reinvest in
any productive inputs in arid districts.

5. Discussion
The results of the above sections can be summarised in several findings. First, fertilizer
application levels are determined by rainfall and the area under irrigation in any par-
ticular year. Secondly, we do not find sufficient evidence of contemporaneous change
in chemical fertilizer use due to negative rainfall shocks. Thirdly, with specific reference
to droughts, the analysis finds a new pattern of fertilizer consumption. A low level of
drought in the preceding year would lower the application rates, but higher levels of
droughts contribute positively. Finally, previous year drought can exhibit a differential
effect on fertilizer use by agro-climatic conditions.
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As the central hypothesis is to check whether adverse shocks decrease fertilizer appli-
cation, the results from the study aremixed. Insignificant reduction in chemical fertilizer
application levels under negative shocks could be because farmers perceive fertilizer as
a risk-reducing input and do not change their current investment portfolio. The results
support the observation of Auffhammer et al. (2012) who find that the non-weather vari-
ables (such as fertilizer and labour) are not sensitive to the weather conditions in India.
In a different setting, Jagnani et al. (2021) find a reduction in fertilizer use with warmer
growing season temperatures for maize farmers in Kenya. In this case, the authors argue
that farmers are diverting investment from productivity-enhancing technology, like fer-
tilizer, to more defensive inputs such as pesticide and weeding. Katengeza et al. (2019)
find inconsistent effects for organic manure use in response to dry spells of the previous
three years in Malawi for maize crop.

Our study finds a negative relationship between fertilizer use and previous year
drought exposure. This pattern would probably mean a reduction in current year fer-
tilizer expenditure because of the lower profitability caused by droughts in the last year.
Dercon and Christiaensen (2011) also find that crop failure discourages the application
of fertilizer in Ethiopia. Alem et al. (2010) explain that favourable-rainfall years could
relax the liquidity constraints for the next year, and farmers can afford fertilizer accord-
ingly. Our findings can also be understood through these mechanisms, and productive
investments appear to have been affected by bad harvests.

In the absence of district-level fertilizer price data, we could not convert our esti-
mates to economic value terms. However, based on estimates of FAO (2005), we get
a rough sense of the economic implications of our findings. For 2004–05, FAO (2005)
estimates show an increase of 12 kg (or Rs 66 in value terms) of rice for an additional
kilogramof nitrogen. Our estimated averagemarginal effect of the previous year drought
shock is about 1.2 kg/ha of N. Certainly thementioned estimates will differ widely across
the regions, crops and year. A reduction in fertilizer application would reduce land
productivity and farmers’ income.

The phenomenon of increasing the amount of fertilizer usage when the district is
exposed to severe drought conditions in the previous year is challenging to explain.With
severe droughts resulting in higher yield loss in the previous year, farms might alter fer-
tilizer application towards the higher side to safeguard production or in anticipation of
higher yield in the subsequent period. The total number of moderate and high-intensity
droughts is only about 14 per cent in our sample (table A12, online appendix), and low-
intensity droughts (DI<1) account for most shocks (figure A3, online appendix). We
could not corroborate the exact reasons fromdistrict-level analysis because of limitations
of data availability.

A probable reason could be the higher application of fertilizer as a cheap form of
insurance (as documented by Below and Brandau (2001)). We believe the increase
in fertilizer application at high-intensity droughts is linked to the inability of small-
holders to invest in irrigation infrastructure. Lack of ability to invest in fixed inputs
by smallholders, particularly in irrigation, is a reason for the existence of an inverse
(negative) relationship between farm size and inorganic fertilizer application rates in
China (Wu et al., 2018; Ren et al., 2021). The inverse relation also holds for Indian
conditions, and fertilizer application rates are highest among smallholders compared
to large farmers (Murari and Jayaraman, 2017). Past research in India indicates bet-
ter access to irrigation by large landowning classes compared to smaller ones (Sarkar,
2011; Srinivasan and Nuthalapati, 2019). Therefore, we made a possible connection
that the convex relationship could be because of the behaviour of small and marginal
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farmers. Small farmers may try to compensate for costly inputs related to climatic
adaptation (irrigation) with increased fertilizer application even after drought expo-
sure. We select a sub-sample of Punjab and Haryana to test this hypothesis and check
the drought-fertilizer application relationship (table A13, online appendix). The aver-
age size of operational area in these two States is among the highest across the States of
India. The coverage of irrigation has been gradually increasing since the green revolu-
tion in this region. These two States have more than 85 per cent area under irrigation in
the total cultivated area (figure A4, online appendix). The convex relationship does not
hold for these two states. The absence of a convex relationship in this region with bet-
ter irrigation infrastructure makes a probable case for fertilizer being used as a cheaper
form of insurance against weather risks. Alem et al. (2010) show a similar convex rela-
tionship and find higher chemical fertilizer use when rainfall variability or risk is very
high.

The results of this study have implications for agricultural productivity, prof-
itability, and environmental sustainability. Sustaining agricultural productivity under
unfavourable climatic extremes has a broader impact on the poverty trap in a devel-
oping country like India. As observed by several other studies such as Birthal et al.
(2015) and Amare et al. (2018), a negative association between crop yields and rain-
fall shocks is a reality in agriculture. However, crop yields are not substantially higher
even when water is not a limiting factor in excess rainfall years in India (Gadgil and
Gadgil, 2006). Past studies find a higher negative effect of low rainfall on crop produc-
tivity in farmers’ fields as compared to an agricultural research station. In contrast, the
gain in crop yields by farmers is less in good monsoon years compared to the research
stations in semi-arid tropics of India (Sivakumar et al., 1983). This asymmetry may
be attributed to differences in input management between research stations and farm-
ers’ fields (mainly in terms of applying productive inputs like fertilizer and pesticides).
Our study does not find any difference in application levels of fertilizer during ade-
quate and deficient rainfall years. This finding points towards the inability of farmers to
adequately invest in productivity-enhancing mechanisms to reap the benefit of a good
monsoon.

Our region-disaggregated results show a pattern of increase in fertilizer application in
the semi-arid temperate zone following anymoderate and high-intensity drought. Given
that some areas of this country are already using high levels of chemical fertilizer, any
additional increase is not encouraging for the environment. On the contrary, in the arid
region, where consumption of chemical fertilizer is at a lower level, any further reduction
induced by climatic shock can have a negative consequence on soil fertility. As Kurosaki
and Wada (2015) document the prevalence of low gross value crops (e.g., pearl millet,
sorghum, and other millets) in arid ecosystems, we can expect drought-coping mecha-
nisms to be different in this region.Moreover, these crops are less responsive to fertilizers
than rice and wheat. In harsh environments, weather shocks contribute to persistent
poverty, and even affluent households are vulnerable (Gaiha and Imai, 2004). However,
the ability to cope with rainfall shock is contingent on wealth status, as demonstrated for
semi-arid tropics of India (Rosenzweig and Binswanger, 1993). Palmer-Jones and Sen
(2003) effectively demonstrate the need for irrigation development to foster agricultural
growth in less favourable agricultural regions. Our study makes an argument for effec-
tive nutrient-management strategies to maintain soil health in these areas. We believe a
further reduction in fertilizer application in areas of low crop yields and less intensive
input use (semi-arid tropics and arid regions) can have a far-reaching consequence on
poverty.
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6. Concluding remarks
Nutrientmanagement through fertilizer application can be a vital mechanism for adjust-
ing to climatic variability because of its potential to reduce the yield gap. Although the
benefits of fertilizer use have been widely acknowledged, the environmental implica-
tions of excessive fertilizer application are also a matter of concern. A range of negative
externalities, such as nitrate leaching and runoff, are associated with chemical fertilizers
(Abrol and Raghuram, 2007; Vitousek et al., 2009). In the Indian context, indiscrimi-
nately higher use of chemical fertilizers, mainly nitrogen, is already prevalent in some
parts of the country. Globally, the safe operating space or planetary boundaries for bio-
geochemical flows (nitrogen and phosphorus cycle) has already been exceeded (Steffen
et al., 2015). However, given the intensive nature of cultivation and widespread soil-
nutrient deficiencies worldwide, it is not possible to ban the use of chemical fertilizers
(Singh and Wanjari, 2013).

Droughts are expected to increase in future and coping, or production optimisation
processes, may increase fertilizer demand. It has to be noted that it is tough to ascertain
any management practice as an adaptation against climate variability. It is tough to dis-
entangle the sole climatic adaptation aspect of agricultural management practices, such
as fertilizer, from the regular input optimisation behaviour of farmers. In the context of
the increase in the frequency of climate extremes due to climate change, the focus should
be therefore on integrated soil fertilitymanagement to safeguard farmers against produc-
tivity losses. Further research is required, particularly at the crop-disaggregated level, to
better understand farmers’ responses toward different nutrient-management practices
under climatic risks.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.
1017/S1355770X21000413.
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